Files
clang-p2996/lld/lib/ReaderWriter/ELF/SectionChunks.h
Denis Protivensky cdc1246750 [ELF] Apply segments from linker scripts
Put sections to segments according to linker scripts if available.
Rework the code of TargetLayout::assignSectionsToSegments so it operates
on the given list of segments, which can be either read from linker scripts
or constructed as before.
Handle NONE segments defined in linker scripts by putting corresponding sections
to PT_NULL segment.
Consider flags set for segments through linker scripts.

Differential Revision: http://reviews.llvm.org/D10918

llvm-svn: 243002
2015-07-23 10:34:30 +00:00

617 lines
20 KiB
C++

//===- lib/ReaderWriter/ELF/SectionChunks.h -------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_READER_WRITER_ELF_SECTION_CHUNKS_H
#define LLD_READER_WRITER_ELF_SECTION_CHUNKS_H
#include "Chunk.h"
#include "TargetHandler.h"
#include "Writer.h"
#include "lld/Core/DefinedAtom.h"
#include "lld/Core/range.h"
#include "lld/ReaderWriter/AtomLayout.h"
#include "lld/ReaderWriter/ELFLinkingContext.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include <memory>
#include <mutex>
namespace lld {
namespace elf {
template <class> class OutputSection;
using namespace llvm::ELF;
template <class ELFT> class Segment;
template <class ELFT> class TargetLayout;
/// \brief An ELF section.
template <class ELFT> class Section : public Chunk<ELFT> {
public:
Section(const ELFLinkingContext &ctx, StringRef sectionName,
StringRef chunkName,
typename Chunk<ELFT>::Kind k = Chunk<ELFT>::Kind::ELFSection);
/// \brief Modify the section contents before assigning virtual addresses
// or assigning file offsets
/// \brief Finalize the section contents before writing
/// \brief Does this section have an output segment.
virtual bool hasOutputSegment() const { return false; }
/// Return if the section is a loadable section that occupies memory
virtual bool isLoadableSection() const { return false; }
/// \brief Assign file offsets starting at offset.
virtual void assignFileOffsets(uint64_t offset) {}
/// \brief Assign virtual addresses starting at addr.
virtual void assignVirtualAddress(uint64_t addr) {}
uint64_t getFlags() const { return _flags; }
uint64_t getEntSize() const { return _entSize; }
uint32_t getType() const { return _type; }
uint32_t getLink() const { return _link; }
uint32_t getInfo() const { return _info; }
typename TargetLayout<ELFT>::SegmentType getSegmentType() const {
return _segmentType;
}
/// \brief Return the type of content that the section contains
int getContentType() const override;
/// \brief convert the segment type to a String for diagnostics and printing
/// purposes
virtual StringRef segmentKindToStr() const;
/// \brief Records the segmentType, that this section belongs to
void
setSegmentType(const typename TargetLayout<ELFT>::SegmentType segmentType) {
this->_segmentType = segmentType;
}
virtual const AtomLayout *findAtomLayoutByName(StringRef) const {
return nullptr;
}
const OutputSection<ELFT> *getOutputSection() const {
return _outputSection;
}
void setOutputSection(OutputSection<ELFT> *os, bool isFirst = false) {
_outputSection = os;
_isFirstSectionInOutputSection = isFirst;
}
static bool classof(const Chunk<ELFT> *c) {
return c->kind() == Chunk<ELFT>::Kind::ELFSection ||
c->kind() == Chunk<ELFT>::Kind::AtomSection;
}
uint64_t alignment() const override {
return _isFirstSectionInOutputSection ? _outputSection->alignment()
: this->_alignment;
}
virtual StringRef inputSectionName() const { return _inputSectionName; }
virtual StringRef outputSectionName() const { return _outputSectionName; }
virtual void setOutputSectionName(StringRef outputSectionName) {
_outputSectionName = outputSectionName;
}
void setArchiveNameOrPath(StringRef name) { _archivePath = name; }
void setMemberNameOrPath(StringRef name) { _memberPath = name; }
StringRef archivePath() { return _archivePath; }
StringRef memberPath() { return _memberPath; }
protected:
/// \brief OutputSection this Section is a member of, or nullptr.
