qualified reference to a declaration that is not a non-static data
member or non-static member function, e.g.,
namespace N { int i; }
int j = N::i;
Instead, extend DeclRefExpr to optionally store the qualifier. Most
clients won't see or care about the difference (since
QualifierDeclRefExpr inherited DeclRefExpr). However, this reduces the
number of top-level expression types that clients need to cope with,
brings the implementation of DeclRefExpr into line with MemberExpr,
and simplifies and unifies our handling of declaration references.
Extended DeclRefExpr to (optionally) store explicitly-specified
template arguments. This occurs when naming a declaration via a
template-id (which will be stored in a TemplateIdRefExpr) that,
following template argument deduction and (possibly) overload
resolution, is replaced with a DeclRefExpr that refers to a template
specialization but maintains the template arguments as written.
llvm-svn: 84962
699 lines
26 KiB
C++
699 lines
26 KiB
C++
//===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit Aggregate Expr nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "CGObjCRuntime.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Intrinsics.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aggregate Expression Emitter
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN AggExprEmitter : public StmtVisitor<AggExprEmitter> {
|
|
CodeGenFunction &CGF;
|
|
CGBuilderTy &Builder;
|
|
llvm::Value *DestPtr;
|
|
bool VolatileDest;
|
|
bool IgnoreResult;
|
|
bool IsInitializer;
|
|
bool RequiresGCollection;
|
|
public:
|
|
AggExprEmitter(CodeGenFunction &cgf, llvm::Value *destPtr, bool v,
|
|
bool ignore, bool isinit, bool requiresGCollection)
|
|
: CGF(cgf), Builder(CGF.Builder),
|
|
DestPtr(destPtr), VolatileDest(v), IgnoreResult(ignore),
|
|
IsInitializer(isinit), RequiresGCollection(requiresGCollection) {
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
|
|
/// represents a value lvalue, this method emits the address of the lvalue,
|
|
/// then loads the result into DestPtr.
|
|
void EmitAggLoadOfLValue(const Expr *E);
|
|
|
|
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
|
|
void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
|
|
void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
void VisitStmt(Stmt *S) {
|
|
CGF.ErrorUnsupported(S, "aggregate expression");
|
|
}
|
|
void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
|
|
void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
|
|
|
|
// l-values.
|
|
void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
|
|
void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
|
|
void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
|
|
void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
|
|
void VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
|
|
EmitAggLoadOfLValue(E);
|
|
}
|
|
void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
|
|
EmitAggLoadOfLValue(E);
|
|
}
|
|
void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
|
|
EmitAggLoadOfLValue(E);
|
|
}
|
|
void VisitPredefinedExpr(const PredefinedExpr *E) {
|
|
EmitAggLoadOfLValue(E);
|
|
}
|
|
|
|
// Operators.
|
|
void VisitCastExpr(CastExpr *E);
|
|
void VisitCallExpr(const CallExpr *E);
|
|
void VisitStmtExpr(const StmtExpr *E);
|
|
void VisitBinaryOperator(const BinaryOperator *BO);
|
|
void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
|
|
void VisitBinAssign(const BinaryOperator *E);
|
|
void VisitBinComma(const BinaryOperator *E);
|
|
void VisitUnaryAddrOf(const UnaryOperator *E);
|
|
|
|
void VisitObjCMessageExpr(ObjCMessageExpr *E);
|
|
void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
|
|
EmitAggLoadOfLValue(E);
|
|
}
|
|
void VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E);
|
|
void VisitObjCImplicitSetterGetterRefExpr(ObjCImplicitSetterGetterRefExpr *E);
|
|
|
|
void VisitConditionalOperator(const ConditionalOperator *CO);
|
|
void VisitChooseExpr(const ChooseExpr *CE);
|
|
void VisitInitListExpr(InitListExpr *E);
|
|
void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
|
|
Visit(DAE->getExpr());
|
|
}
|
|
void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
|
|
void VisitCXXConstructExpr(const CXXConstructExpr *E);
|
|
void VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E);
|
|
void VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E);
|
|
|
|
void VisitVAArgExpr(VAArgExpr *E);
|
|
|
|
void EmitInitializationToLValue(Expr *E, LValue Address);
|
|
void EmitNullInitializationToLValue(LValue Address, QualType T);
|
|
// case Expr::ChooseExprClass:
|
|
|
|
};
|
|
} // end anonymous namespace.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitAggLoadOfLValue - Given an expression with aggregate type that
|
|
/// represents a value lvalue, this method emits the address of the lvalue,
|
|
/// then loads the result into DestPtr.
