Files
clang-p2996/mlir/test/Target/LLVMIR/Import/basic.ll
Min-Yih Hsu 856056d1b0 [mlir][LLVMIR] Add support for va_start/copy/end intrinsics
This patch adds three new LLVM intrinsic operations: llvm.intr.vastart/copy/end.
And its translation from LLVM IR.

This effectively removes a restriction, imposed by 0126dcf1f0, where
non-external functions in LLVM dialect cannot be variadic. At that time
it was not clear how LLVM intrinsics are going to be modeled, which
indirectly affects va_start/copy/end, the core intrinsics used in
variadic functions. But since we have LLVM intrinsics as normal
MLIR operations, it's not a problem anymore.

Differential Revision: https://reviews.llvm.org/D127540
2022-06-27 09:46:40 -07:00

663 lines
23 KiB
LLVM

; RUN: mlir-translate -import-llvm %s | FileCheck %s
%struct.t = type {}
%struct.s = type { %struct.t, i64 }
; CHECK: llvm.mlir.global external @g1() {alignment = 8 : i64} : !llvm.struct<"struct.s", (struct<"struct.t", ()>, i64)>
@g1 = external global %struct.s, align 8
; CHECK: llvm.mlir.global external @g2() {alignment = 8 : i64} : f64
@g2 = external global double, align 8
; CHECK: llvm.mlir.global internal @g3("string")
@g3 = internal global [6 x i8] c"string"
; CHECK: llvm.mlir.global external @g5() : vector<8xi32>
@g5 = external global <8 x i32>
; CHECK: llvm.mlir.global private @alig32(42 : i64) {alignment = 32 : i64, dso_local} : i64
@alig32 = private global i64 42, align 32
; CHECK: llvm.mlir.global private @alig64(42 : i64) {alignment = 64 : i64, dso_local} : i64
@alig64 = private global i64 42, align 64
@g4 = external global i32, align 8
; CHECK: llvm.mlir.global internal constant @int_gep() {dso_local} : !llvm.ptr<i32> {
; CHECK-DAG: %[[addr:[0-9]+]] = llvm.mlir.addressof @g4 : !llvm.ptr<i32>
; CHECK-DAG: %[[c2:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32
; CHECK-NEXT: %[[gepinit:[0-9]+]] = llvm.getelementptr %[[addr]][%[[c2]]] : (!llvm.ptr<i32>, i32) -> !llvm.ptr<i32>
; CHECK-NEXT: llvm.return %[[gepinit]] : !llvm.ptr<i32>
; CHECK-NEXT: }
@int_gep = internal constant i32* getelementptr (i32, i32* @g4, i32 2)
;
; dso_local attribute
;
; CHECK: llvm.mlir.global external @dso_local_var() {dso_local} : !llvm.struct<"struct.s", (struct<"struct.t", ()>, i64)>
@dso_local_var = external dso_local global %struct.s
;
; thread_local attribute
;
; CHECK: llvm.mlir.global external thread_local @thread_local_var() : !llvm.struct<"struct.s", (struct<"struct.t", ()>, i64)>
@thread_local_var = external thread_local global %struct.s
;
; addr_space attribute
;
; CHECK: llvm.mlir.global external @addr_space_var(0 : i32) {addr_space = 6 : i32} : i32
@addr_space_var = addrspace(6) global i32 0
;
; Linkage attribute.
;
; CHECK: llvm.mlir.global private @private(42 : i32) {dso_local} : i32
@private = private global i32 42
; CHECK: llvm.mlir.global internal @internal(42 : i32) {dso_local} : i32
@internal = internal global i32 42
; CHECK: llvm.mlir.global available_externally @available_externally(42 : i32) : i32
@available_externally = available_externally global i32 42
; CHECK: llvm.mlir.global linkonce @linkonce(42 : i32) : i32
@linkonce = linkonce global i32 42
; CHECK: llvm.mlir.global weak @weak(42 : i32) : i32
@weak = weak global i32 42
; CHECK: llvm.mlir.global common @common(0 : i32) : i32
@common = common global i32 zeroinitializer
; CHECK: llvm.mlir.global appending @appending(dense<[0, 1]> : tensor<2xi32>) : !llvm.array<2 x i32>
@appending = appending global [2 x i32] [i32 0, i32 1]
; CHECK: llvm.mlir.global extern_weak @extern_weak() : i32
@extern_weak = extern_weak global i32
; CHECK: llvm.mlir.global linkonce_odr @linkonce_odr(42 : i32) : i32
@linkonce_odr = linkonce_odr global i32 42
; CHECK: llvm.mlir.global weak_odr @weak_odr(42 : i32) : i32
@weak_odr = weak_odr global i32 42
; CHECK: llvm.mlir.global external @external() : i32
@external = external global i32
;
; UnnamedAddr attribute.
