Files
clang-p2996/mlir/lib/Conversion/GPUToCUDA/ConvertLaunchFuncToCudaCalls.cpp
River Riddle 4bfae66d70 Refactor the 'walk' methods for operations.
This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:

    op->walk<AffineForOp>([](AffineForOp op) { ... });

is now accomplished via:

    op->walk([](AffineForOp op) { ... });

PiperOrigin-RevId: 266209552
2019-08-29 13:04:50 -07:00

380 lines
16 KiB
C++

//===- ConvertLaunchFuncToCudaCalls.cpp - MLIR CUDA lowering passes -------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to convert gpu.launch_func op into a sequence of
// CUDA runtime calls. As the CUDA runtime does not have a stable published ABI,
// this pass uses a slim runtime layer that builds on top of the public API from
// the CUDA headers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToCUDA/GPUToCUDAPass.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
// To avoid name mangling, these are defined in the mini-runtime file.
static constexpr const char *cuModuleLoadName = "mcuModuleLoad";
static constexpr const char *cuModuleGetFunctionName = "mcuModuleGetFunction";
static constexpr const char *cuLaunchKernelName = "mcuLaunchKernel";
static constexpr const char *cuGetStreamHelperName = "mcuGetStreamHelper";
static constexpr const char *cuStreamSynchronizeName = "mcuStreamSynchronize";
static constexpr const char *kCubinGetterAnnotation = "nvvm.cubingetter";
namespace {
/// A pass to convert gpu.launch_func operations into a sequence of CUDA
/// runtime calls.
///
/// In essence, a gpu.launch_func operations gets compiled into the following
/// sequence of runtime calls:
///
/// * mcuModuleLoad -- loads the module given the cubin data
/// * mcuModuleGetFunction -- gets a handle to the actual kernel function
/// * mcuGetStreamHelper -- initializes a new CUDA stream
/// * mcuLaunchKernelName -- launches the kernel on a stream
/// * mcuStreamSynchronize -- waits for operations on the stream to finish
///
/// Intermediate data structures are allocated on the stack.
class GpuLaunchFuncToCudaCallsPass
: public ModulePass<GpuLaunchFuncToCudaCallsPass> {
private:
LLVM::LLVMDialect *getLLVMDialect() { return llvmDialect; }
llvm::LLVMContext &getLLVMContext() {
return getLLVMDialect()->getLLVMContext();
}
void initializeCachedTypes() {
const llvm::Module &module = llvmDialect->getLLVMModule();
llvmPointerType = LLVM::LLVMType::getInt8PtrTy(llvmDialect);
llvmPointerPointerType = llvmPointerType.getPointerTo();
llvmInt8Type = LLVM::LLVMType::getInt8Ty(llvmDialect);
llvmInt32Type = LLVM::LLVMType::getInt32Ty(llvmDialect);
llvmInt64Type = LLVM::LLVMType::getInt64Ty(llvmDialect);
llvmIntPtrType = LLVM::LLVMType::getIntNTy(
llvmDialect, module.getDataLayout().getPointerSizeInBits());
}
LLVM::LLVMType getPointerType() { return llvmPointerType; }
LLVM::LLVMType getPointerPointerType() { return llvmPointerPointerType; }
LLVM::LLVMType getInt8Type() { return llvmInt8Type; }
LLVM::LLVMType getInt32Type() { return llvmInt32Type; }
LLVM::LLVMType getInt64Type() { return llvmInt64Type; }
LLVM::LLVMType getIntPtrType() {
const llvm::Module &module = getLLVMDialect()->getLLVMModule();
return LLVM::LLVMType::getIntNTy(
getLLVMDialect(), module.getDataLayout().getPointerSizeInBits());
}
LLVM::LLVMType getCUResultType() {
// This is declared as an enum in CUDA but helpers use i32.
return getInt32Type();
}
// Allocate a void pointer on the stack.
