Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/python/test_output.py
wren romano 4998b1a6cd [mlir][sparse] Updating sparse-compiler pipeline for python usage
Explicitly nests passes for FuncOp, adds more options to the sparse-compiler pipeline, and updates python integration tests.  This should be sufficient to close https://github.com/llvm/llvm-project/issues/51751

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D118658
2022-02-04 11:39:48 -08:00

117 lines
3.4 KiB
Python

# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext \
# RUN: %PYTHON %s | FileCheck %s
import ctypes
import os
import tempfile
import mlir.all_passes_registration
from mlir import execution_engine
from mlir import ir
from mlir import passmanager
from mlir import runtime as rt
from mlir.dialects import builtin
from mlir.dialects import sparse_tensor as st
# TODO: move more into actual IR building.
def boilerplate(attr: st.EncodingAttr):
"""Returns boilerplate main method."""
return f"""
func @main(%p : !llvm.ptr<i8>) -> () attributes {{ llvm.emit_c_interface }} {{
%d = arith.constant sparse<[[0, 0], [1, 1], [0, 9], [9, 0], [4, 4]],
[1.0, 2.0, 3.0, 4.0, 5.0]> : tensor<10x10xf64>
%a = sparse_tensor.convert %d : tensor<10x10xf64> to tensor<10x10xf64, {attr}>
sparse_tensor.out %a, %p : tensor<10x10xf64, {attr}>, !llvm.ptr<i8>
return
}}
"""
def expected():
"""Returns expected contents of output.
Regardless of the dimension ordering, compression, and bitwidths that are
used in the sparse tensor, the output is always lexicographically sorted
by natural index order.
"""
return f"""; extended FROSTT format
2 5
10 10
1 1 1
1 10 3
2 2 2
5 5 5
10 1 4
"""
def build_compile_and_run_output(attr: st.EncodingAttr, support_lib: str,
compiler):
# Build and Compile.
module = ir.Module.parse(boilerplate(attr))
compiler(module)
engine = execution_engine.ExecutionEngine(
module, opt_level=0, shared_libs=[support_lib])
# Invoke the kernel and compare output.
with tempfile.TemporaryDirectory() as test_dir:
out = os.path.join(test_dir, 'out.tns')
buf = out.encode('utf-8')
mem_a = ctypes.pointer(ctypes.pointer(ctypes.create_string_buffer(buf)))
engine.invoke('main', mem_a)
actual = open(out).read()
if actual != expected():
quit('FAILURE')
class SparseCompiler:
"""Sparse compiler passes."""
def __init__(self):
pipeline = (
f'builtin.func(linalg-generalize-named-ops,linalg-fuse-elementwise-ops),'
f'sparse-compiler{{reassociate-fp-reductions=1 enable-index-optimizations=1}}')
self.pipeline = pipeline
def __call__(self, module: ir.Module):
passmanager.PassManager.parse(self.pipeline).run(module)
def main():
support_lib = os.getenv('SUPPORT_LIB')
assert support_lib is not None, 'SUPPORT_LIB is undefined'
if not os.path.exists(support_lib):
raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT),
support_lib)
# CHECK-LABEL: TEST: test_output
print('\nTEST: test_output')
count = 0
with ir.Context() as ctx, ir.Location.unknown():
# Loop over various sparse types: CSR, DCSR, CSC, DCSC.
levels = [[st.DimLevelType.dense, st.DimLevelType.compressed],
[st.DimLevelType.compressed, st.DimLevelType.compressed]]
orderings = [
ir.AffineMap.get_permutation([0, 1]),
ir.AffineMap.get_permutation([1, 0])
]
bitwidths = [8, 16, 32, 64]
for level in levels:
for ordering in orderings:
for bwidth in bitwidths:
attr = st.EncodingAttr.get(level, ordering, bwidth, bwidth)
compiler = SparseCompiler()
build_compile_and_run_output(attr, support_lib, compiler)
count = count + 1
# CHECK: Passed 16 tests
print('Passed', count, 'tests')
if __name__ == '__main__':
main()