;
; CHECK: llvm.mlir.global private constant @no_unnamed_addr(42 : i64) {dso_local} : i64
@no_unnamed_addr = private constant i64 42
; CHECK: llvm.mlir.global private local_unnamed_addr constant @local_unnamed_addr(42 : i64) {dso_local} : i64
@local_unnamed_addr = private local_unnamed_addr constant i64 42
; CHECK: llvm.mlir.global private unnamed_addr constant @unnamed_addr(42 : i64) {dso_local} : i64
@unnamed_addr = private unnamed_addr constant i64 42
;
; Section attribute
;
; CHECK: llvm.mlir.global internal constant @sectionvar("teststring") {dso_local, section = ".mysection"}
@sectionvar = internal constant [10 x i8] c"teststring", section ".mysection"
;
; Sequential constants.
;
; CHECK: llvm.mlir.global internal constant @vector_constant(dense<[1, 2]> : vector<2xi32>) {dso_local} : vector<2xi32>
@vector_constant = internal constant <2 x i32> <i32 1, i32 2>
; CHECK: llvm.mlir.global internal constant @array_constant(dense<[1.000000e+00, 2.000000e+00]> : tensor<2xf32>) {dso_local} : !llvm.array<2 x f32>
@array_constant = internal constant [2 x float] [float 1., float 2.]
; CHECK: llvm.mlir.global internal constant @nested_array_constant(dense<[{{\[}}1, 2], [3, 4]]> : tensor<2x2xi32>) {dso_local} : !llvm.array<2 x array<2 x i32>>
@nested_array_constant = internal constant [2 x [2 x i32]] [[2 x i32] [i32 1, i32 2], [2 x i32] [i32 3, i32 4]]
; CHECK: llvm.mlir.global internal constant @nested_array_constant3(dense<[{{\[}}[1, 2], [3, 4]]]> : tensor<1x2x2xi32>) {dso_local} : !llvm.array<1 x array<2 x array<2 x i32>>>
@nested_array_constant3 = internal constant [1 x [2 x [2 x i32]]] [[2 x [2 x i32]] [[2 x i32] [i32 1, i32 2], [2 x i32] [i32 3, i32 4]]]
; CHECK: llvm.mlir.global internal constant @nested_array_vector(dense<[{{\[}}[1, 2], [3, 4]]]> : vector<1x2x2xi32>) {dso_local} : !llvm.array<1 x array<2 x vector<2xi32>>>
@nested_array_vector = internal constant [1 x [2 x <2 x i32>]] [[2 x <2 x i32>] [<2 x i32> <i32 1, i32 2>, <2 x i32> <i32 3, i32 4>]]
;
; Linkage on functions.
;
; CHECK: llvm.func internal @func_internal
define internal void @func_internal() {
ret void
}
; CHECK: llvm.func @fe(i32) -> f32
declare float @fe(i32)
; CHECK: llvm.func internal spir_funccc @spir_func_internal()
define internal spir_func void @spir_func_internal() {
ret void
}
; FIXME: function attributes.