OutputSection<ELFT> *_outputSection = nullptr;
/// \brief ELF SHF_* flags.
uint64_t _flags = 0;
/// \brief The size of each entity.
uint64_t _entSize = 0;
/// \brief ELF SHT_* type.
uint32_t _type = 0;
/// \brief sh_link field.
uint32_t _link = 0;
/// \brief the sh_info field.
uint32_t _info = 0;
/// \brief Is this the first section in the output section.
bool _isFirstSectionInOutputSection = false;
/// \brief the output ELF segment type of this section.
typename TargetLayout<ELFT>::SegmentType _segmentType = SHT_NULL;
/// \brief Input section name.
StringRef _inputSectionName;
/// \brief Output section name.
StringRef _outputSectionName;
StringRef _archivePath;
StringRef _memberPath;
};
/// \brief A section containing atoms.
template <class ELFT> class AtomSection : public Section<ELFT> {
public:
AtomSection(const ELFLinkingContext &ctx, StringRef sectionName,
int32_t contentType, int32_t permissions, int32_t order);
/// Align the offset to the required modulus defined by the atom alignment
uint64_t alignOffset(uint64_t offset, DefinedAtom::Alignment &atomAlign);
/// Return if the section is a loadable section that occupies memory
bool isLoadableSection() const override { return _isLoadedInMemory; }
// \brief Append an atom to a Section. The atom gets pushed into a vector
// contains the atom, the atom file offset, the atom virtual address
// the atom file offset is aligned appropriately as set by the Reader
virtual const AtomLayout *appendAtom(const Atom *atom);
/// \brief Set the virtual address of each Atom in the Section. This
/// routine gets called after the linker fixes up the virtual address
/// of the section
virtual void assignVirtualAddress(uint64_t addr) override;
/// \brief Set the file offset of each Atom in the section. This routine
/// gets called after the linker fixes up the section offset
void assignFileOffsets(uint64_t offset) override;
/// \brief Find the Atom address given a name, this is needed to properly
/// apply relocation. The section class calls this to find the atom address
/// to fix the relocation
const AtomLayout *findAtomLayoutByName(StringRef name) const override;
/// \brief Return the raw flags, we need this to sort segments
int64_t atomflags() const { return _contentPermissions; }
/// Atom Iterators
typedef typename std::vector<AtomLayout *>::iterator atom_iter;
range<atom_iter> atoms() { return _atoms; }
void write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) override;
static bool classof(const Chunk<ELFT> *c) {
return c->kind() == Chunk<ELFT>::Kind::AtomSection;
}
protected:
llvm::BumpPtrAllocator _alloc;
int32_t _contentType;
int32_t _contentPermissions;
bool _isLoadedInMemory = true;
std::vector<AtomLayout *> _atoms;
mutable std::mutex _outputMutex;
std::string formatError(const std::string &errorStr, const AtomLayout &atom,
const Reference &ref) const;
};
/// \brief A OutputSection represents a set of sections grouped by the same
/// name. The output file that gets written by the linker has sections grouped
/// by similar names
template <class ELFT> class OutputSection {
public:
// Iterators
typedef typename std::vector<Section<ELFT> *>::iterator SectionIter;
OutputSection(StringRef name) : _name(name) {}
// Appends a section into the list of sections that are part of this Output
// Section
void appendSection(Section<ELFT> *c);
// Set the OutputSection is associated with a segment
void setHasSegment() { _hasSegment = true; }
/// Sets the ordinal
void setOrdinal(uint64_t ordinal) { _ordinal = ordinal; }
/// Sets the Memory size
void setMemSize(uint64_t memsz) { _memSize = memsz; }
/// Sets the size fo the output Section.
void setSize(uint64_t fsiz) { _size = fsiz; }
// The offset of the first section contained in the output section is
// contained here.
void setFileOffset(uint64_t foffset) { _fileOffset = foffset; }
// Sets the starting address of the section
void setAddr(uint64_t addr) { _virtualAddr = addr; }
// Is the section loadable?