|
|
void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
|
|
LValue LV = CGF.EmitLValue(E);
|
|
EmitFinalDestCopy(E, LV);
|
|
}
|
|
|
|
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
|
|
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore) {
|
|
assert(Src.isAggregate() && "value must be aggregate value!");
|
|
|
|
// If the result is ignored, don't copy from the value.
|
|
if (DestPtr == 0) {
|
|
if (!Src.isVolatileQualified() || (IgnoreResult && Ignore))
|
|
return;
|
|
// If the source is volatile, we must read from it; to do that, we need
|
|
// some place to put it.
|
|
DestPtr = CGF.CreateTempAlloca(CGF.ConvertType(E->getType()), "agg.tmp");
|
|
}
|
|
|
|
if (RequiresGCollection) {
|
|
CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
|
|
DestPtr, Src.getAggregateAddr(),
|
|
E->getType());
|
|
return;
|
|
}
|
|
// If the result of the assignment is used, copy the LHS there also.
|
|
// FIXME: Pass VolatileDest as well. I think we also need to merge volatile
|
|
// from the source as well, as we can't eliminate it if either operand
|
|
// is volatile, unless copy has volatile for both source and destination..
|
|
CGF.EmitAggregateCopy(DestPtr, Src.getAggregateAddr(), E->getType(),
|
|
VolatileDest|Src.isVolatileQualified());
|
|
}
|
|
|
|
/// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
|
|
void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
|
|
assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
|
|
|
|
EmitFinalDestCopy(E, RValue::getAggregate(Src.getAddress(),
|
|
Src.isVolatileQualified()),
|
|
Ignore);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visitor Methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AggExprEmitter::VisitCastExpr(CastExpr *E) {
|
|
switch (E->getCastKind()) {
|
|
default: assert(0 && "Unhandled cast kind!");
|
|
|
|
case CastExpr::CK_ToUnion: {
|
|
// GCC union extension
|
|
QualType PtrTy =
|
|
CGF.getContext().getPointerType(E->getSubExpr()->getType());
|
|
llvm::Value *CastPtr = Builder.CreateBitCast(DestPtr,
|
|
CGF.ConvertType(PtrTy));
|
|
EmitInitializationToLValue(E->getSubExpr(),
|
|
LValue::MakeAddr(CastPtr, Qualifiers()));
|
|
break;
|
|
}
|
|
|
|
// FIXME: Remove the CK_Unknown check here.
|
|
case CastExpr::CK_Unknown:
|
|
case CastExpr::CK_NoOp:
|
|
case CastExpr::CK_UserDefinedConversion:
|
|
case CastExpr::CK_ConstructorConversion:
|
|
assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
|
|
E->getType()) &&
|
|
"Implicit cast types must be compatible");
|
|
Visit(E->getSubExpr());
|
|
break;
|
|
|
|
case CastExpr::CK_NullToMemberPointer: {
|
|
const llvm::Type *PtrDiffTy =
|
|
CGF.ConvertType(CGF.getContext().getPointerDiffType());
|
|
|
|
llvm::Value *NullValue = llvm::Constant::getNullValue(PtrDiffTy);
|
|
llvm::Value *Ptr = Builder.CreateStructGEP(DestPtr, 0, "ptr");
|
|
Builder.CreateStore(NullValue, Ptr, VolatileDest);
|
|
|
|
llvm::Value *Adj = Builder.CreateStructGEP(DestPtr, 1, "adj");
|
|
Builder.CreateStore(NullValue, Adj, VolatileDest);
|
|
|
|
break;
|
|
}
|
|
|
|
case CastExpr::CK_BitCast: {
|
|
// This must be a member function pointer cast.