; CHECK-LABEL: llvm.func internal @f1(%arg0: i64) -> i32 attributes {dso_local} {
; CHECK-DAG: %[[c2:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32
; CHECK-DAG: %[[c42:[0-9]+]] = llvm.mlir.constant(42 : i32) : i32
; CHECK-DAG: %[[c1:[0-9]+]] = llvm.mlir.constant(true) : i1
; CHECK-DAG: %[[c43:[0-9]+]] = llvm.mlir.constant(43 : i32) : i32
define internal dso_local i32 @f1(i64 %a) norecurse {
entry:
; CHECK: %{{[0-9]+}} = llvm.inttoptr %arg0 : i64 to !llvm.ptr<i64>
%aa = inttoptr i64 %a to i64*
; %[[addrof:[0-9]+]] = llvm.mlir.addressof @g2 : !llvm.ptr<f64>
; %[[addrof2:[0-9]+]] = llvm.mlir.addressof @g2 : !llvm.ptr<f64>
; %{{[0-9]+}} = llvm.inttoptr %arg0 : i64 to !llvm.ptr<i64>
; %{{[0-9]+}} = llvm.ptrtoint %[[addrof2]] : !llvm.ptr<f64> to i64
; %{{[0-9]+}} = llvm.getelementptr %[[addrof]][%3] : (!llvm.ptr<f64>, i32) -> !llvm.ptr<f64>
%bb = ptrtoint double* @g2 to i64
%cc = getelementptr double, double* @g2, i32 2
; CHECK: %[[b:[0-9]+]] = llvm.trunc %arg0 : i64 to i32
%b = trunc i64 %a to i32
; CHECK: %[[c:[0-9]+]] = llvm.call @fe(%[[b]]) : (i32) -> f32
%c = call float @fe(i32 %b)
; CHECK: %[[d:[0-9]+]] = llvm.fptosi %[[c]] : f32 to i32
%d = fptosi float %c to i32
; FIXME: icmp should return i1.
; CHECK: %[[e:[0-9]+]] = llvm.icmp "ne" %[[d]], %[[c2]] : i32
%e = icmp ne i32 %d, 2
; CHECK: llvm.cond_br %[[e]], ^bb1, ^bb2
br i1 %e, label %if.then, label %if.end
; CHECK: ^bb1:
if.then:
; CHECK: llvm.return %[[c42]] : i32
ret i32 42
; CHECK: ^bb2:
if.end:
; CHECK: %[[orcond:[0-9]+]] = llvm.or %[[e]], %[[c1]] : i1
%or.cond = or i1 %e, 1
; CHECK: llvm.return %[[c43]]
ret i32 43
}
; Test that instructions that dominate can be out of sequential order.
; CHECK-LABEL: llvm.func @f2(%arg0: i64) -> i64 {
; CHECK-DAG: %[[c3:[0-9]+]] = llvm.mlir.constant(3 : i64) : i64
define i64 @f2(i64 %a) noduplicate {
entry:
; CHECK: llvm.br ^bb2
br label %next
; CHECK: ^bb1:
end:
; CHECK: llvm.return %1
ret i64 %b
; CHECK: ^bb2:
next:
; CHECK: %1 = llvm.add %arg0, %[[c3]] : i64
%b = add i64 %a, 3
; CHECK: llvm.br ^bb1
br label %end
}
; Test arguments/phis.
; CHECK-LABEL: llvm.func @f2_phis(%arg0: i64) -> i64 {
; CHECK-DAG: %[[c3:[0-9]+]] = llvm.mlir.constant(3 : i64) : i64
define i64 @f2_phis(i64 %a) noduplicate {
entry:
; CHECK: llvm.br ^bb2
br label %next
; CHECK: ^bb1(%1: i64):
end:
%c = phi i64 [ %b, %next ]
; CHECK: llvm.return %1
ret i64 %c
; CHECK: ^bb2:
next:
; CHECK: %2 = llvm.add %arg0, %[[c3]] : i64
%b = add i64 %a, 3
; CHECK: llvm.br ^bb1
br label %end
}
; CHECK-LABEL: llvm.func @f3() -> !llvm.ptr<i32>
define i32* @f3() {
; CHECK: %[[c:[0-9]+]] = llvm.mlir.addressof @g2 : !llvm.ptr<f64>
; CHECK: %[[b:[0-9]+]] = llvm.bitcast %[[c]] : !llvm.ptr<f64> to !llvm.ptr<i32>
; CHECK: llvm.return %[[b]] : !llvm.ptr<i32>
ret i32* bitcast (double* @g2 to i32*)
}
; CHECK-LABEL: llvm.func @f4() -> !llvm.ptr<i32>
define i32* @f4() {
; CHECK: %[[b:[0-9]+]] = llvm.mlir.null : !llvm.ptr<i32>
; CHECK: llvm.return %[[b]] : !llvm.ptr<i32>
ret i32* bitcast (double* null to i32*)
}
; CHECK-LABEL: llvm.func @f5
define void @f5(i32 %d) {
; FIXME: icmp should return i1.