Value *allocatePointer(OpBuilder &builder, Location loc) {
auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
builder.getI32IntegerAttr(1));
return builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(), one,
/*alignment=*/0);
}
void declareCudaFunctions(Location loc);
Value *setupParamsArray(gpu::LaunchFuncOp launchOp, OpBuilder &builder);
Value *generateKernelNameConstant(FuncOp kernelFunction, Location &loc,
OpBuilder &builder);
void translateGpuLaunchCalls(mlir::gpu::LaunchFuncOp launchOp);
public:
// Run the dialect converter on the module.
void runOnModule() override {
// Cache the LLVMDialect for the current module.
llvmDialect = getContext().getRegisteredDialect<LLVM::LLVMDialect>();
// Cache the used LLVM types.
initializeCachedTypes();
for (auto func : getModule().getOps<FuncOp>()) {
func.walk(
[this](mlir::gpu::LaunchFuncOp op) { translateGpuLaunchCalls(op); });
}
}
private:
LLVM::LLVMDialect *llvmDialect;
LLVM::LLVMType llvmPointerType;
LLVM::LLVMType llvmPointerPointerType;
LLVM::LLVMType llvmInt8Type;
LLVM::LLVMType llvmInt32Type;
LLVM::LLVMType llvmInt64Type;
LLVM::LLVMType llvmIntPtrType;
};
} // anonymous namespace
// Adds declarations for the needed helper functions from the CUDA wrapper.
// The types in comments give the actual types expected/returned but the API
// uses void pointers. This is fine as they have the same linkage in C.
void GpuLaunchFuncToCudaCallsPass::declareCudaFunctions(Location loc) {
ModuleOp module = getModule();
Builder builder(module);
if (!module.lookupSymbol<FuncOp>(cuModuleLoadName)) {
module.push_back(
FuncOp::create(loc, cuModuleLoadName,
builder.getFunctionType(
{
getPointerPointerType(), /* CUmodule *module */
getPointerType() /* void *cubin */
},
getCUResultType())));
}
if (!module.lookupSymbol<FuncOp>(cuModuleGetFunctionName)) {
// The helper uses void* instead of CUDA's opaque CUmodule and
// CUfunction.
module.push_back(
FuncOp::create(loc, cuModuleGetFunctionName,
builder.getFunctionType(
{
getPointerPointerType(), /* void **function */
getPointerType(), /* void *module */
getPointerType() /* char *name */
},
getCUResultType())));
}
if (!module.lookupSymbol<FuncOp>(cuLaunchKernelName)) {
// Other than the CUDA api, the wrappers use uintptr_t to match the
// LLVM type if MLIR's index type, which the GPU dialect uses.
// Furthermore, they use void* instead of CUDA's opaque CUfunction and
// CUstream.
module.push_back(FuncOp::create(
loc, cuLaunchKernelName,
builder.getFunctionType(
{
getPointerType(), /* void* f */
getIntPtrType(), /* intptr_t gridXDim */
getIntPtrType(), /* intptr_t gridyDim */
getIntPtrType(), /* intptr_t gridZDim */
getIntPtrType(), /* intptr_t blockXDim */
getIntPtrType(), /* intptr_t blockYDim */
getIntPtrType(), /* intptr_t blockZDim */
getInt32Type(), /* unsigned int sharedMemBytes */
getPointerType(), /* void *hstream */
getPointerPointerType(), /* void **kernelParams */
getPointerPointerType() /* void **extra */
},
getCUResultType())));
}
if (!module.lookupSymbol<FuncOp>(cuGetStreamHelperName)) {
// Helper function to get the current CUDA stream. Uses void* instead of
// CUDAs opaque CUstream.
module.push_back(FuncOp::create(
loc, cuGetStreamHelperName,
builder.getFunctionType({}, getPointerType() /* void *stream */)));
}
if (!module.lookupSymbol<FuncOp>(cuStreamSynchronizeName)) {
module.push_back(
FuncOp::create(loc, cuStreamSynchronizeName,
builder.getFunctionType(
{
getPointerType() /* CUstream stream */
},
getCUResultType())));
}
}
// Generates a parameters array to be used with a CUDA kernel launch call. The
// arguments are extracted from the launchOp.