|
|
Visit(E->getSubExpr());
|
|
break;
|
|
}
|
|
|
|
case CastExpr::CK_BaseToDerivedMemberPointer: {
|
|
QualType SrcType = E->getSubExpr()->getType();
|
|
|
|
llvm::Value *Src = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(SrcType),
|
|
"tmp");
|
|
CGF.EmitAggExpr(E->getSubExpr(), Src, SrcType.isVolatileQualified());
|
|
|
|
llvm::Value *SrcPtr = Builder.CreateStructGEP(Src, 0, "src.ptr");
|
|
SrcPtr = Builder.CreateLoad(SrcPtr);
|
|
|
|
llvm::Value *SrcAdj = Builder.CreateStructGEP(Src, 1, "src.adj");
|
|
SrcAdj = Builder.CreateLoad(SrcAdj);
|
|
|
|
llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr");
|
|
Builder.CreateStore(SrcPtr, DstPtr, VolatileDest);
|
|
|
|
llvm::Value *DstAdj = Builder.CreateStructGEP(DestPtr, 1, "dst.adj");
|
|
|
|
// Now See if we need to update the adjustment.
|
|
const CXXRecordDecl *SrcDecl =
|
|
cast<CXXRecordDecl>(SrcType->getAs<MemberPointerType>()->
|
|
getClass()->getAs<RecordType>()->getDecl());
|
|
const CXXRecordDecl *DstDecl =
|
|
cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
|
|
getClass()->getAs<RecordType>()->getDecl());
|
|
|
|
llvm::Constant *Adj = CGF.CGM.GetCXXBaseClassOffset(DstDecl, SrcDecl);
|
|
if (Adj)
|
|
SrcAdj = Builder.CreateAdd(SrcAdj, Adj, "adj");
|
|
|
|
Builder.CreateStore(SrcAdj, DstAdj, VolatileDest);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
|
|
if (E->getCallReturnType()->isReferenceType()) {
|
|
EmitAggLoadOfLValue(E);
|
|
return;
|
|
}
|
|
|
|
RValue RV = CGF.EmitCallExpr(E);
|
|
EmitFinalDestCopy(E, RV);
|
|
}
|
|
|
|
void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
|
|
RValue RV = CGF.EmitObjCMessageExpr(E);
|
|
EmitFinalDestCopy(E, RV);
|
|
}
|
|
|
|
void AggExprEmitter::VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
|
|
RValue RV = CGF.EmitObjCPropertyGet(E);
|
|
EmitFinalDestCopy(E, RV);
|
|
}
|
|
|
|
void AggExprEmitter::VisitObjCImplicitSetterGetterRefExpr(
|
|
ObjCImplicitSetterGetterRefExpr *E) {
|
|
RValue RV = CGF.EmitObjCPropertyGet(E);
|
|
EmitFinalDestCopy(E, RV);
|
|
}
|
|
|
|
void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
|
|
CGF.EmitAnyExpr(E->getLHS(), 0, false, true);
|
|
CGF.EmitAggExpr(E->getRHS(), DestPtr, VolatileDest,
|
|
/*IgnoreResult=*/false, IsInitializer);
|
|
}
|
|
|
|
void AggExprEmitter::VisitUnaryAddrOf(const UnaryOperator *E) {
|
|
// We have a member function pointer.
|
|
const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
|
|
(void) MPT;
|
|
assert(MPT->getPointeeType()->isFunctionProtoType() &&
|
|
"Unexpected member pointer type!");
|
|
|
|
const DeclRefExpr *DRE = cast<DeclRefExpr>(E->getSubExpr());
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
|
|
|
|
const llvm::Type *PtrDiffTy =
|
|
CGF.ConvertType(CGF.getContext().getPointerDiffType());
|
|
|
|
llvm::Value *DstPtr = Builder.CreateStructGEP(DestPtr, 0, "dst.ptr");
|
|
llvm::Value *FuncPtr;
|
|
|
|
if (MD->isVirtual()) {
|
|
int64_t Index =
|
|
CGF.CGM.getVtableInfo().getMethodVtableIndex(MD);
|
|
|
|
FuncPtr = llvm::ConstantInt::get(PtrDiffTy, Index + 1);
|
|
} else {
|
|
FuncPtr = llvm::ConstantExpr::getPtrToInt(CGF.CGM.GetAddrOfFunction(MD),
|
|
PtrDiffTy);
|
|
}
|
|
Builder.CreateStore(FuncPtr, DstPtr, VolatileDest);
|
|
|
|
llvm::Value *AdjPtr = Builder.CreateStructGEP(DestPtr, 1, "dst.adj");
|
|
|
|
// The adjustment will always be 0.
