This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:
op->walk<AffineForOp>([](AffineForOp op) { ... });
is now accomplished via:
op->walk([](AffineForOp op) { ... });
PiperOrigin-RevId: 266209552
488 lines
20 KiB
C++
488 lines
20 KiB
C++
//===- LoopFusionUtils.cpp ---- Utilities for loop fusion ----------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements loop fusion transformation utility functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/LoopFusionUtils.h"
|
|
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Analysis/Utils.h"
|
|
#include "mlir/Dialect/AffineOps/AffineOps.h"
|
|
#include "mlir/Dialect/StandardOps/Ops.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "loop-fusion-utils"
|
|
|
|
using namespace mlir;
|
|
|
|
// Gathers all load and store memref accesses in 'opA' into 'values', where
|
|
// 'values[memref] == true' for each store operation.
|
|
static void getLoadAndStoreMemRefAccesses(Operation *opA,
|
|
DenseMap<Value *, bool> &values) {
|
|
opA->walk([&](Operation *op) {
|
|
if (auto loadOp = dyn_cast<AffineLoadOp>(op)) {
|
|
if (values.count(loadOp.getMemRef()) == 0)
|
|
values[loadOp.getMemRef()] = false;
|
|
} else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
|
|
values[storeOp.getMemRef()] = true;
|
|
}
|
|
});
|
|
}
|
|
|
|
// Returns true if 'op' is a load or store operation which access an memref
|
|
// accessed 'values' and at least one of the access is a store operation.
|
|
// Returns false otherwise.
|
|
static bool isDependentLoadOrStoreOp(Operation *op,
|
|
DenseMap<Value *, bool> &values) {
|
|
if (auto loadOp = dyn_cast<AffineLoadOp>(op)) {
|
|
return values.count(loadOp.getMemRef()) > 0 &&
|
|
values[loadOp.getMemRef()] == true;
|
|
} else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
|
|
return values.count(storeOp.getMemRef()) > 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns the first operation in range ('opA', 'opB') which has a data
|
|
// dependence on 'opA'. Returns 'nullptr' of no dependence exists.
|
|
static Operation *getFirstDependentOpInRange(Operation *opA, Operation *opB) {
|
|
// Record memref values from all loads/store in loop nest rooted at 'opA'.
|
|
// Map from memref value to bool which is true if store, false otherwise.
|
|
DenseMap<Value *, bool> values;
|
|
getLoadAndStoreMemRefAccesses(opA, values);
|
|
|
|
// For each 'opX' in block in range ('opA', 'opB'), check if there is a data
|
|
// dependence from 'opA' to 'opX' ('opA' and 'opX' access the same memref
|
|
// and at least one of the accesses is a store).
|
|
Operation *firstDepOp = nullptr;
|
|
for (Block::iterator it = std::next(Block::iterator(opA));
|
|
it != Block::iterator(opB); ++it) {
|
|
Operation *opX = &(*it);
|
|
opX->walk([&](Operation *op) {
|
|
if (!firstDepOp && isDependentLoadOrStoreOp(op, values))
|
|
firstDepOp = opX;
|
|
});
|
|
if (firstDepOp)
|
|
break;
|
|
}
|
|
return firstDepOp;
|
|
}
|
|
|
|
// Returns the last operation 'opX' in range ('opA', 'opB'), for which there
|
|
// exists a data dependence from 'opX' to 'opB'.
|
|
// Returns 'nullptr' of no dependence exists.
|
|
static Operation *getLastDependentOpInRange(Operation *opA, Operation *opB) {
|
|
// Record memref values from all loads/store in loop nest rooted at 'opB'.
|
|
// Map from memref value to bool which is true if store, false otherwise.
|
|
DenseMap<Value *, bool> values;
|
|
getLoadAndStoreMemRefAccesses(opB, values);
|
|
|
|
// For each 'opX' in block in range ('opA', 'opB') in reverse order,
|
|
// check if there is a data dependence from 'opX' to 'opB':
|
|
// *) 'opX' and 'opB' access the same memref and at least one of the accesses
|
|
// is a store.
|
|
// *) 'opX' produces an SSA Value which is used by 'opB'.
|
|
Operation *lastDepOp = nullptr;
|
|
for (Block::reverse_iterator it = std::next(Block::reverse_iterator(opB));
|
|
it != Block::reverse_iterator(opA); ++it) {
|
|
Operation *opX = &(*it);
|
|
opX->walk([&](Operation *op) {
|
|
if (lastDepOp)
|
|
return;
|
|
if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op)) {
|
|
if (isDependentLoadOrStoreOp(op, values))
|
|
lastDepOp = opX;
|
|
return;
|
|
}
|
|
for (auto *value : op->getResults()) {
|
|
for (auto *user : value->getUsers()) {
|
|
SmallVector<AffineForOp, 4> loops;
|
|
// Check if any loop in loop nest surrounding 'user' is 'opB'.