; CHECK: = llvm.icmp "eq"
%1 = icmp eq i32 %d, 2
; CHECK: = llvm.icmp "slt"
%2 = icmp slt i32 %d, 2
; CHECK: = llvm.icmp "sle"
%3 = icmp sle i32 %d, 2
; CHECK: = llvm.icmp "sgt"
%4 = icmp sgt i32 %d, 2
; CHECK: = llvm.icmp "sge"
%5 = icmp sge i32 %d, 2
; CHECK: = llvm.icmp "ult"
%6 = icmp ult i32 %d, 2
; CHECK: = llvm.icmp "ule"
%7 = icmp ule i32 %d, 2
; CHECK: = llvm.icmp "ugt"
%8 = icmp ugt i32 %d, 2
ret void
}
; CHECK-LABEL: llvm.func @f6(%arg0: !llvm.ptr<func<void (i16)>>)
define void @f6(void (i16) *%fn) {
; CHECK: %[[c:[0-9]+]] = llvm.mlir.constant(0 : i16) : i16
; CHECK: llvm.call %arg0(%[[c]])
call void %fn(i16 0)
ret void
}
; CHECK-LABEL: llvm.func @FPArithmetic(%arg0: f32, %arg1: f32, %arg2: f64, %arg3: f64)
define void @FPArithmetic(float %a, float %b, double %c, double %d) {
; CHECK: %[[a1:[0-9]+]] = llvm.mlir.constant(3.030000e+01 : f64) : f64
; CHECK: %[[a2:[0-9]+]] = llvm.mlir.constant(3.030000e+01 : f32) : f32
; CHECK: %[[a3:[0-9]+]] = llvm.fadd %[[a2]], %arg0 : f32
%1 = fadd float 0x403E4CCCC0000000, %a
; CHECK: %[[a4:[0-9]+]] = llvm.fadd %arg0, %arg1 : f32
%2 = fadd float %a, %b
; CHECK: %[[a5:[0-9]+]] = llvm.fadd %[[a1]], %arg2 : f64
%3 = fadd double 3.030000e+01, %c
; CHECK: %[[a6:[0-9]+]] = llvm.fsub %arg0, %arg1 : f32
%4 = fsub float %a, %b
; CHECK: %[[a7:[0-9]+]] = llvm.fsub %arg2, %arg3 : f64
%5 = fsub double %c, %d
; CHECK: %[[a8:[0-9]+]] = llvm.fmul %arg0, %arg1 : f32
%6 = fmul float %a, %b
; CHECK: %[[a9:[0-9]+]] = llvm.fmul %arg2, %arg3 : f64
%7 = fmul double %c, %d
; CHECK: %[[a10:[0-9]+]] = llvm.fdiv %arg0, %arg1 : f32
%8 = fdiv float %a, %b
; CHECK: %[[a12:[0-9]+]] = llvm.fdiv %arg2, %arg3 : f64
%9 = fdiv double %c, %d
; CHECK: %[[a11:[0-9]+]] = llvm.frem %arg0, %arg1 : f32
%10 = frem float %a, %b
; CHECK: %[[a13:[0-9]+]] = llvm.frem %arg2, %arg3 : f64
%11 = frem double %c, %d
; CHECK: %{{.+}} = llvm.fneg %{{.+}} : f32
%12 = fneg float %a
; CHECK: %{{.+}} = llvm.fneg %{{.+}} : f64
%13 = fneg double %c
ret void
}
; CHECK-LABEL: llvm.func @FPComparison(%arg0: f32, %arg1: f32)
define void @FPComparison(float %a, float %b) {
; CHECK: llvm.fcmp "_false" %arg0, %arg1
%1 = fcmp false float %a, %b
; CHECK: llvm.fcmp "oeq" %arg0, %arg1
%2 = fcmp oeq float %a, %b
; CHECK: llvm.fcmp "ogt" %arg0, %arg1
%3 = fcmp ogt float %a, %b
; CHECK: llvm.fcmp "oge" %arg0, %arg1
%4 = fcmp oge float %a, %b
; CHECK: llvm.fcmp "olt" %arg0, %arg1
%5 = fcmp olt float %a, %b
; CHECK: llvm.fcmp "ole" %arg0, %arg1
%6 = fcmp ole float %a, %b
; CHECK: llvm.fcmp "one" %arg0, %arg1
%7 = fcmp one float %a, %b
; CHECK: llvm.fcmp "ord" %arg0, %arg1
%8 = fcmp ord float %a, %b
; CHECK: llvm.fcmp "ueq" %arg0, %arg1
%9 = fcmp ueq float %a, %b
; CHECK: llvm.fcmp "ugt" %arg0, %arg1
%10 = fcmp ugt float %a, %b
; CHECK: llvm.fcmp "uge" %arg0, %arg1
%11 = fcmp uge float %a, %b
; CHECK: llvm.fcmp "ult" %arg0, %arg1
%12 = fcmp ult float %a, %b
; CHECK: llvm.fcmp "ule" %arg0, %arg1
%13 = fcmp ule float %a, %b
; CHECK: llvm.fcmp "une" %arg0, %arg1
%14 = fcmp une float %a, %b
; CHECK: llvm.fcmp "uno" %arg0, %arg1
%15 = fcmp uno float %a, %b
; CHECK: llvm.fcmp "_true" %arg0, %arg1
%16 = fcmp true float %a, %b
ret void
}
; Testing rest of the floating point constant kinds.
