* PassRegistry is split into its own source file. * Pass related files are moved to a new library 'Pass'. PiperOrigin-RevId: 234705771
305 lines
10 KiB
C++
305 lines
10 KiB
C++
//===- VectorizerTestPass.cpp - VectorizerTestPass Pass Impl --------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements a simple testing pass for vectorization functionality.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/AffineOps/AffineOps.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/NestedMatcher.h"
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Analysis/VectorAnalysis.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/StandardTypes.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/Functional.h"
|
|
#include "mlir/Support/STLExtras.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "third_party/llvm/llvm/include/llvm/ADT/STLExtras.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "vectorizer-test"
|
|
|
|
using namespace mlir;
|
|
|
|
using llvm::outs;
|
|
using llvm::SetVector;
|
|
|
|
using functional::map;
|
|
|
|
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
|
|
|
|
static llvm::cl::list<int> clTestVectorShapeRatio(
|
|
"vector-shape-ratio",
|
|
llvm::cl::desc("Specify the HW vector size for vectorization"),
|
|
llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory));
|
|
static llvm::cl::opt<bool> clTestForwardSlicingAnalysis(
|
|
"forward-slicing",
|
|
llvm::cl::desc("Enable testing forward static slicing and topological sort "
|
|
"functionalities"),
|
|
llvm::cl::cat(clOptionsCategory));
|
|
static llvm::cl::opt<bool> clTestBackwardSlicingAnalysis(
|
|
"backward-slicing",
|
|
llvm::cl::desc("Enable testing backward static slicing and "
|
|
"topological sort functionalities"),
|
|
llvm::cl::cat(clOptionsCategory));
|
|
static llvm::cl::opt<bool> clTestSlicingAnalysis(
|
|
"slicing",
|
|
llvm::cl::desc("Enable testing static slicing and topological sort "
|
|
"functionalities"),
|
|
llvm::cl::cat(clOptionsCategory));
|
|
static llvm::cl::opt<bool> clTestComposeMaps(
|
|
"compose-maps",
|
|
llvm::cl::desc(
|
|
"Enable testing the composition of AffineMap where each "
|
|
"AffineMap in the composition is specified as the affine_map attribute "
|
|
"in a constant op."),
|
|
llvm::cl::cat(clOptionsCategory));
|
|
static llvm::cl::opt<bool> clTestNormalizeMaps(
|
|
"normalize-maps",
|
|
llvm::cl::desc(
|
|
"Enable testing the normalization of AffineAffineApplyOp "
|
|
"where each AffineAffineApplyOp in the composition is a single output "
|
|
"instruction."),
|
|
llvm::cl::cat(clOptionsCategory));
|
|
|
|
namespace {
|
|
|
|
struct VectorizerTestPass : public FunctionPass {
|
|
static constexpr auto kTestAffineMapOpName = "test_affine_map";
|
|
static constexpr auto kTestAffineMapAttrName = "affine_map";
|
|
VectorizerTestPass() : FunctionPass(&VectorizerTestPass::passID) {}
|
|
|
|
PassResult runOnFunction(Function *f) override;
|
|
void testVectorShapeRatio(Function *f);
|
|
void testForwardSlicing(Function *f);
|
|
void testBackwardSlicing(Function *f);
|
|
void testSlicing(Function *f);
|
|
void testComposeMaps(Function *f);
|
|
void testNormalizeMaps(Function *f);
|
|
|
|
static char passID;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char VectorizerTestPass::passID = 0;
|
|
|
|
void VectorizerTestPass::testVectorShapeRatio(Function *f) {
|
|
using matcher::Op;
|
|
SmallVector<int64_t, 8> shape(clTestVectorShapeRatio.begin(),
|
|
clTestVectorShapeRatio.end());
|
|
auto subVectorType =
|
|
VectorType::get(shape, FloatType::getF32(f->getContext()));
|
|
// Only filter instructions that operate on a strict super-vector and have one
|
|
// return. This makes testing easier.