|
|
getLoopIVs(*user, &loops);
|
|
if (llvm::is_contained(loops, cast<AffineForOp>(opB))) {
|
|
lastDepOp = opX;
|
|
}
|
|
}
|
|
}
|
|
});
|
|
if (lastDepOp)
|
|
break;
|
|
}
|
|
return lastDepOp;
|
|
}
|
|
|
|
// Computes and returns an insertion point operation, before which the
|
|
// the fused <srcForOp, dstForOp> loop nest can be inserted while preserving
|
|
// dependences. Returns nullptr if no such insertion point is found.
|
|
static Operation *getFusedLoopNestInsertionPoint(AffineForOp srcForOp,
|
|
AffineForOp dstForOp) {
|
|
bool isSrcForOpBeforeDstForOp =
|
|
srcForOp.getOperation()->isBeforeInBlock(dstForOp.getOperation());
|
|
auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
|
|
auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;
|
|
|
|
auto *firstDepOpA =
|
|
getFirstDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
|
|
auto *lastDepOpB =
|
|
getLastDependentOpInRange(forOpA.getOperation(), forOpB.getOperation());
|
|
// Block:
|
|
// ...
|
|
// |-- opA
|
|
// | ...
|
|
// | lastDepOpB --|
|
|
// | ... |
|
|
// |-> firstDepOpA |
|
|
// ... |
|
|
// opB <---------
|
|
//
|
|
// Valid insertion point range: (lastDepOpB, firstDepOpA)
|
|
//
|
|
if (firstDepOpA != nullptr) {
|
|
if (lastDepOpB != nullptr) {
|
|
if (firstDepOpA->isBeforeInBlock(lastDepOpB) || firstDepOpA == lastDepOpB)
|
|
// No valid insertion point exists which preserves dependences.
|
|
return nullptr;
|
|
}
|
|
// Return insertion point in valid range closest to 'opB'.
|
|
// TODO(andydavis) Consider other insertion points in valid range.
|
|
return firstDepOpA;
|
|
}
|
|
// No dependences from 'opA' to operation in range ('opA', 'opB'), return
|
|
// 'opB' insertion point.
|
|
return forOpB.getOperation();
|
|
}
|
|
|
|
// Gathers all load and store ops in loop nest rooted at 'forOp' into
|
|
// 'loadAndStoreOps'.
|
|
static bool
|
|
gatherLoadsAndStores(AffineForOp forOp,
|
|
SmallVectorImpl<Operation *> &loadAndStoreOps) {
|
|
bool hasIfOp = false;
|
|
forOp.getOperation()->walk([&](Operation *op) {
|
|
if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op))
|
|
loadAndStoreOps.push_back(op);
|
|
else if (isa<AffineIfOp>(op))
|
|
hasIfOp = true;
|
|
});
|
|
return !hasIfOp;
|
|
}
|
|
|
|
// TODO(andydavis) Prevent fusion of loop nests with side-effecting operations.
|
|
FusionResult mlir::canFuseLoops(AffineForOp srcForOp, AffineForOp dstForOp,
|
|
unsigned dstLoopDepth,
|
|
ComputationSliceState *srcSlice) {
|
|
// Return 'failure' if 'dstLoopDepth == 0'.
|
|
if (dstLoopDepth == 0) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests at depth 0\n.");
|
|
return FusionResult::FailPrecondition;
|
|
}
|
|
// Return 'failure' if 'srcForOp' and 'dstForOp' are not in the same block.
|
|
auto *block = srcForOp.getOperation()->getBlock();
|
|
if (block != dstForOp.getOperation()->getBlock()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Cannot fuse loop nests in different blocks\n.");
|
|
return FusionResult::FailPrecondition;
|
|
}
|
|
|
|
// Return 'failure' if no valid insertion point for fused loop nest in 'block'
|
|
// exists which would preserve dependences.
|
|
if (!getFusedLoopNestInsertionPoint(srcForOp, dstForOp)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Fusion would violate dependences in block\n.");
|
|
return FusionResult::FailBlockDependence;
|
|
}
|
|
|
|
// Check if 'srcForOp' precedeces 'dstForOp' in 'block'.