|
|
Builder.CreateStore(llvm::ConstantInt::get(PtrDiffTy, 0), AdjPtr,
|
|
VolatileDest);
|
|
}
|
|
|
|
void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
|
|
CGF.EmitCompoundStmt(*E->getSubStmt(), true, DestPtr, VolatileDest);
|
|
}
|
|
|
|
void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
|
|
if (E->getOpcode() == BinaryOperator::PtrMemD)
|
|
VisitPointerToDataMemberBinaryOperator(E);
|
|
else
|
|
CGF.ErrorUnsupported(E, "aggregate binary expression");
|
|
}
|
|
|
|
void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
|
|
const BinaryOperator *E) {
|
|
LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
|
|
EmitFinalDestCopy(E, LV);
|
|
}
|
|
|
|
void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
|
|
// For an assignment to work, the value on the right has
|
|
// to be compatible with the value on the left.
|
|
assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
|
|
E->getRHS()->getType())
|
|
&& "Invalid assignment");
|
|
LValue LHS = CGF.EmitLValue(E->getLHS());
|
|
|
|
// We have to special case property setters, otherwise we must have
|
|
// a simple lvalue (no aggregates inside vectors, bitfields).
|
|
if (LHS.isPropertyRef()) {
|
|
llvm::Value *AggLoc = DestPtr;
|
|
if (!AggLoc)
|
|
AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
|
|
CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
|
|
CGF.EmitObjCPropertySet(LHS.getPropertyRefExpr(),
|
|
RValue::getAggregate(AggLoc, VolatileDest));
|
|
} else if (LHS.isKVCRef()) {
|
|
llvm::Value *AggLoc = DestPtr;
|
|
if (!AggLoc)
|
|
AggLoc = CGF.CreateTempAlloca(CGF.ConvertType(E->getRHS()->getType()));
|
|
CGF.EmitAggExpr(E->getRHS(), AggLoc, VolatileDest);
|
|
CGF.EmitObjCPropertySet(LHS.getKVCRefExpr(),
|
|
RValue::getAggregate(AggLoc, VolatileDest));
|
|
} else {
|
|
bool RequiresGCollection = false;
|
|
if (CGF.getContext().getLangOptions().NeXTRuntime) {
|
|
QualType LHSTy = E->getLHS()->getType();
|
|
if (const RecordType *FDTTy = LHSTy.getTypePtr()->getAs<RecordType>())
|
|
RequiresGCollection = FDTTy->getDecl()->hasObjectMember();
|
|
}
|
|
// Codegen the RHS so that it stores directly into the LHS.
|
|
CGF.EmitAggExpr(E->getRHS(), LHS.getAddress(), LHS.isVolatileQualified(),
|
|
false, false, RequiresGCollection);
|
|
EmitFinalDestCopy(E, LHS, true);
|
|
}
|
|
}
|
|
|
|
void AggExprEmitter::VisitConditionalOperator(const ConditionalOperator *E) {
|
|
llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
|
|
llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
|
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
|
|
|
|
llvm::Value *Cond = CGF.EvaluateExprAsBool(E->getCond());
|
|
Builder.CreateCondBr(Cond, LHSBlock, RHSBlock);
|
|
|
|
CGF.PushConditionalTempDestruction();
|
|
CGF.EmitBlock(LHSBlock);
|
|
|
|
// Handle the GNU extension for missing LHS.