// The generated code is essentially as follows:
//
// %array = alloca(numparams * sizeof(void *))
// for (i : [0, NumKernelOperands))
// %array[i] = cast<void*>(KernelOperand[i])
// return %array
Value *
GpuLaunchFuncToCudaCallsPass::setupParamsArray(gpu::LaunchFuncOp launchOp,
OpBuilder &builder) {
Location loc = launchOp.getLoc();
auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
builder.getI32IntegerAttr(1));
auto arraySize = builder.create<LLVM::ConstantOp>(
loc, getInt32Type(),
builder.getI32IntegerAttr(launchOp.getNumKernelOperands()));
auto array = builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(),
arraySize, /*alignment=*/0);
for (int idx = 0, e = launchOp.getNumKernelOperands(); idx < e; ++idx) {
auto operand = launchOp.getKernelOperand(idx);
auto llvmType = operand->getType().cast<LLVM::LLVMType>();
auto memLocation = builder.create<LLVM::AllocaOp>(
loc, llvmType.getPointerTo(), one, /*alignment=*/1);
builder.create<LLVM::StoreOp>(loc, operand, memLocation);
auto casted =
builder.create<LLVM::BitcastOp>(loc, getPointerType(), memLocation);
auto index = builder.create<LLVM::ConstantOp>(
loc, getInt32Type(), builder.getI32IntegerAttr(idx));
auto gep = builder.create<LLVM::GEPOp>(loc, getPointerPointerType(), array,
ArrayRef<Value *>{index});
builder.create<LLVM::StoreOp>(loc, casted, gep);
}
return array;
}
// Generates an LLVM IR dialect global that contains the name of the given
// kernel function as a C string, and returns a pointer to its beginning.
// The code is essentially:
//
// llvm.global constant @kernel_name("function_name\00")
// func(...) {
// %0 = llvm.addressof @kernel_name
// %1 = llvm.constant (0 : index)
// %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
// }
Value *GpuLaunchFuncToCudaCallsPass::generateKernelNameConstant(
FuncOp kernelFunction, Location &loc, OpBuilder &builder) {
// Make sure the trailing zero is included in the constant.
std::vector<char> kernelName(kernelFunction.getName().begin(),
kernelFunction.getName().end());
kernelName.push_back('\0');
std::string globalName =
llvm::formatv("{0}_kernel_name", kernelFunction.getName());
return LLVM::createGlobalString(
loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
llvmDialect);
}
// Emits LLVM IR to launch a kernel function. Expects the module that contains
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute of the
// kernel function in the IR.
// While MLIR has no global constants, also expects a cubin getter function in
// an 'nvvm.cubingetter' attribute. Such function is expected to return a
// pointer to the cubin blob when invoked.
// With these given, the generated code in essence is
//
// %0 = call %cubingetter
// %1 = alloca sizeof(void*)
// call %mcuModuleLoad(%2, %1)
// %2 = alloca sizeof(void*)
// %3 = load %1
// %4 = <see generateKernelNameConstant>
// call %mcuModuleGetFunction(%2, %3, %4)
// %5 = call %mcuGetStreamHelper()
// %6 = load %2
// %7 = <see setupParamsArray>
// call %mcuLaunchKernel(%6, <launchOp operands 0..5>, 0, %5, %7, nullptr)
// call %mcuStreamSynchronize(%5)
void GpuLaunchFuncToCudaCallsPass::translateGpuLaunchCalls(
mlir::gpu::LaunchFuncOp launchOp) {
OpBuilder builder(launchOp);
Location loc = launchOp.getLoc();
declareCudaFunctions(loc);
auto zero = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
builder.getI32IntegerAttr(0));
// Emit a call to the cubin getter to retrieve a pointer to the data that
// represents the cubin at runtime.