|
|
bool isSrcForOpBeforeDstForOp =
|
|
srcForOp.getOperation()->isBeforeInBlock(dstForOp.getOperation());
|
|
// 'forOpA' executes before 'forOpB' in 'block'.
|
|
auto forOpA = isSrcForOpBeforeDstForOp ? srcForOp : dstForOp;
|
|
auto forOpB = isSrcForOpBeforeDstForOp ? dstForOp : srcForOp;
|
|
|
|
// Gather all load and store from 'forOpA' which precedes 'forOpB' in 'block'.
|
|
SmallVector<Operation *, 4> opsA;
|
|
if (!gatherLoadsAndStores(forOpA, opsA)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported.\n.");
|
|
return FusionResult::FailPrecondition;
|
|
}
|
|
|
|
// Gather all load and store from 'forOpB' which succeeds 'forOpA' in 'block'.
|
|
SmallVector<Operation *, 4> opsB;
|
|
if (!gatherLoadsAndStores(forOpB, opsB)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Fusing loops with affine.if unsupported.\n.");
|
|
return FusionResult::FailPrecondition;
|
|
}
|
|
|
|
// Calculate the number of common loops surrounding 'srcForOp' and 'dstForOp'.
|
|
unsigned numCommonLoops = mlir::getNumCommonSurroundingLoops(
|
|
*srcForOp.getOperation(), *dstForOp.getOperation());
|
|
|
|
// Compute union of computation slices computed between all pairs of ops
|
|
// from 'forOpA' and 'forOpB'.
|
|
if (failed(mlir::computeSliceUnion(opsA, opsB, dstLoopDepth, numCommonLoops,
|
|
isSrcForOpBeforeDstForOp, srcSlice))) {
|
|
LLVM_DEBUG(llvm::dbgs() << "computeSliceUnion failed\n");
|
|
return FusionResult::FailPrecondition;
|
|
}
|
|
|
|
return FusionResult::Success;
|
|
}
|
|
|
|
/// Collect loop nest statistics (eg. loop trip count and operation count)
|
|
/// in 'stats' for loop nest rooted at 'forOp'. Returns true on success,
|
|
/// returns false otherwise.
|
|
bool mlir::getLoopNestStats(AffineForOp forOpRoot, LoopNestStats *stats) {
|
|
bool ret = true;
|
|
forOpRoot.walk([&](AffineForOp forOp) {
|
|
auto *childForOp = forOp.getOperation();
|
|
auto *parentForOp = forOp.getOperation()->getParentOp();
|
|
if (!llvm::isa<FuncOp>(parentForOp)) {
|
|
if (!isa<AffineForOp>(parentForOp)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Expected parent AffineForOp");
|
|
ret = false;
|
|
return;
|
|
}
|
|
// Add mapping to 'forOp' from its parent AffineForOp.
|
|
stats->loopMap[parentForOp].push_back(forOp);
|
|
}
|
|
|
|
// Record the number of op operations in the body of 'forOp'.
|
|
unsigned count = 0;
|
|
stats->opCountMap[childForOp] = 0;
|
|
for (auto &op : *forOp.getBody()) {
|
|
if (!isa<AffineForOp>(op) && !isa<AffineIfOp>(op))
|
|
++count;
|
|
}
|
|
stats->opCountMap[childForOp] = count;
|
|
// Record trip count for 'forOp'. Set flag if trip count is not
|
|
// constant.
|
|
Optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
|
|
if (!maybeConstTripCount.hasValue()) {
|
|
// Currently only constant trip count loop nests are supported.
|
|
LLVM_DEBUG(llvm::dbgs() << "Non-constant trip count unsupported");
|
|
ret = false;
|
|
return;
|
|
}
|
|
stats->tripCountMap[childForOp] = maybeConstTripCount.getValue();
|
|
});
|
|
return ret;
|
|
}
|
|
|
|
// Computes the total cost of the loop nest rooted at 'forOp'.
|
|
// Currently, the total cost is computed by counting the total operation
|
|
// instance count (i.e. total number of operations in the loop bodyloop
|
|
// operation count * loop trip count) for the entire loop nest.
|
|
// If 'tripCountOverrideMap' is non-null, overrides the trip count for loops
|
|
// specified in the map when computing the total op instance count.
|
|
// NOTEs: 1) This is used to compute the cost of computation slices, which are
|
|
// sliced along the iteration dimension, and thus reduce the trip count.
|
|
// If 'computeCostMap' is non-null, the total op count for forOps specified
|
|
// in the map is increased (not overridden) by adding the op count from the
|
|
// map to the existing op count for the for loop. This is done before
|
|
// multiplying by the loop's trip count, and is used to model the cost of
|
|
// inserting a sliced loop nest of known cost into the loop's body.