|
|
auto filter = [subVectorType](const Instruction &inst) {
|
|
assert(subVectorType.getElementType() ==
|
|
FloatType::getF32(subVectorType.getContext()) &&
|
|
"Only f32 supported for now");
|
|
if (!matcher::operatesOnSuperVectors(inst, subVectorType)) {
|
|
return false;
|
|
}
|
|
if (inst.getNumResults() != 1) {
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
auto pat = Op(filter);
|
|
SmallVector<NestedMatch, 8> matches;
|
|
pat.match(f, &matches);
|
|
for (auto m : matches) {
|
|
auto *opInst = m.getMatchedInstruction();
|
|
// This is a unit test that only checks and prints shape ratio.
|
|
// As a consequence we write only Ops with a single return type for the
|
|
// purpose of this test. If we need to test more intricate behavior in the
|
|
// future we can always extend.
|
|
auto superVectorType = opInst->getResult(0)->getType().cast<VectorType>();
|
|
auto ratio = shapeRatio(superVectorType, subVectorType);
|
|
if (!ratio.hasValue()) {
|
|
opInst->emitNote("NOT MATCHED");
|
|
} else {
|
|
outs() << "\nmatched: " << *opInst << " with shape ratio: ";
|
|
interleaveComma(MutableArrayRef<unsigned>(*ratio), outs());
|
|
}
|
|
}
|
|
}
|
|
|
|
static std::string toString(Instruction *inst) {
|
|
std::string res;
|
|
auto os = llvm::raw_string_ostream(res);
|
|
inst->print(os);
|
|
return res;
|
|
}
|
|
|
|
static NestedPattern patternTestSlicingOps() {
|
|
// Just use a custom op name for this test, it makes life easier.
|
|
constexpr auto kTestSlicingOpName = "slicing-test-op";
|
|
using functional::map;
|
|
using matcher::Op;
|
|
// Match all OpInstructions with the kTestSlicingOpName name.
|
|
auto filter = [](const Instruction &inst) {
|
|
return inst.getName().getStringRef() == kTestSlicingOpName;
|
|
};
|
|
return Op(filter);
|
|
}
|
|
|
|
void VectorizerTestPass::testBackwardSlicing(Function *f) {
|
|
SmallVector<NestedMatch, 8> matches;
|
|
patternTestSlicingOps().match(f, &matches);
|
|
for (auto m : matches) {
|
|
SetVector<Instruction *> backwardSlice;
|
|
getBackwardSlice(m.getMatchedInstruction(), &backwardSlice);
|
|
auto strs = map(toString, backwardSlice);
|
|
outs() << "\nmatched: " << *m.getMatchedInstruction()
|
|
<< " backward static slice: ";
|
|
for (const auto &s : strs) {
|
|
outs() << "\n" << s;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VectorizerTestPass::testForwardSlicing(Function *f) {
|
|
SmallVector<NestedMatch, 8> matches;
|
|
patternTestSlicingOps().match(f, &matches);
|
|
for (auto m : matches) {
|
|
SetVector<Instruction *> forwardSlice;
|
|
getForwardSlice(m.getMatchedInstruction(), &forwardSlice);
|
|
auto strs = map(toString, forwardSlice);
|
|
outs() << "\nmatched: " << *m.getMatchedInstruction()
|
|
<< " forward static slice: ";
|
|
for (const auto &s : strs) {
|
|
outs() << "\n" << s;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VectorizerTestPass::testSlicing(Function *f) {
|
|
SmallVector<NestedMatch, 8> matches;
|
|
patternTestSlicingOps().match(f, &matches);
|
|
for (auto m : matches) {
|
|
SetVector<Instruction *> staticSlice = getSlice(m.getMatchedInstruction());
|
|
auto strs = map(toString, staticSlice);
|
|