|
|
assert(E->getLHS() && "Must have LHS for aggregate value");
|
|
|
|
Visit(E->getLHS());
|
|
CGF.PopConditionalTempDestruction();
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
CGF.PushConditionalTempDestruction();
|
|
CGF.EmitBlock(RHSBlock);
|
|
|
|
Visit(E->getRHS());
|
|
CGF.PopConditionalTempDestruction();
|
|
CGF.EmitBranch(ContBlock);
|
|
|
|
CGF.EmitBlock(ContBlock);
|
|
}
|
|
|
|
void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
|
|
Visit(CE->getChosenSubExpr(CGF.getContext()));
|
|
}
|
|
|
|
void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
|
|
llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
|
|
llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
|
|
|
|
if (!ArgPtr) {
|
|
CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
|
|
return;
|
|
}
|
|
|
|
EmitFinalDestCopy(VE, LValue::MakeAddr(ArgPtr, Qualifiers()));
|
|
}
|
|
|
|
void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
|
|
llvm::Value *Val = DestPtr;
|
|
|
|
if (!Val) {
|
|
// Create a temporary variable.
|
|
Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
|
|
|
|
// FIXME: volatile
|
|
CGF.EmitAggExpr(E->getSubExpr(), Val, false);
|
|
} else
|
|
Visit(E->getSubExpr());
|
|
|
|
// Don't make this a live temporary if we're emitting an initializer expr.
|
|
if (!IsInitializer)
|
|
CGF.PushCXXTemporary(E->getTemporary(), Val);
|
|
}
|
|
|
|
void
|
|
AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
|
|
llvm::Value *Val = DestPtr;
|
|
|
|
if (!Val) {
|
|
// Create a temporary variable.
|
|
Val = CGF.CreateTempAlloca(CGF.ConvertTypeForMem(E->getType()), "tmp");
|
|
}
|
|
|
|
CGF.EmitCXXConstructExpr(Val, E);
|
|
}
|
|
|
|
void AggExprEmitter::VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
|
|
CGF.EmitCXXExprWithTemporaries(E, DestPtr, VolatileDest, IsInitializer);
|
|
}
|
|
|
|
void AggExprEmitter::VisitCXXZeroInitValueExpr(CXXZeroInitValueExpr *E) {
|
|
LValue lvalue = LValue::MakeAddr(DestPtr, Qualifiers());
|
|
EmitNullInitializationToLValue(lvalue, E->getType());
|
|
}
|
|
|
|
void AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
|
|
// FIXME: Ignore result?
|
|
// FIXME: Are initializers affected by volatile?
|
|
if (isa<ImplicitValueInitExpr>(E)) {
|
|
EmitNullInitializationToLValue(LV, E->getType());
|
|
} else if (E->getType()->isComplexType()) {
|
|
CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
|
|
} else if (CGF.hasAggregateLLVMType(E->getType())) {
|
|
CGF.EmitAnyExpr(E, LV.getAddress(), false);
|
|
} else {
|
|
CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(E), LV, E->getType());
|
|
}
|
|
}
|
|
|
|
void AggExprEmitter::EmitNullInitializationToLValue(LValue LV, QualType T) {
|
|
if (!CGF.hasAggregateLLVMType(T)) {
|
|
// For non-aggregates, we can store zero
|
|
llvm::Value *Null = llvm::Constant::getNullValue(CGF.ConvertType(T));
|
|
CGF.EmitStoreThroughLValue(RValue::get(Null), LV, T);
|
|
} else {
|
|
// Otherwise, just memset the whole thing to zero. This is legal
|
|
// because in LLVM, all default initializers are guaranteed to have a
|
|
// bit pattern of all zeros.
|
|
// FIXME: That isn't true for member pointers!
|
|
// There's a potential optimization opportunity in combining
|
|
// memsets; that would be easy for arrays, but relatively
|
|
// difficult for structures with the current code.
|
|
CGF.EmitMemSetToZero(LV.getAddress(), T);
|
|
}
|
|
}
|
|
|
|
void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
|
|
#if 0
|
|
// FIXME: Disabled while we figure out what to do about
|
|
// test/CodeGen/bitfield.c
|
|
//
|
|
// If we can, prefer a copy from a global; this is a lot less code for long
|
|
// globals, and it's easier for the current optimizers to analyze.
|
|
// FIXME: Should we really be doing this? Should we try to avoid cases where
|
|
// we emit a global with a lot of zeros? Should we try to avoid short
|
|
// globals?