|
|
// 2) This is also used to compute the cost of fusing a slice of some loop nest
|
|
// within another loop.
|
|
static int64_t getComputeCostHelper(
|
|
Operation *forOp, LoopNestStats &stats,
|
|
llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountOverrideMap,
|
|
DenseMap<Operation *, int64_t> *computeCostMap) {
|
|
// 'opCount' is the total number operations in one iteration of 'forOp' body,
|
|
// minus terminator op which is a no-op.
|
|
int64_t opCount = stats.opCountMap[forOp] - 1;
|
|
if (stats.loopMap.count(forOp) > 0) {
|
|
for (auto childForOp : stats.loopMap[forOp]) {
|
|
opCount += getComputeCostHelper(childForOp.getOperation(), stats,
|
|
tripCountOverrideMap, computeCostMap);
|
|
}
|
|
}
|
|
// Add in additional op instances from slice (if specified in map).
|
|
if (computeCostMap != nullptr) {
|
|
auto it = computeCostMap->find(forOp);
|
|
if (it != computeCostMap->end()) {
|
|
opCount += it->second;
|
|
}
|
|
}
|
|
// Override trip count (if specified in map).
|
|
int64_t tripCount = stats.tripCountMap[forOp];
|
|
if (tripCountOverrideMap != nullptr) {
|
|
auto it = tripCountOverrideMap->find(forOp);
|
|
if (it != tripCountOverrideMap->end()) {
|
|
tripCount = it->second;
|
|
}
|
|
}
|
|
// Returns the total number of dynamic instances of operations in loop body.
|
|
return tripCount * opCount;
|
|
}
|
|
|
|
// TODO(andydavis,b/126426796): extend this to handle multiple result maps.
|
|
static Optional<uint64_t> getConstDifference(AffineMap lbMap, AffineMap ubMap) {
|
|
assert(lbMap.getNumResults() == 1 && "expected single result bound map");
|
|
assert(ubMap.getNumResults() == 1 && "expected single result bound map");
|
|
assert(lbMap.getNumDims() == ubMap.getNumDims());
|
|
assert(lbMap.getNumSymbols() == ubMap.getNumSymbols());
|
|
AffineExpr lbExpr(lbMap.getResult(0));
|
|
AffineExpr ubExpr(ubMap.getResult(0));
|
|
auto loopSpanExpr = simplifyAffineExpr(ubExpr - lbExpr, lbMap.getNumDims(),
|
|
lbMap.getNumSymbols());
|
|
auto cExpr = loopSpanExpr.dyn_cast<AffineConstantExpr>();
|
|
if (!cExpr)
|
|
return None;
|
|
return cExpr.getValue();
|
|
}
|
|
|
|
// Return the number of iterations in the given slice.
|
|
static uint64_t getSliceIterationCount(
|
|
const llvm::SmallDenseMap<Operation *, uint64_t, 8> &sliceTripCountMap) {
|
|
uint64_t iterCount = 1;
|
|
for (const auto &count : sliceTripCountMap) {
|
|
iterCount *= count.second;
|
|
}
|
|
return iterCount;
|
|
}
|
|
|
|
// Builds a map 'tripCountMap' from AffineForOp to constant trip count for loop
|
|
// nest surrounding represented by slice loop bounds in 'slice'.
|
|
// Returns true on success, false otherwise (if a non-constant trip count
|
|
// was encountered).
|
|
// TODO(andydavis) Make this work with non-unit step loops.
|
|
static bool buildSliceTripCountMap(
|
|
ComputationSliceState *slice,
|
|
llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountMap) {
|
|
unsigned numSrcLoopIVs = slice->ivs.size();
|
|
// Populate map from AffineForOp -> trip count
|
|
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
|
|
AffineForOp forOp = getForInductionVarOwner(slice->ivs[i]);
|
|
auto *op = forOp.getOperation();
|
|
AffineMap lbMap = slice->lbs[i];
|
|
AffineMap ubMap = slice->ubs[i];
|
|
if (lbMap == AffineMap() || ubMap == AffineMap()) {
|
|
// The iteration of src loop IV 'i' was not sliced. Use full loop bounds.
|
|
if (forOp.hasConstantLowerBound() && forOp.hasConstantUpperBound()) {
|
|
(*tripCountMap)[op] =
|
|
forOp.getConstantUpperBound() - forOp.getConstantLowerBound();
|
|
continue;
|
|
}
|
|
Optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
|
|
if (maybeConstTripCount.hasValue()) {
|
|
(*tripCountMap)[op] = maybeConstTripCount.getValue();
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
Optional<uint64_t> tripCount = getConstDifference(lbMap, ubMap);
|
|
// Slice bounds are created with a constant ub - lb difference.
