Files
clang-p2996/mlir/lib/Transforms/Utils/Utils.cpp
River Riddle 4dfd1b5fcb [mlir] Optimize operand storage such that all operations can have resizable operand lists
This revision refactors the structure of the operand storage such that there is no additional memory cost for resizable operand lists until it is required. This is done by using two different internal representations for the operand storage:
* One using trailing operands
* One using a dynamically allocated std::vector<OpOperand>

This allows for removing the resizable operand list bit, and will free up APIs from needing to workaround non-resizable operand lists.

Differential Revision: https://reviews.llvm.org/D78875
2020-04-26 21:34:01 -07:00

470 lines
19 KiB
C++

//===- Utils.cpp ---- Misc utilities for code and data transformation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous transformation routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Utils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Dominance.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
/// Return true if this operation dereferences one or more memref's.
// Temporary utility: will be replaced when this is modeled through
// side-effects/op traits. TODO(b/117228571)
static bool isMemRefDereferencingOp(Operation &op) {
if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op) ||
isa<AffineDmaStartOp>(op) || isa<AffineDmaWaitOp>(op))
return true;
return false;
}
/// Return the AffineMapAttr associated with memory 'op' on 'memref'.
static NamedAttribute getAffineMapAttrForMemRef(Operation *op, Value memref) {
return TypeSwitch<Operation *, NamedAttribute>(op)
.Case<AffineDmaStartOp, AffineLoadOp, AffinePrefetchOp, AffineStoreOp,
AffineDmaWaitOp>(
[=](auto op) { return op.getAffineMapAttrForMemRef(memref); });
}
// Perform the replacement in `op`.
LogicalResult mlir::replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef,
Operation *op,
ArrayRef<Value> extraIndices,
AffineMap indexRemap,
ArrayRef<Value> extraOperands,
ArrayRef<Value> symbolOperands) {
unsigned newMemRefRank = newMemRef.getType().cast<MemRefType>().getRank();
(void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = oldMemRef.getType().cast<MemRefType>().getRank();
(void)oldMemRefRank; // unused in opt mode
if (indexRemap) {
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
"symbolic operand count mismatch");
assert(indexRemap.getNumInputs() ==
extraOperands.size() + oldMemRefRank + symbolOperands.size());
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
} else {
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
}
// Assert same elemental type.
assert(oldMemRef.getType().cast<MemRefType>().getElementType() ==
newMemRef.getType().cast<MemRefType>().getElementType());
if (!isMemRefDereferencingOp(*op))
// Failure: memref used in a non-dereferencing context (potentially
// escapes); no replacement in these cases.
return failure();
SmallVector<unsigned, 2> usePositions;
for (const auto &opEntry : llvm::enumerate(op->getOperands())) {
if (opEntry.value() == oldMemRef)
usePositions.push_back(opEntry.index());
}
// If memref doesn't appear, nothing to do.
if (usePositions.empty())
return success();
if (usePositions.size() > 1) {
// TODO(mlir-team): extend it for this case when needed (rare).
assert(false && "multiple dereferencing uses in a single op not supported");
return failure();
}
unsigned memRefOperandPos = usePositions.front();
OpBuilder builder(op);
NamedAttribute oldMapAttrPair = getAffineMapAttrForMemRef(op, oldMemRef);
AffineMap oldMap = oldMapAttrPair.second.cast<AffineMapAttr>().getValue();
unsigned oldMapNumInputs = oldMap.getNumInputs();
SmallVector<Value, 4> oldMapOperands(
op->operand_begin() + memRefOperandPos + 1,
op->operand_begin() + memRefOperandPos + 1 + oldMapNumInputs);
// Apply 'oldMemRefOperands = oldMap(oldMapOperands)'.
SmallVector<Value, 4> oldMemRefOperands;
SmallVector<Value, 4> affineApplyOps;
oldMemRefOperands.reserve(oldMemRefRank);
if (oldMap != builder.getMultiDimIdentityMap(oldMap.getNumDims())) {
for (auto resultExpr : oldMap.getResults()) {
auto singleResMap = AffineMap::get(oldMap.getNumDims(),
oldMap.getNumSymbols(), resultExpr);
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
oldMapOperands);
oldMemRefOperands.push_back(afOp);
affineApplyOps.push_back(afOp);
}
} else {
oldMemRefOperands.append(oldMapOperands.begin(), oldMapOperands.end());
}
// Construct new indices as a remap of the old ones if a remapping has been
// provided. The indices of a memref come right after it, i.e.,
// at position memRefOperandPos + 1.
