Files
clang-p2996/mlir/lib/Conversion/GPUToSPIRV/ConvertGPUToSPIRV.cpp
Mahesh Ravishankar 4d61a79db4 Allow specification of the workgroup size for GPUToSPIRV lowering.
SPIR-V/Vulkan spec requires the workgroups size to be specified with
the spv.ExecutionMode operation. This was hard-wired to be set to a
particular value. It is now changed to be configurable by clients of
the pass or of the patterns that implement the lowering from GPU to
SPIRV.

PiperOrigin-RevId: 284017482
2019-12-05 11:31:57 -08:00

215 lines
8.4 KiB
C++

//===- ConvertGPUToSPIRV.cpp - Convert GPU ops to SPIR-V dialect ----------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the conversion patterns from GPU ops to SPIR-V dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/SPIRV/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/SPIRVLowering.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
using namespace mlir;
namespace {
/// Pattern to convert a loop::ForOp within kernel functions into spirv::LoopOp.
class ForOpConversion final : public SPIRVOpLowering<loop::ForOp> {
public:
using SPIRVOpLowering<loop::ForOp>::SPIRVOpLowering;
PatternMatchResult
matchAndRewrite(loop::ForOp forOp, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// Pattern lowering GPU block/thread size/id to loading SPIR-V invocation
/// builin variables.
template <typename SourceOp, spirv::BuiltIn builtin>
class LaunchConfigConversion : public SPIRVOpLowering<SourceOp> {
public:
using SPIRVOpLowering<SourceOp>::SPIRVOpLowering;
PatternMatchResult
matchAndRewrite(SourceOp op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// Pattern to convert a kernel function in GPU dialect (a FuncOp with the
/// attribute gpu.kernel) within a spv.module.
class KernelFnConversion final : public SPIRVOpLowering<FuncOp> {
public:
KernelFnConversion(MLIRContext *context, SPIRVTypeConverter &converter,
ArrayRef<int64_t> workGroupSize,
PatternBenefit benefit = 1)
: SPIRVOpLowering<FuncOp>(context, converter, benefit) {
auto config = workGroupSize.take_front(3);
workGroupSizeAsInt32.assign(config.begin(), config.end());
workGroupSizeAsInt32.resize(3, 1);
}
PatternMatchResult
matchAndRewrite(FuncOp funcOp, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override;
private:
SmallVector<int32_t, 3> workGroupSizeAsInt32;
};
} // namespace
PatternMatchResult
ForOpConversion::matchAndRewrite(loop::ForOp forOp, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const {
// loop::ForOp can be lowered to the structured control flow represented by
// spirv::LoopOp by making the continue block of the spirv::LoopOp the loop
// latch and the merge block the exit block. The resulting spirv::LoopOp has a
// single back edge from the continue to header block, and a single exit from
// header to merge.
loop::ForOpOperandAdaptor forOperands(operands);
auto loc = forOp.getLoc();
auto loopControl = rewriter.getI32IntegerAttr(
static_cast<uint32_t>(spirv::LoopControl::None));
auto loopOp = rewriter.create<spirv::LoopOp>(loc, loopControl);
loopOp.addEntryAndMergeBlock();
OpBuilder::InsertionGuard guard(rewriter);
// Create the block for the header.
auto header = new Block();
// Insert the header.
loopOp.body().getBlocks().insert(std::next(loopOp.body().begin(), 1), header);
// Create the new induction variable to use.
BlockArgument *newIndVar =
header->addArgument(forOperands.lowerBound()->getType());
Block *body = forOp.getBody();
// Apply signature conversion to the body of the forOp. It has a single block,
// with argument which is the induction variable. That has to be replaced with
// the new induction variable.
TypeConverter::SignatureConversion signatureConverter(
body->getNumArguments());
signatureConverter.remapInput(0, newIndVar);