outs() << "\nmatched: " << *m.getMatchedInstruction() << " static slice: ";
|
|
for (const auto &s : strs) {
|
|
outs() << "\n" << s;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool customOpWithAffineMapAttribute(const Instruction &inst) {
|
|
return inst.getName().getStringRef() ==
|
|
VectorizerTestPass::kTestAffineMapOpName;
|
|
}
|
|
|
|
void VectorizerTestPass::testComposeMaps(Function *f) {
|
|
using matcher::Op;
|
|
auto pattern = Op(customOpWithAffineMapAttribute);
|
|
SmallVector<NestedMatch, 8> matches;
|
|
pattern.match(f, &matches);
|
|
SmallVector<AffineMap, 4> maps;
|
|
maps.reserve(matches.size());
|
|
for (auto m : llvm::reverse(matches)) {
|
|
auto *opInst = m.getMatchedInstruction();
|
|
auto map = opInst->getAttr(VectorizerTestPass::kTestAffineMapAttrName)
|
|
.cast<AffineMapAttr>()
|
|
.getValue();
|
|
maps.push_back(map);
|
|
}
|
|
AffineMap res;
|
|
for (auto m : maps) {
|
|
res = res ? res.compose(m) : m;
|
|
}
|
|
simplifyAffineMap(res).print(outs() << "\nComposed map: ");
|
|
}
|
|
|
|
static bool affineApplyOp(const Instruction &inst) {
|
|
return inst.isa<AffineApplyOp>();
|
|
}
|
|
|
|
static bool singleResultAffineApplyOpWithoutUses(const Instruction &inst) {
|
|
auto app = inst.dyn_cast<AffineApplyOp>();
|
|
return app && app->use_empty();
|
|
}
|
|
|
|
void VectorizerTestPass::testNormalizeMaps(Function *f) {
|
|
using matcher::Op;
|
|
|
|
// Save matched AffineApplyOp that all need to be erased in the end.
|
|
auto pattern = Op(affineApplyOp);
|
|
SmallVector<NestedMatch, 8> toErase;
|
|
pattern.match(f, &toErase);
|
|
{
|
|
// Compose maps.
|
|
auto pattern = Op(singleResultAffineApplyOpWithoutUses);
|
|
SmallVector<NestedMatch, 8> matches;
|
|
pattern.match(f, &matches);
|
|
for (auto m : matches) {
|
|
auto app = m.getMatchedInstruction()->cast<AffineApplyOp>();
|
|
FuncBuilder b(m.getMatchedInstruction());
|
|
SmallVector<Value *, 8> operands(app->getOperands());
|
|
makeComposedAffineApply(&b, app->getLoc(), app->getAffineMap(), operands);
|
|
}
|
|
}
|
|
// We should now be able to erase everything in reverse order in this test.
|
|
for (auto m : llvm::reverse(toErase)) {
|
|
m.getMatchedInstruction()->erase();
|
|
}
|
|
}
|
|
|
|
PassResult VectorizerTestPass::runOnFunction(Function *f) {
|
|
// Thread-safe RAII local context, BumpPtrAllocator freed on exit.
|
|
NestedPatternContext mlContext;
|
|
|
|
// Only support single block functions at this point.
|
|
if (f->getBlocks().size() != 1)
|
|
return success();
|
|
|
|
if (!clTestVectorShapeRatio.empty()) {
|
|
testVectorShapeRatio(f);
|
|
}
|
|
if (clTestForwardSlicingAnalysis) {
|
|
testForwardSlicing(f);
|
|
}
|
|
if (clTestBackwardSlicingAnalysis) {
|
|
testBackwardSlicing(f);
|
|
}
|
|
if (clTestSlicingAnalysis) {
|
|
testSlicing(f);
|
|
}
|
|
if (clTestComposeMaps) {
|
|
testComposeMaps(f);
|
|
}
|
|
if (clTestNormalizeMaps) {
|
|
testNormalizeMaps(f);
|
|
}
|
|
return PassResult::Success;
|
|
}
|
|
|
|
FunctionPass *mlir::createVectorizerTestPass() {
|
|
return new VectorizerTestPass();
|
|
}
|
|
|
|
static PassRegistration<VectorizerTestPass>
|
|
pass("vectorizer-test", "Tests vectorizer standalone functionality.");
|
|
|
|
#undef DEBUG_TYPE
|