SmallVector<Value, 4> remapOperands;
remapOperands.reserve(extraOperands.size() + oldMemRefRank +
symbolOperands.size());
remapOperands.append(extraOperands.begin(), extraOperands.end());
remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end());
remapOperands.append(symbolOperands.begin(), symbolOperands.end());
SmallVector<Value, 4> remapOutputs;
remapOutputs.reserve(oldMemRefRank);
if (indexRemap &&
indexRemap != builder.getMultiDimIdentityMap(indexRemap.getNumDims())) {
// Remapped indices.
for (auto resultExpr : indexRemap.getResults()) {
auto singleResMap = AffineMap::get(
indexRemap.getNumDims(), indexRemap.getNumSymbols(), resultExpr);
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
remapOperands);
remapOutputs.push_back(afOp);
affineApplyOps.push_back(afOp);
}
} else {
// No remapping specified.
remapOutputs.append(remapOperands.begin(), remapOperands.end());
}
SmallVector<Value, 4> newMapOperands;
newMapOperands.reserve(newMemRefRank);
// Prepend 'extraIndices' in 'newMapOperands'.
for (auto extraIndex : extraIndices) {
assert(extraIndex.getDefiningOp()->getNumResults() == 1 &&
"single result op's expected to generate these indices");
assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) &&
"invalid memory op index");
newMapOperands.push_back(extraIndex);
}
// Append 'remapOutputs' to 'newMapOperands'.
newMapOperands.append(remapOutputs.begin(), remapOutputs.end());
// Create new fully composed AffineMap for new op to be created.
assert(newMapOperands.size() == newMemRefRank);
auto newMap = builder.getMultiDimIdentityMap(newMemRefRank);
// TODO(b/136262594) Avoid creating/deleting temporary AffineApplyOps here.
fullyComposeAffineMapAndOperands(&newMap, &newMapOperands);
newMap = simplifyAffineMap(newMap);
canonicalizeMapAndOperands(&newMap, &newMapOperands);
// Remove any affine.apply's that became dead as a result of composition.
for (auto value : affineApplyOps)
if (value.use_empty())
value.getDefiningOp()->erase();
// Construct the new operation using this memref.
OperationState state(op->getLoc(), op->getName());
state.operands.reserve(op->getNumOperands() + extraIndices.size());
// Insert the non-memref operands.
state.operands.append(op->operand_begin(),
op->operand_begin() + memRefOperandPos);
// Insert the new memref value.
state.operands.push_back(newMemRef);
// Insert the new memref map operands.
state.operands.append(newMapOperands.begin(), newMapOperands.end());
// Insert the remaining operands unmodified.
state.operands.append(op->operand_begin() + memRefOperandPos + 1 +
oldMapNumInputs,
op->operand_end());
// Result types don't change. Both memref's are of the same elemental type.
state.types.reserve(op->getNumResults());
for (auto result : op->getResults())
state.types.push_back(result.getType());
// Add attribute for 'newMap', other Attributes do not change.
auto newMapAttr = AffineMapAttr::get(newMap);
for (auto namedAttr : op->getAttrs()) {
if (namedAttr.first == oldMapAttrPair.first) {
state.attributes.push_back({namedAttr.first, newMapAttr});
} else {
state.attributes.push_back(namedAttr);
}
}
// Create the new operation.
auto *repOp = builder.createOperation(state);
op->replaceAllUsesWith(repOp);
op->erase();
return success();
}
LogicalResult mlir::replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef,
ArrayRef<Value> extraIndices,
AffineMap indexRemap,
ArrayRef<Value> extraOperands,
ArrayRef<Value> symbolOperands,
Operation *domInstFilter,
Operation *postDomInstFilter) {
unsigned newMemRefRank = newMemRef.getType().cast<MemRefType>().getRank();
(void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = oldMemRef.getType().cast<MemRefType>().getRank();
(void)oldMemRefRank;
if (indexRemap) {
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
"symbol operand count mismatch");
assert(indexRemap.getNumInputs() ==
extraOperands.size() + oldMemRefRank + symbolOperands.size());
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
} else {
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
}
// Assert same elemental type.