bool isLoadableSection() const { return _isLoadableSection; }
// Set section Loadable
void setLoadableSection(bool isLoadable) {
_isLoadableSection = isLoadable;
}
void setLink(uint64_t link) { _link = link; }
void setInfo(uint64_t info) { _shInfo = info; }
void setFlag(uint64_t flags) { _flags = flags; }
void setType(int64_t type) { _type = type; }
range<SectionIter> sections() { return _sections; }
// The below functions returns the properties of the OutputSection.
bool hasSegment() const { return _hasSegment; }
StringRef name() const { return _name; }
int64_t shinfo() const { return _shInfo; }
uint64_t alignment() const { return _alignment; }
int64_t link() const { return _link; }
int64_t type() const { return _type; }
uint64_t virtualAddr() const { return _virtualAddr; }
int64_t ordinal() const { return _ordinal; }
int64_t kind() const { return _kind; }
uint64_t fileSize() const { return _size; }
int64_t entsize() const { return _entSize; }
uint64_t fileOffset() const { return _fileOffset; }
uint64_t flags() const { return _flags; }
uint64_t memSize() const { return _memSize; }
private:
StringRef _name;
bool _hasSegment = false;
uint64_t _ordinal = 0;
uint64_t _flags = 0;
uint64_t _size = 0;
uint64_t _memSize = 0;
uint64_t _fileOffset = 0;
uint64_t _virtualAddr = 0;
int64_t _shInfo = 0;
int64_t _entSize = 0;
int64_t _link = 0;
uint64_t _alignment = 1;
int64_t _kind = 0;
int64_t _type = 0;
bool _isLoadableSection = false;
std::vector<Section<ELFT> *> _sections;
};
/// \brief The class represents the ELF String Table
template <class ELFT> class StringTable : public Section<ELFT> {
public:
StringTable(const ELFLinkingContext &, const char *str, int32_t order,
bool dynamic = false);
uint64_t addString(StringRef symname);
void write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) override;
void setNumEntries(int64_t numEntries) { _stringMap.resize(numEntries); }
private:
std::vector<StringRef> _strings;
struct StringRefMappingInfo {
static StringRef getEmptyKey() { return StringRef(); }
static StringRef getTombstoneKey() { return StringRef(" ", 1); }
static unsigned getHashValue(StringRef const val) {
return llvm::HashString(val);
}
static bool isEqual(StringRef const lhs, StringRef const rhs) {
return lhs.equals(rhs);
}
};
typedef typename llvm::DenseMap<StringRef, uint64_t, StringRefMappingInfo>
StringMapT;
typedef typename StringMapT::iterator StringMapTIter;
StringMapT _stringMap;
};
/// \brief The SymbolTable class represents the symbol table in a ELF file
template <class ELFT> class SymbolTable : public Section<ELFT> {
typedef
typename llvm::object::ELFDataTypeTypedefHelper<ELFT>::Elf_Addr Elf_Addr;
public:
typedef llvm::object::Elf_Sym_Impl<ELFT> Elf_Sym;
SymbolTable(const ELFLinkingContext &ctx, const char *str, int32_t order);
/// \brief set the number of entries that would exist in the symbol
/// table for the current link
void setNumEntries(int64_t numEntries) const {
if (_stringSection)
_stringSection->setNumEntries(numEntries);
}
/// \brief return number of entries
std::size_t size() const { return _symbolTable.size(); }
void addSymbol(const Atom *atom, int32_t sectionIndex, uint64_t addr = 0,
const AtomLayout *layout = nullptr);
/// \brief Get the symbol table index for an Atom. If it's not in the symbol
/// table, return STN_UNDEF.