|
|
if (!tripCount.hasValue())
|
|
return false;
|
|
(*tripCountMap)[op] = tripCount.getValue();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Computes the total cost of the loop nest rooted at 'forOp' using 'stats'.
|
|
/// Currently, the total cost is computed by counting the total operation
|
|
/// instance count (i.e. total number of operations in the loop body * loop
|
|
/// trip count) for the entire loop nest.
|
|
int64_t mlir::getComputeCost(AffineForOp forOp, LoopNestStats &stats) {
|
|
return getComputeCostHelper(forOp.getOperation(), stats,
|
|
/*tripCountOverrideMap=*/nullptr,
|
|
/*computeCostMap=*/nullptr);
|
|
}
|
|
|
|
/// Computes and returns in 'computeCost', the total compute cost of fusing the
|
|
/// 'slice' of the loop nest rooted at 'srcForOp' into 'dstForOp'. Currently,
|
|
/// the total cost is computed by counting the total operation instance count
|
|
/// (i.e. total number of operations in the loop body * loop trip count) for
|
|
/// the entire loop nest.
|
|
bool mlir::getFusionComputeCost(AffineForOp srcForOp, LoopNestStats &srcStats,
|
|
AffineForOp dstForOp, LoopNestStats &dstStats,
|
|
ComputationSliceState *slice,
|
|
int64_t *computeCost) {
|
|
llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
|
|
DenseMap<Operation *, int64_t> computeCostMap;
|
|
|
|
// Build trip count map for computation slice.
|
|
if (!buildSliceTripCountMap(slice, &sliceTripCountMap))
|
|
return false;
|
|
// Checks whether a store to load forwarding will happen.
|
|
int64_t sliceIterationCount = getSliceIterationCount(sliceTripCountMap);
|
|
assert(sliceIterationCount > 0);
|
|
bool storeLoadFwdGuaranteed = (sliceIterationCount == 1);
|
|
auto *insertPointParent = slice->insertPoint->getParentOp();
|
|
|
|
// The store and loads to this memref will disappear.
|
|
// TODO(andydavis) Add load coalescing to memref data flow opt pass.
|
|
if (storeLoadFwdGuaranteed) {
|
|
// Subtract from operation count the loads/store we expect load/store
|
|
// forwarding to remove.
|
|
unsigned storeCount = 0;
|
|
llvm::SmallDenseSet<Value *, 4> storeMemrefs;
|
|
srcForOp.getOperation()->walk([&](Operation *op) {
|
|
if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
|
|
storeMemrefs.insert(storeOp.getMemRef());
|
|
++storeCount;
|
|
}
|
|
});
|
|
// Subtract out any store ops in single-iteration src slice loop nest.
|
|
if (storeCount > 0)
|
|
computeCostMap[insertPointParent] = -storeCount;
|
|
// Subtract out any load users of 'storeMemrefs' nested below
|
|
// 'insertPointParent'.
|
|
for (auto *value : storeMemrefs) {
|
|
for (auto *user : value->getUsers()) {
|
|
if (auto loadOp = dyn_cast<AffineLoadOp>(user)) {
|
|
SmallVector<AffineForOp, 4> loops;
|
|
// Check if any loop in loop nest surrounding 'user' is
|
|
// 'insertPointParent'.
|
|
getLoopIVs(*user, &loops);
|
|
if (llvm::is_contained(loops, cast<AffineForOp>(insertPointParent))) {
|
|
if (auto forOp =
|
|
dyn_cast_or_null<AffineForOp>(user->getParentOp())) {
|
|
if (computeCostMap.count(forOp) == 0)
|
|
computeCostMap[forOp] = 0;
|
|
computeCostMap[forOp] -= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute op instance count for the src loop nest with iteration slicing.
|
|
int64_t sliceComputeCost = getComputeCostHelper(
|
|
srcForOp.getOperation(), srcStats, &sliceTripCountMap, &computeCostMap);
|
|
|
|
// Compute cost of fusion for this depth.
|
|
computeCostMap[insertPointParent] = sliceComputeCost;
|
|
|
|
*computeCost =
|
|
getComputeCostHelper(dstForOp.getOperation(), dstStats,
|
|
/*tripCountOverrideMap=*/nullptr, &computeCostMap);
|
|
return true;
|
|
}
|