assert(oldMemRef.getType().cast<MemRefType>().getElementType() ==
newMemRef.getType().cast<MemRefType>().getElementType());
std::unique_ptr<DominanceInfo> domInfo;
std::unique_ptr<PostDominanceInfo> postDomInfo;
if (domInstFilter)
domInfo = std::make_unique<DominanceInfo>(
domInstFilter->getParentOfType<FuncOp>());
if (postDomInstFilter)
postDomInfo = std::make_unique<PostDominanceInfo>(
postDomInstFilter->getParentOfType<FuncOp>());
// Walk all uses of old memref; collect ops to perform replacement. We use a
// DenseSet since an operation could potentially have multiple uses of a
// memref (although rare), and the replacement later is going to erase ops.
DenseSet<Operation *> opsToReplace;
for (auto *op : oldMemRef.getUsers()) {
// Skip this use if it's not dominated by domInstFilter.
if (domInstFilter && !domInfo->dominates(domInstFilter, op))
continue;
// Skip this use if it's not post-dominated by postDomInstFilter.
if (postDomInstFilter && !postDomInfo->postDominates(postDomInstFilter, op))
continue;
// Skip dealloc's - no replacement is necessary, and a memref replacement
// at other uses doesn't hurt these dealloc's.
if (isa<DeallocOp>(op))
continue;
// Check if the memref was used in a non-dereferencing context. It is fine
// for the memref to be used in a non-dereferencing way outside of the
// region where this replacement is happening.
if (!isMemRefDereferencingOp(*op))
// Failure: memref used in a non-dereferencing op (potentially escapes);
// no replacement in these cases.
return failure();
// We'll first collect and then replace --- since replacement erases the op
// that has the use, and that op could be postDomFilter or domFilter itself!
opsToReplace.insert(op);
}
for (auto *op : opsToReplace) {
if (failed(replaceAllMemRefUsesWith(oldMemRef, newMemRef, op, extraIndices,
indexRemap, extraOperands,
symbolOperands)))
llvm_unreachable("memref replacement guaranteed to succeed here");
}
return success();
}
/// Given an operation, inserts one or more single result affine
/// apply operations, results of which are exclusively used by this operation
/// operation. The operands of these newly created affine apply ops are
/// guaranteed to be loop iterators or terminal symbols of a function.
///
/// Before
///
/// affine.for %i = 0 to #map(%N)
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// "compute"(%idx)
///
/// After
///
/// affine.for %i = 0 to #map(%N)
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i)
/// "compute"(%idx_)
///
/// This allows applying different transformations on send and compute (for eg.
/// different shifts/delays).
///
/// Returns nullptr either if none of opInst's operands were the result of an
/// affine.apply and thus there was no affine computation slice to create, or if
/// all the affine.apply op's supplying operands to this opInst did not have any
/// uses besides this opInst; otherwise returns the list of affine.apply
/// operations created in output argument `sliceOps`.
void mlir::createAffineComputationSlice(
Operation *opInst, SmallVectorImpl<AffineApplyOp> *sliceOps) {
// Collect all operands that are results of affine apply ops.
SmallVector<Value, 4> subOperands;
subOperands.reserve(opInst->getNumOperands());
for (auto operand : opInst->getOperands())
if (isa_and_nonnull<AffineApplyOp>(operand.getDefiningOp()))
subOperands.push_back(operand);
// Gather sequence of AffineApplyOps reachable from 'subOperands'.
SmallVector<Operation *, 4> affineApplyOps;
getReachableAffineApplyOps(subOperands, affineApplyOps);
// Skip transforming if there are no affine maps to compose.
if (affineApplyOps.empty())
return;
// Check if all uses of the affine apply op's lie only in this op op, in
// which case there would be nothing to do.
bool localized = true;
for (auto *op : affineApplyOps) {
for (auto result : op->getResults()) {
for (auto *user : result.getUsers()) {
if (user != opInst) {
localized = false;
break;
}
}
}
}
if (localized)
return;
OpBuilder builder(opInst);
SmallVector<Value, 4> composedOpOperands(subOperands);
auto composedMap = builder.getMultiDimIdentityMap(composedOpOperands.size());
fullyComposeAffineMapAndOperands(&composedMap, &composedOpOperands);
// Create an affine.apply for each of the map results.