uint32_t getSymbolTableIndex(const Atom *a) const {
for (size_t i = 0, e = _symbolTable.size(); i < e; ++i)
if (_symbolTable[i]._atom == a)
return i;
return STN_UNDEF;
}
void finalize() override { finalize(true); }
virtual void sortSymbols() {
std::stable_sort(_symbolTable.begin(), _symbolTable.end(),
[](const SymbolEntry &A, const SymbolEntry &B) {
return A._symbol.getBinding() < B._symbol.getBinding();
});
}
virtual void addAbsoluteAtom(Elf_Sym &sym, const AbsoluteAtom *aa,
int64_t addr);
virtual void addDefinedAtom(Elf_Sym &sym, const DefinedAtom *da,
int64_t addr);
virtual void addUndefinedAtom(Elf_Sym &sym, const UndefinedAtom *ua);
virtual void addSharedLibAtom(Elf_Sym &sym, const SharedLibraryAtom *sla);
virtual void finalize(bool sort);
void write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) override;
void setStringSection(StringTable<ELFT> *s) { _stringSection = s; }
StringTable<ELFT> *getStringTable() const { return _stringSection; }
protected:
struct SymbolEntry {
SymbolEntry(const Atom *a, const Elf_Sym &sym, const AtomLayout *layout)
: _atom(a), _atomLayout(layout), _symbol(sym) {}
const Atom *_atom;
const AtomLayout *_atomLayout;
Elf_Sym _symbol;
};
llvm::BumpPtrAllocator _symbolAllocate;
StringTable<ELFT> *_stringSection;
std::vector<SymbolEntry> _symbolTable;
};
template <class ELFT> class HashSection;
template <class ELFT> class DynamicSymbolTable : public SymbolTable<ELFT> {
public:
DynamicSymbolTable(const ELFLinkingContext &ctx, TargetLayout<ELFT> &layout,
const char *str, int32_t order);
// Set the dynamic hash table for symbols to be added into
void setHashTable(HashSection<ELFT> *hashTable) { _hashTable = hashTable; }
// Add all the dynamic symbos to the hash table
void addSymbolsToHashTable();
void finalize() override;
protected:
HashSection<ELFT> *_hashTable = nullptr;
TargetLayout<ELFT> &_layout;
};
template <class ELFT> class RelocationTable : public Section<ELFT> {
public:
typedef llvm::object::Elf_Rel_Impl<ELFT, false> Elf_Rel;
typedef llvm::object::Elf_Rel_Impl<ELFT, true> Elf_Rela;
RelocationTable(const ELFLinkingContext &ctx, StringRef str, int32_t order);
/// \returns the index of the relocation added.
uint32_t addRelocation(const DefinedAtom &da, const Reference &r);
bool getRelocationIndex(const Reference &r, uint32_t &res);
void setSymbolTable(const DynamicSymbolTable<ELFT> *symbolTable) {
_symbolTable = symbolTable;
}
/// \brief Check if any relocation modifies a read-only section.
bool canModifyReadonlySection() const;
void finalize() override;
void write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) override;
protected:
const DynamicSymbolTable<ELFT> *_symbolTable = nullptr;
virtual void writeRela(ELFWriter *writer, Elf_Rela &r,
const DefinedAtom &atom, const Reference &ref);
virtual void writeRel(ELFWriter *writer, Elf_Rel &r, const DefinedAtom &atom,
const Reference &ref);
uint32_t getSymbolIndex(const Atom *a);
private:
std::vector<std::pair<const DefinedAtom *, const Reference *>> _relocs;
};
template <class ELFT> class HashSection;
template <class ELFT> class DynamicTable : public Section<ELFT> {
public:
typedef llvm::object::Elf_Dyn_Impl<ELFT> Elf_Dyn;
typedef std::vector<Elf_Dyn> EntriesT;
DynamicTable(const ELFLinkingContext &ctx, TargetLayout<ELFT> &layout,
StringRef str, int32_t order);
range<typename EntriesT::iterator> entries() { return _entries; }
/// \returns the index of the entry.
std::size_t addEntry(int64_t tag, uint64_t val);
void write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) override;
virtual void createDefaultEntries();
void doPreFlight() override;
/// \brief Dynamic table tag for .got.plt section referencing.