|
|
if (E->isConstantInitializer(CGF.getContext(), 0)) {
|
|
llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, &CGF);
|
|
llvm::GlobalVariable* GV =
|
|
new llvm::GlobalVariable(C->getType(), true,
|
|
llvm::GlobalValue::InternalLinkage,
|
|
C, "", &CGF.CGM.getModule(), 0);
|
|
EmitFinalDestCopy(E, LValue::MakeAddr(GV, 0));
|
|
return;
|
|
}
|
|
#endif
|
|
if (E->hadArrayRangeDesignator()) {
|
|
CGF.ErrorUnsupported(E, "GNU array range designator extension");
|
|
}
|
|
|
|
// Handle initialization of an array.
|
|
if (E->getType()->isArrayType()) {
|
|
const llvm::PointerType *APType =
|
|
cast<llvm::PointerType>(DestPtr->getType());
|
|
const llvm::ArrayType *AType =
|
|
cast<llvm::ArrayType>(APType->getElementType());
|
|
|
|
uint64_t NumInitElements = E->getNumInits();
|
|
|
|
if (E->getNumInits() > 0) {
|
|
QualType T1 = E->getType();
|
|
QualType T2 = E->getInit(0)->getType();
|
|
if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
|
|
EmitAggLoadOfLValue(E->getInit(0));
|
|
return;
|
|
}
|
|
}
|
|
|
|
uint64_t NumArrayElements = AType->getNumElements();
|
|
QualType ElementType = CGF.getContext().getCanonicalType(E->getType());
|
|
ElementType = CGF.getContext().getAsArrayType(ElementType)->getElementType();
|
|
|
|
// FIXME: were we intentionally ignoring address spaces and GC attributes?
|
|
Qualifiers Quals = CGF.MakeQualifiers(ElementType);
|
|
|
|
for (uint64_t i = 0; i != NumArrayElements; ++i) {
|
|
llvm::Value *NextVal = Builder.CreateStructGEP(DestPtr, i, ".array");
|
|
if (i < NumInitElements)
|
|
EmitInitializationToLValue(E->getInit(i),
|
|
LValue::MakeAddr(NextVal, Quals));
|
|
else
|
|
EmitNullInitializationToLValue(LValue::MakeAddr(NextVal, Quals),
|
|
ElementType);
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(E->getType()->isRecordType() && "Only support structs/unions here!");
|
|
|
|
// Do struct initialization; this code just sets each individual member
|
|
// to the approprate value. This makes bitfield support automatic;
|
|
// the disadvantage is that the generated code is more difficult for
|
|
// the optimizer, especially with bitfields.
|
|
unsigned NumInitElements = E->getNumInits();
|
|
RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
|
|
unsigned CurInitVal = 0;
|
|
|
|
if (E->getType()->isUnionType()) {
|
|
// Only initialize one field of a union. The field itself is
|
|
// specified by the initializer list.
|
|
if (!E->getInitializedFieldInUnion()) {
|
|
// Empty union; we have nothing to do.
|
|
|
|
#ifndef NDEBUG
|
|
// Make sure that it's really an empty and not a failure of
|
|
// semantic analysis.
|
|
for (RecordDecl::field_iterator Field = SD->field_begin(),
|
|
FieldEnd = SD->field_end();
|
|
Field != FieldEnd; ++Field)
|
|
assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// FIXME: volatility
|
|
FieldDecl *Field = E->getInitializedFieldInUnion();
|
|
LValue FieldLoc = CGF.EmitLValueForField(DestPtr, Field, true, 0);
|
|
|
|
if (NumInitElements) {
|
|
// Store the initializer into the field
|
|
EmitInitializationToLValue(E->getInit(0), FieldLoc);
|
|
} else {
|
|
// Default-initialize to null
|
|
EmitNullInitializationToLValue(FieldLoc, Field->getType());
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Here we iterate over the fields; this makes it simpler to both
|
|
// default-initialize fields and skip over unnamed fields.