; CHECK-LABEL: llvm.func @FPConstant(%arg0: f16, %arg1: bf16, %arg2: f128, %arg3: f80)
define void @FPConstant(half %a, bfloat %b, fp128 %c, x86_fp80 %d) {
; CHECK-DAG: %[[C0:.+]] = llvm.mlir.constant(7.000000e+00 : f80) : f80
; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(0.000000e+00 : f128) : f128
; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(1.000000e+00 : bf16) : bf16
; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(1.000000e+00 : f16) : f16
; CHECK: llvm.fadd %[[C3]], %arg0 : f16
%1 = fadd half 1.0, %a
; CHECK: llvm.fadd %[[C2]], %arg1 : bf16
%2 = fadd bfloat 1.0, %b
; CHECK: llvm.fadd %[[C1]], %arg2 : f128
%3 = fadd fp128 0xL00000000000000000000000000000000, %c
; CHECK: llvm.fadd %[[C0]], %arg3 : f80
%4 = fadd x86_fp80 0xK4001E000000000000000, %d
ret void
}
;
; Functions as constants.
;
; Calling the function that has not been defined yet.
; CHECK-LABEL: @precaller
define i32 @precaller() {
%1 = alloca i32 ()*
; CHECK: %[[func:.*]] = llvm.mlir.addressof @callee : !llvm.ptr<func<i32 ()>>
; CHECK: llvm.store %[[func]], %[[loc:.*]]
store i32 ()* @callee, i32 ()** %1
; CHECK: %[[indir:.*]] = llvm.load %[[loc]]
%2 = load i32 ()*, i32 ()** %1
; CHECK: llvm.call %[[indir]]()
%3 = call i32 %2()
ret i32 %3
}
define i32 @callee() {
ret i32 42
}
; Calling the function that has been defined.
; CHECK-LABEL: @postcaller
define i32 @postcaller() {
%1 = alloca i32 ()*
; CHECK: %[[func:.*]] = llvm.mlir.addressof @callee : !llvm.ptr<func<i32 ()>>
; CHECK: llvm.store %[[func]], %[[loc:.*]]
store i32 ()* @callee, i32 ()** %1
; CHECK: %[[indir:.*]] = llvm.load %[[loc]]
%2 = load i32 ()*, i32 ()** %1
; CHECK: llvm.call %[[indir]]()
%3 = call i32 %2()
ret i32 %3
}
@_ZTIi = external dso_local constant i8*
@_ZTIii= external dso_local constant i8**
declare void @foo(i8*)
declare i8* @bar(i8*)
declare i32 @__gxx_personality_v0(...)
; CHECK-LABEL: @invokeLandingpad
define i32 @invokeLandingpad() personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
; CHECK: %[[a1:[0-9]+]] = llvm.bitcast %{{[0-9]+}} : !llvm.ptr<ptr<ptr<i8>>> to !llvm.ptr<i8>
; CHECK: %[[a3:[0-9]+]] = llvm.alloca %{{[0-9]+}} x i8 {alignment = 1 : i64} : (i32) -> !llvm.ptr<i8>
%1 = alloca i8
; CHECK: llvm.invoke @foo(%[[a3]]) to ^bb2 unwind ^bb1 : (!llvm.ptr<i8>) -> ()
invoke void @foo(i8* %1) to label %4 unwind label %2
; CHECK: ^bb1:
; CHECK: %{{[0-9]+}} = llvm.landingpad (catch %{{[0-9]+}} : !llvm.ptr<ptr<i8>>) (catch %[[a1]] : !llvm.ptr<i8>) (filter %{{[0-9]+}} : !llvm.array<1 x i8>) : !llvm.struct<(ptr<i8>, i32)>
%3 = landingpad { i8*, i32 } catch i8** @_ZTIi catch i8* bitcast (i8*** @_ZTIii to i8*)
; FIXME: Change filter to a constant array once they are handled.