/// Usually but not always targets use DT_PLTGOT for that.
virtual int64_t getGotPltTag() { return DT_PLTGOT; }
void finalize() override;
void setSymbolTable(DynamicSymbolTable<ELFT> *dynsym) {
_dynamicSymbolTable = dynsym;
}
const DynamicSymbolTable<ELFT> *getSymbolTable() const {
return _dynamicSymbolTable;
}
void setHashTable(HashSection<ELFT> *hsh) { _hashTable = hsh; }
virtual void updateDynamicTable();
protected:
EntriesT _entries;
/// \brief Return a virtual address (maybe adjusted) for the atom layout
/// Some targets like microMIPS and ARM Thumb use the last bit
/// of a symbol's value to mark 'compressed' code. This function allows
/// to adjust a virtal address before using it in the dynamic table tag.
virtual uint64_t getAtomVirtualAddress(const AtomLayout *al) const {
return al->_virtualAddr;
}
private:
std::size_t _dt_hash;
std::size_t _dt_strtab;
std::size_t _dt_symtab;
std::size_t _dt_rela;
std::size_t _dt_relasz;
std::size_t _dt_relaent;
std::size_t _dt_strsz;
std::size_t _dt_syment;
std::size_t _dt_pltrelsz;
std::size_t _dt_pltgot;
std::size_t _dt_pltrel;
std::size_t _dt_jmprel;
std::size_t _dt_init_array;
std::size_t _dt_init_arraysz;
std::size_t _dt_fini_array;
std::size_t _dt_fini_arraysz;
std::size_t _dt_textrel;
std::size_t _dt_init;
std::size_t _dt_fini;
TargetLayout<ELFT> &_layout;
DynamicSymbolTable<ELFT> *_dynamicSymbolTable;
HashSection<ELFT> *_hashTable;
const AtomLayout *getInitAtomLayout();
const AtomLayout *getFiniAtomLayout();
};
template <class ELFT> class InterpSection : public Section<ELFT> {
public:
InterpSection(const ELFLinkingContext &ctx, StringRef str, int32_t order,
StringRef interp);
void write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer);
private:
StringRef _interp;
};
/// The hash table in the dynamic linker is organized into
///
/// [ nbuckets ]
/// [ nchains ]
/// [ buckets[0] ]
/// .........................
/// [ buckets[nbuckets-1] ]
/// [ chains[0] ]
/// .........................
/// [ chains[nchains - 1] ]
///
/// nbuckets - total number of hash buckets
/// nchains is equal to the number of dynamic symbols.
///
/// The symbol is searched by the dynamic linker using the below approach.
/// * Calculate the hash of the symbol that needs to be searched
/// * Take the value from the buckets[hash % nbuckets] as the index of symbol
/// * Compare the symbol's name, if true return, if false, look through the
/// * array since there was a collision
template <class ELFT> class HashSection : public Section<ELFT> {
struct SymbolTableEntry {
StringRef _name;
uint32_t _index;
};
public:
HashSection(const ELFLinkingContext &ctx, StringRef name, int32_t order);
/// \brief add the dynamic symbol into the table so that the
/// hash could be calculated
void addSymbol(StringRef name, uint32_t index);
/// \brief Set the dynamic symbol table
void setSymbolTable(const DynamicSymbolTable<ELFT> *symbolTable);
// The size of the section has to be determined so that fileoffsets
// may be properly assigned. Let's calculate the buckets and the chains
// and fill the chains and the buckets hash table used by the dynamic
// linker and update the filesize and memory size accordingly
void doPreFlight() override;
void finalize() override;
void write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) override;
private:
typedef
typename llvm::object::ELFDataTypeTypedefHelper<ELFT>::Elf_Word Elf_Word;
std::vector<SymbolTableEntry> _entries;
std::vector<Elf_Word> _buckets;
std::vector<Elf_Word> _chains;
const DynamicSymbolTable<ELFT> *_symbolTable = nullptr;
};
template <class ELFT> class EHFrameHeader : public Section<ELFT> {
public:
EHFrameHeader(const ELFLinkingContext &ctx, StringRef name,
TargetLayout<ELFT> &layout, int32_t order);
void doPreFlight() override;
void finalize() override;
void write(ELFWriter *writer, TargetLayout<ELFT> &layout,
llvm::FileOutputBuffer &buffer) override;
private:
int32_t _ehFrameOffset = 0;
TargetLayout<ELFT> &_layout;
};
} // end namespace elf
} // end namespace lld
#endif