|
|
for (RecordDecl::field_iterator Field = SD->field_begin(),
|
|
FieldEnd = SD->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
// We're done once we hit the flexible array member
|
|
if (Field->getType()->isIncompleteArrayType())
|
|
break;
|
|
|
|
if (Field->isUnnamedBitfield())
|
|
continue;
|
|
|
|
// FIXME: volatility
|
|
LValue FieldLoc = CGF.EmitLValueForField(DestPtr, *Field, false, 0);
|
|
// We never generate write-barries for initialized fields.
|
|
LValue::SetObjCNonGC(FieldLoc, true);
|
|
if (CurInitVal < NumInitElements) {
|
|
// Store the initializer into the field
|
|
EmitInitializationToLValue(E->getInit(CurInitVal++), FieldLoc);
|
|
} else {
|
|
// We're out of initalizers; default-initialize to null
|
|
EmitNullInitializationToLValue(FieldLoc, Field->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Entry Points into this File
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// EmitAggExpr - Emit the computation of the specified expression of aggregate
|
|
/// type. The result is computed into DestPtr. Note that if DestPtr is null,
|
|
/// the value of the aggregate expression is not needed. If VolatileDest is
|
|
/// true, DestPtr cannot be 0.
|
|
void CodeGenFunction::EmitAggExpr(const Expr *E, llvm::Value *DestPtr,
|
|
bool VolatileDest, bool IgnoreResult,
|
|
bool IsInitializer,
|
|
bool RequiresGCollection) {
|
|
assert(E && hasAggregateLLVMType(E->getType()) &&
|
|
"Invalid aggregate expression to emit");
|
|
assert ((DestPtr != 0 || VolatileDest == false)
|
|
&& "volatile aggregate can't be 0");
|
|
|
|
AggExprEmitter(*this, DestPtr, VolatileDest, IgnoreResult, IsInitializer,
|
|
RequiresGCollection)
|
|
.Visit(const_cast<Expr*>(E));
|
|
}
|
|
|
|
void CodeGenFunction::EmitAggregateClear(llvm::Value *DestPtr, QualType Ty) {
|
|
assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
|
|
|
|
EmitMemSetToZero(DestPtr, Ty);
|
|
}
|
|
|
|
void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
|
|
llvm::Value *SrcPtr, QualType Ty,
|
|
bool isVolatile) {
|
|
assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
|
|
|
|
// Aggregate assignment turns into llvm.memcpy. This is almost valid per
|
|
// C99 6.5.16.1p3, which states "If the value being stored in an object is
|
|
// read from another object that overlaps in anyway the storage of the first
|
|
// object, then the overlap shall be exact and the two objects shall have
|
|
// qualified or unqualified versions of a compatible type."
|
|
//
|
|
// memcpy is not defined if the source and destination pointers are exactly
|
|
// equal, but other compilers do this optimization, and almost every memcpy
|
|
// implementation handles this case safely. If there is a libc that does not
|
|
// safely handle this, we can add a target hook.
|
|
const llvm::Type *BP = llvm::Type::getInt8PtrTy(VMContext);
|
|
if (DestPtr->getType() != BP)
|
|
DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
|
|
if (SrcPtr->getType() != BP)
|
|
SrcPtr = Builder.CreateBitCast(SrcPtr, BP, "tmp");
|
|
|
|
// Get size and alignment info for this aggregate.
|
|
std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
|
|
|
|
// FIXME: Handle variable sized types.
|
|
const llvm::Type *IntPtr =
|
|
llvm::IntegerType::get(VMContext, LLVMPointerWidth);
|
|
|
|
// FIXME: If we have a volatile struct, the optimizer can remove what might
|
|
// appear to be `extra' memory ops:
|
|
//
|
|
// volatile struct { int i; } a, b;
|
|
//
|
|
// int main() {
|
|
// a = b;
|
|
// a = b;
|
|
// }
|
|
//
|
|
// we need to use a differnt call here. We use isVolatile to indicate when
|
|
// either the source or the destination is volatile.
|
|
Builder.CreateCall4(CGM.getMemCpyFn(),
|
|
DestPtr, SrcPtr,
|
|
// TypeInfo.first describes size in bits.
|
|
llvm::ConstantInt::get(IntPtr, TypeInfo.first/8),
|
|
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
|
|
TypeInfo.second/8));
|
|
}
|