body = rewriter.applySignatureConversion(&forOp.getLoopBody(),
signatureConverter);
// Delete the loop terminator.
rewriter.eraseOp(body->getTerminator());
// Move the blocks from the forOp into the loopOp. This is the body of the
// loopOp.
rewriter.inlineRegionBefore(forOp.getOperation()->getRegion(0), loopOp.body(),
std::next(loopOp.body().begin(), 2));
// Branch into it from the entry.
rewriter.setInsertionPointToEnd(&(loopOp.body().front()));
rewriter.create<spirv::BranchOp>(loc, header, forOperands.lowerBound());
// Generate the rest of the loop header.
rewriter.setInsertionPointToEnd(header);
auto mergeBlock = loopOp.getMergeBlock();
auto cmpOp = rewriter.create<spirv::SLessThanOp>(
loc, rewriter.getI1Type(), newIndVar, forOperands.upperBound());
rewriter.create<spirv::BranchConditionalOp>(
loc, cmpOp, body, ArrayRef<Value *>(), mergeBlock, ArrayRef<Value *>());
// Generate instructions to increment the step of the induction variable and
// branch to the header.
Block *continueBlock = loopOp.getContinueBlock();
rewriter.setInsertionPointToEnd(continueBlock);
// Add the step to the induction variable and branch to the header.
Value *updatedIndVar = rewriter.create<spirv::IAddOp>(
loc, newIndVar->getType(), newIndVar, forOperands.step());
rewriter.create<spirv::BranchOp>(loc, header, updatedIndVar);
rewriter.eraseOp(forOp);
return matchSuccess();
}
template <typename SourceOp, spirv::BuiltIn builtin>
PatternMatchResult LaunchConfigConversion<SourceOp, builtin>::matchAndRewrite(
SourceOp op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const {
auto dimAttr =
op.getOperation()->template getAttrOfType<StringAttr>("dimension");
if (!dimAttr) {
return this->matchFailure();
}
int32_t index = 0;
if (dimAttr.getValue() == "x") {
index = 0;
} else if (dimAttr.getValue() == "y") {
index = 1;
} else if (dimAttr.getValue() == "z") {
index = 2;
} else {
return this->matchFailure();
}
// SPIR-V invocation builtin variables are a vector of type <3xi32>
auto spirvBuiltin = spirv::getBuiltinVariableValue(op, builtin, rewriter);
rewriter.replaceOpWithNewOp<spirv::CompositeExtractOp>(
op, rewriter.getIntegerType(32), spirvBuiltin,
rewriter.getI32ArrayAttr({index}));
return this->matchSuccess();
}
PatternMatchResult
KernelFnConversion::matchAndRewrite(FuncOp funcOp, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const {
if (!gpu::GPUDialect::isKernel(funcOp)) {
return matchFailure();
}
SmallVector<spirv::InterfaceVarABIAttr, 4> argABI;
for (auto argNum : llvm::seq<unsigned>(0, funcOp.getNumArguments())) {
argABI.push_back(spirv::getInterfaceVarABIAttr(
0, argNum, spirv::StorageClass::StorageBuffer, rewriter.getContext()));
}
auto context = rewriter.getContext();
auto entryPointAttr =
spirv::getEntryPointABIAttr(workGroupSizeAsInt32, context);
FuncOp newFuncOp = spirv::lowerAsEntryFunction(
funcOp, typeConverter, rewriter, argABI, entryPointAttr);
if (!newFuncOp) {
return matchFailure();
}
newFuncOp.removeAttr(Identifier::get(gpu::GPUDialect::getKernelFuncAttrName(),
rewriter.getContext()));
return matchSuccess();
}
namespace mlir {
void populateGPUToSPIRVPatterns(MLIRContext *context,
SPIRVTypeConverter &typeConverter,
OwningRewritePatternList &patterns,
ArrayRef<int64_t> workGroupSize) {
patterns.insert<KernelFnConversion>(context, typeConverter, workGroupSize);
patterns.insert<
ForOpConversion,
LaunchConfigConversion<gpu::BlockDimOp, spirv::BuiltIn::WorkgroupSize>,
LaunchConfigConversion<gpu::BlockIdOp, spirv::BuiltIn::WorkgroupId>,
LaunchConfigConversion<gpu::GridDimOp, spirv::BuiltIn::NumWorkgroups>,
LaunchConfigConversion<gpu::ThreadIdOp,
spirv::BuiltIn::LocalInvocationId>>(context,
typeConverter);
}
} // namespace mlir