; Currently, even though it parses this, LLVM module is broken
filter [1 x i8] [i8 1]
resume { i8*, i32 } %3
; CHECK: ^bb2:
; CHECK: llvm.return %{{[0-9]+}} : i32
ret i32 1
; CHECK: ^bb3:
; CHECK: %{{[0-9]+}} = llvm.invoke @bar(%[[a3]]) to ^bb2 unwind ^bb1 : (!llvm.ptr<i8>) -> !llvm.ptr<i8>
%6 = invoke i8* @bar(i8* %1) to label %4 unwind label %2
; CHECK: ^bb4:
; CHECK: llvm.return %{{[0-9]+}} : i32
ret i32 0
}
; CHECK-LABEL: @hasGCFunction
; CHECK-SAME: garbageCollector = "statepoint-example"
define void @hasGCFunction() gc "statepoint-example" {
ret void
}
;CHECK-LABEL: @useFreezeOp
define i32 @useFreezeOp(i32 %x) {
;CHECK: %{{[0-9]+}} = llvm.freeze %{{[0-9a-z]+}} : i32
%1 = freeze i32 %x
%2 = add i8 10, 10
;CHECK: %{{[0-9]+}} = llvm.freeze %{{[0-9]+}} : i8
%3 = freeze i8 %2
%poison = add nsw i1 0, undef
ret i32 0
}
;CHECK-LABEL: @useFenceInst
define i32 @useFenceInst() {
;CHECK: llvm.fence syncscope("agent") seq_cst
fence syncscope("agent") seq_cst
;CHECK: llvm.fence release
fence release
;CHECK: llvm.fence seq_cst
fence syncscope("") seq_cst
ret i32 0
}
; Switch instruction
declare void @g(i32)
; CHECK-LABEL: llvm.func @simple_switch(%arg0: i32) {
define void @simple_switch(i32 %val) {
; CHECK: %[[C0:.+]] = llvm.mlir.constant(11 : i32) : i32
; CHECK: %[[C1:.+]] = llvm.mlir.constant(87 : i32) : i32
; CHECK: %[[C2:.+]] = llvm.mlir.constant(78 : i32) : i32
; CHECK: %[[C3:.+]] = llvm.mlir.constant(94 : i32) : i32
; CHECK: %[[C4:.+]] = llvm.mlir.constant(1 : i32) : i32
; CHECK: llvm.switch %arg0 : i32, ^[[BB5:.+]] [
; CHECK: 0: ^[[BB1:.+]],
; CHECK: 9: ^[[BB2:.+]],
; CHECK: 994: ^[[BB3:.+]],
; CHECK: 1154: ^[[BB4:.+]]
; CHECK: ]
switch i32 %val, label %def [
i32 0, label %one
i32 9, label %two
i32 994, label %three
i32 1154, label %four
]
; CHECK: ^[[BB1]]:
; CHECK: llvm.call @g(%[[C4]]) : (i32) -> ()
; CHECK: llvm.return
one:
call void @g(i32 1)
ret void
; CHECK: ^[[BB2]]:
; CHECK: llvm.call @g(%[[C3]]) : (i32) -> ()
; CHECK: llvm.return
two:
call void @g(i32 94)
ret void
; CHECK: ^[[BB3]]:
; CHECK: llvm.call @g(%[[C2]]) : (i32) -> ()
; CHECK: llvm.return
three:
call void @g(i32 78)
ret void
; CHECK: ^[[BB4]]:
; CHECK: llvm.call @g(%[[C1]]) : (i32) -> ()
; CHECK: llvm.return
four:
call void @g(i32 87)
ret void
; CHECK: ^[[BB5]]:
; CHECK: llvm.call @g(%[[C0]]) : (i32) -> ()
; CHECK: llvm.return
def:
call void @g(i32 11)
ret void
}
; CHECK-LABEL: llvm.func @switch_args(%arg0: i32) {
define void @switch_args(i32 %val) {
; CHECK: %[[C0:.+]] = llvm.mlir.constant(44 : i32) : i32
; CHECK: %[[C1:.+]] = llvm.mlir.constant(34 : i32) : i32
; CHECK: %[[C2:.+]] = llvm.mlir.constant(33 : i32) : i32
%pred = icmp ult i32 %val, 87
br i1 %pred, label %bbs, label %bb1