sliceOps->reserve(composedMap.getNumResults());
for (auto resultExpr : composedMap.getResults()) {
auto singleResMap = AffineMap::get(composedMap.getNumDims(),
composedMap.getNumSymbols(), resultExpr);
sliceOps->push_back(builder.create<AffineApplyOp>(
opInst->getLoc(), singleResMap, composedOpOperands));
}
// Construct the new operands that include the results from the composed
// affine apply op above instead of existing ones (subOperands). So, they
// differ from opInst's operands only for those operands in 'subOperands', for
// which they will be replaced by the corresponding one from 'sliceOps'.
SmallVector<Value, 4> newOperands(opInst->getOperands());
for (unsigned i = 0, e = newOperands.size(); i < e; i++) {
// Replace the subOperands from among the new operands.
unsigned j, f;
for (j = 0, f = subOperands.size(); j < f; j++) {
if (newOperands[i] == subOperands[j])
break;
}
if (j < subOperands.size()) {
newOperands[i] = (*sliceOps)[j];
}
}
for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++) {
opInst->setOperand(idx, newOperands[idx]);
}
}
// TODO: Currently works for static memrefs with a single layout map.
LogicalResult mlir::normalizeMemRef(AllocOp allocOp) {
MemRefType memrefType = allocOp.getType();
unsigned rank = memrefType.getRank();
if (rank == 0)
return success();
auto layoutMaps = memrefType.getAffineMaps();
OpBuilder b(allocOp);
if (layoutMaps.size() != 1)
return failure();
AffineMap layoutMap = layoutMaps.front();
// Nothing to do for identity layout maps.
if (layoutMap == b.getMultiDimIdentityMap(rank))
return success();
// We don't do any checks for one-to-one'ness; we assume that it is
// one-to-one.
// TODO: Only for static memref's for now.
if (memrefType.getNumDynamicDims() > 0)
return failure();
// We have a single map that is not an identity map. Create a new memref with
// the right shape and an identity layout map.
auto shape = memrefType.getShape();
FlatAffineConstraints fac(rank, allocOp.getNumSymbolicOperands());
for (unsigned d = 0; d < rank; ++d) {
fac.addConstantLowerBound(d, 0);
fac.addConstantUpperBound(d, shape[d] - 1);
}
// We compose this map with the original index (logical) space to derive the
// upper bounds for the new index space.
unsigned newRank = layoutMap.getNumResults();
if (failed(fac.composeMatchingMap(layoutMap)))
// TODO: semi-affine maps.
return failure();
// Project out the old data dimensions.
fac.projectOut(newRank, fac.getNumIds() - newRank - fac.getNumLocalIds());
SmallVector<int64_t, 4> newShape(newRank);
for (unsigned d = 0; d < newRank; ++d) {
// The lower bound for the shape is always zero.
auto ubConst = fac.getConstantUpperBound(d);
// For a static memref and an affine map with no symbols, this is always
// bounded.
assert(ubConst.hasValue() && "should always have an upper bound");
if (ubConst.getValue() < 0)
// This is due to an invalid map that maps to a negative space.
return failure();
newShape[d] = ubConst.getValue() + 1;
}
auto oldMemRef = allocOp.getResult();
SmallVector<Value, 4> symbolOperands(allocOp.getSymbolicOperands());
MemRefType newMemRefType =
MemRefType::Builder(memrefType)
.setShape(newShape)
.setAffineMaps(b.getMultiDimIdentityMap(newRank));
auto newAlloc = b.create<AllocOp>(allocOp.getLoc(), newMemRefType);
// Replace all uses of the old memref.
if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newAlloc,
/*extraIndices=*/{},
/*indexRemap=*/layoutMap,
/*extraOperands=*/{},
/*symbolOperands=*/symbolOperands))) {
// If it failed (due to escapes for example), bail out.
newAlloc.erase();
return failure();
}
// Replace any uses of the original alloc op and erase it. All remaining uses
// have to be dealloc's; RAMUW above would've failed otherwise.
assert(llvm::all_of(oldMemRef.getUsers(),
[](Operation *op) { return isa<DeallocOp>(op); }));
oldMemRef.replaceAllUsesWith(newAlloc);
allocOp.erase();
return success();
}