// TODO(herhut): This should rather be a static global once supported.
auto kernelFunction = getModule().lookupSymbol<FuncOp>(launchOp.kernel());
auto cubinGetter =
kernelFunction.getAttrOfType<SymbolRefAttr>(kCubinGetterAnnotation);
if (!cubinGetter) {
kernelFunction.emitError("Missing ")
<< kCubinGetterAnnotation << " attribute.";
return signalPassFailure();
}
auto data = builder.create<LLVM::CallOp>(
loc, ArrayRef<Type>{getPointerType()}, cubinGetter, ArrayRef<Value *>{});
// Emit the load module call to load the module data. Error checking is done
// in the called helper function.
auto cuModule = allocatePointer(builder, loc);
FuncOp cuModuleLoad = getModule().lookupSymbol<FuncOp>(cuModuleLoadName);
builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getCUResultType()},
builder.getSymbolRefAttr(cuModuleLoad),
ArrayRef<Value *>{cuModule, data.getResult(0)});
// Get the function from the module. The name corresponds to the name of
// the kernel function.
auto cuOwningModuleRef =
builder.create<LLVM::LoadOp>(loc, getPointerType(), cuModule);
auto kernelName = generateKernelNameConstant(kernelFunction, loc, builder);
auto cuFunction = allocatePointer(builder, loc);
FuncOp cuModuleGetFunction =
getModule().lookupSymbol<FuncOp>(cuModuleGetFunctionName);
builder.create<LLVM::CallOp>(
loc, ArrayRef<Type>{getCUResultType()},
builder.getSymbolRefAttr(cuModuleGetFunction),
ArrayRef<Value *>{cuFunction, cuOwningModuleRef, kernelName});
// Grab the global stream needed for execution.
FuncOp cuGetStreamHelper =
getModule().lookupSymbol<FuncOp>(cuGetStreamHelperName);
auto cuStream = builder.create<LLVM::CallOp>(
loc, ArrayRef<Type>{getPointerType()},
builder.getSymbolRefAttr(cuGetStreamHelper), ArrayRef<Value *>{});
// Invoke the function with required arguments.
auto cuLaunchKernel = getModule().lookupSymbol<FuncOp>(cuLaunchKernelName);
auto cuFunctionRef =
builder.create<LLVM::LoadOp>(loc, getPointerType(), cuFunction);
auto paramsArray = setupParamsArray(launchOp, builder);
auto nullpointer =
builder.create<LLVM::IntToPtrOp>(loc, getPointerPointerType(), zero);
builder.create<LLVM::CallOp>(
loc, ArrayRef<Type>{getCUResultType()},
builder.getSymbolRefAttr(cuLaunchKernel),
ArrayRef<Value *>{cuFunctionRef, launchOp.getOperand(0),
launchOp.getOperand(1), launchOp.getOperand(2),
launchOp.getOperand(3), launchOp.getOperand(4),
launchOp.getOperand(5), zero, /* sharedMemBytes */
cuStream.getResult(0), /* stream */
paramsArray, /* kernel params */
nullpointer /* extra */});
// Sync on the stream to make it synchronous.
auto cuStreamSync = getModule().lookupSymbol<FuncOp>(cuStreamSynchronizeName);
builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getCUResultType()},
builder.getSymbolRefAttr(cuStreamSync),
ArrayRef<Value *>(cuStream.getResult(0)));
launchOp.erase();
}
std::unique_ptr<mlir::ModulePassBase>
mlir::createConvertGpuLaunchFuncToCudaCallsPass() {
return std::make_unique<GpuLaunchFuncToCudaCallsPass>();
}
static PassRegistration<GpuLaunchFuncToCudaCallsPass>
pass("launch-func-to-cuda",
"Convert all launch_func ops to CUDA runtime calls");