bb1:
%vx = add i32 %val, 22
%pred2 = icmp ult i32 %val, 94
br i1 %pred2, label %bb2, label %bb3
bb2:
%vx0 = add i32 %val, 23
br label %one
bb3:
br label %def
; CHECK: %[[V1:.+]] = llvm.add %arg0, %[[C2]] : i32
; CHECK: %[[V2:.+]] = llvm.add %arg0, %[[C1]] : i32
; CHECK: %[[V3:.+]] = llvm.add %arg0, %[[C0]] : i32
; CHECK: llvm.switch %arg0 : i32, ^[[BBD:.+]](%[[V3]] : i32) [
; CHECK: 0: ^[[BB1:.+]](%[[V1]], %[[V2]] : i32, i32)
; CHECK: ]
bbs:
%vy = add i32 %val, 33
%vy0 = add i32 %val, 34
%vz = add i32 %val, 44
switch i32 %val, label %def [
i32 0, label %one
]
; CHECK: ^[[BB1]](%[[BA0:.+]]: i32, %[[BA1:.+]]: i32):
one: ; pred: bb2, bbs
%v0 = phi i32 [%vx, %bb2], [%vy, %bbs]
%v1 = phi i32 [%vx0, %bb2], [%vy0, %bbs]
; CHECK: llvm.add %[[BA0]], %[[BA1]] : i32
%vf = add i32 %v0, %v1
call void @g(i32 %vf)
ret void
; CHECK: ^[[BBD]](%[[BA2:.+]]: i32):
def: ; pred: bb3, bbs
%v2 = phi i32 [%vx, %bb3], [%vz, %bbs]
; CHECK: llvm.call @g(%[[BA2]])
call void @g(i32 %v2)
ret void
}
; Insert/ExtractValue
; CHECK-LABEL: llvm.func @insert_extract_value_struct
define float @insert_extract_value_struct({{i32},{float, double}}* %p) {
; CHECK: %[[C0:.+]] = llvm.mlir.constant(2.000000e+00 : f64)
; CHECK: %[[VT:.+]] = llvm.load %{{.+}}
%t = load {{i32},{float, double}}, {{i32},{float, double}}* %p
; CHECK: %[[EV:.+]] = llvm.extractvalue %[[VT]][1 : i32, 0 : i32] :
; CHECK-SAME: !llvm.struct<(struct<(i32)>, struct<(f32, f64)>)>
%s = extractvalue {{i32},{float, double}} %t, 1, 0
; CHECK: %[[IV:.+]] = llvm.insertvalue %[[C0]], %[[VT]][1 : i32, 1 : i32] :
; CHECK-SAME: !llvm.struct<(struct<(i32)>, struct<(f32, f64)>)>
%r = insertvalue {{i32},{float, double}} %t, double 2.0, 1, 1
; CHECK: llvm.store %[[IV]], %{{.+}}
store {{i32},{float, double}} %r, {{i32},{float, double}}* %p
; CHECK: llvm.return %[[EV]]
ret float %s
}
; CHECK-LABEL: llvm.func @insert_extract_value_array
define void @insert_extract_value_array([4 x [4 x i8]] %x1) {
; CHECK: %[[C0:.+]] = llvm.mlir.constant(0 : i8)
; CHECK: llvm.insertvalue %[[C0]], %{{.+}}[0 : i32, 0 : i32] : !llvm.array<4 x array<4 x i8>>
%res1 = insertvalue [4 x [4 x i8 ]] %x1, i8 0, 0, 0
; CHECK: llvm.extractvalue %{{.+}}[1 : i32] : !llvm.array<4 x array<4 x i8>>
%res2 = extractvalue [4 x [4 x i8 ]] %x1, 1
; CHECK: llvm.extractvalue %{{.+}}[0 : i32, 1 : i32] : !llvm.array<4 x array<4 x i8>>
%res3 = extractvalue [4 x [4 x i8 ]] %x1, 0, 1
ret void
}
; Shufflevector
; CHECK-LABEL: llvm.func @shuffle_vec
define <4 x half> @shuffle_vec(<4 x half>* %arg0, <4 x half>* %arg1) {
; CHECK: %[[V0:.+]] = llvm.load %{{.+}} : !llvm.ptr<vector<4xf16>>
%val0 = load <4 x half>, <4 x half>* %arg0
; CHECK: %[[V1:.+]] = llvm.load %{{.+}} : !llvm.ptr<vector<4xf16>>
%val1 = load <4 x half>, <4 x half>* %arg1
; CHECK: llvm.shufflevector %[[V0]], %[[V1]] [2 : i32, 3 : i32, -1 : i32, -1 : i32] : vector<4xf16>, vector<4xf16>
%shuffle = shufflevector <4 x half> %val0, <4 x half> %val1, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
ret <4 x half> %shuffle
}
; ExtractElement
; CHECK-LABEL: llvm.func @extract_element
define half @extract_element(<4 x half>* %vec, i32 %idx) {
; CHECK: %[[V0:.+]] = llvm.load %{{.+}} : !llvm.ptr<vector<4xf16>>
%val0 = load <4 x half>, <4 x half>* %vec
; CHECK: %[[V1:.+]] = llvm.extractelement %[[V0]][%{{.+}} : i32] : vector<4xf16>
%r = extractelement <4 x half> %val0, i32 %idx
; CHECK: llvm.return %[[V1]]
ret half %r
}
; InsertElement
; CHECK-LABEL: llvm.func @insert_element
define <4 x half> @insert_element(<4 x half>* %vec, half %v, i32 %idx) {
; CHECK: %[[V0:.+]] = llvm.load %{{.+}} : !llvm.ptr<vector<4xf16>>
%val0 = load <4 x half>, <4 x half>* %vec
; CHECK: %[[V1:.+]] = llvm.insertelement %{{.+}}, %[[V0]][%{{.+}} : i32] : vector<4xf16>
%r = insertelement <4 x half> %val0, half %v, i32 %idx
; CHECK: llvm.return %[[V1]]
ret <4 x half> %r
}
; Select
; CHECK-LABEL: llvm.func @select_inst
define void @select_inst(i32 %arg0, i32 %arg1, i1 %pred) {
; CHECK: %{{.+}} = llvm.select %{{.+}}, %{{.+}}, %{{.+}} : i1, i32
%1 = select i1 %pred, i32 %arg0, i32 %arg1
ret void
}
; Unreachable
; CHECK-LABEL: llvm.func @unreachable_inst
define void @unreachable_inst() {
; CHECK: llvm.unreachable
unreachable
}
; Varadic function definition
%struct.va_list = type { i8* }
declare void @llvm.va_start(i8*)
declare void @llvm.va_copy(i8*, i8*)
declare void @llvm.va_end(i8*)
; CHECK-LABEL: llvm.func @variadic_function
define void @variadic_function(i32 %X, ...) {
; CHECK: %[[ALLOCA0:.+]] = llvm.alloca %{{.*}} x !llvm.struct<"struct.va_list", (ptr<i8>)> {{.*}} : (i32) -> !llvm.ptr<struct<"struct.va_list", (ptr<i8>)>>
%ap = alloca %struct.va_list
; CHECK: %[[CAST0:.+]] = llvm.bitcast %[[ALLOCA0]] : !llvm.ptr<struct<"struct.va_list", (ptr<i8>)>> to !llvm.ptr<i8>
%ap2 = bitcast %struct.va_list* %ap to i8*
; CHECK: llvm.intr.vastart %[[CAST0]]
call void @llvm.va_start(i8* %ap2)
; CHECK: %[[ALLOCA1:.+]] = llvm.alloca %{{.*}} x !llvm.ptr<i8> {{.*}} : (i32) -> !llvm.ptr<ptr<i8>>
%aq = alloca i8*
; CHECK: %[[CAST1:.+]] = llvm.bitcast %[[ALLOCA1]] : !llvm.ptr<ptr<i8>> to !llvm.ptr<i8>
%aq2 = bitcast i8** %aq to i8*
; CHECK: llvm.intr.vacopy %[[CAST0]] to %[[CAST1]]
call void @llvm.va_copy(i8* %aq2, i8* %ap2)
; CHECK: llvm.intr.vaend %[[CAST1]]
call void @llvm.va_end(i8* %aq2)
; CHECK: llvm.intr.vaend %[[CAST0]]
call void @llvm.va_end(i8* %ap2)
; CHECK: llvm.return
ret void
}