This patch implements explicit unrolling by UF as VPlan transform. In follow up patches this will allow simplifying VPTransform state (no need to store unrolled parts) as well as recipe execution (no need to generate code for multiple parts in an each recipe). It also allows for more general optimziations (e.g. avoid generating code for recipes that are uniform-across parts). It also unifies the logic dealing with unrolled parts in a single place, rather than spreading it out across multiple places (e.g. VPlan post processing for header-phi recipes previously.) In the initial implementation, a number of recipes still take the unrolled part as additional, optional argument, if their execution depends on the unrolled part. The computation for start/step values for scalable inductions changed slightly. Previously the step would be computed as scalar and then splatted, now vscale gets splatted and multiplied by the step in a vector mul. This has been split off https://github.com/llvm/llvm-project/pull/94339 which also includes changes to simplify VPTransfomState and recipes' ::execute. The current version mostly leaves existing ::execute untouched and instead sets VPTransfomState::UF to 1. A follow-up patch will clean up all references to VPTransformState::UF. Another follow-up patch will simplify VPTransformState to only store a single vector value per VPValue. PR: https://github.com/llvm/llvm-project/pull/95842
148 lines
5.1 KiB
LLVM
148 lines
5.1 KiB
LLVM
; RUN: opt -S < %s -passes=loop-vectorize -force-vector-interleave=2 -force-vector-width=4 | FileCheck %s
|
|
; RUN: opt -S < %s -passes=loop-vectorize -force-vector-interleave=1 -force-vector-width=2 | FileCheck %s --check-prefix=FORCE-VEC
|
|
|
|
target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
|
|
target triple = "aarch64"
|
|
|
|
; Test integer induction variable of step 2:
|
|
; for (int i = 0; i < 1024; i+=2) {
|
|
; int tmp = *A++;
|
|
; sum += i * tmp;
|
|
; }
|
|
|
|
; CHECK-LABEL: @ind_plus2(
|
|
; CHECK: load <4 x i32>, ptr
|
|
; CHECK: load <4 x i32>, ptr
|
|
; CHECK: mul nsw <4 x i32>
|
|
; CHECK: mul nsw <4 x i32>
|
|
; CHECK: add <4 x i32>
|
|
; CHECK: add <4 x i32>
|
|
; CHECK: %index.next = add nuw i64 %index, 8
|
|
; CHECK: icmp eq i64 %index.next, 512
|
|
|
|
; FORCE-VEC-LABEL: @ind_plus2(
|
|
; FORCE-VEC: %wide.load = load <2 x i32>, ptr
|
|
; FORCE-VEC: mul nsw <2 x i32>
|
|
; FORCE-VEC: add <2 x i32>
|
|
; FORCE-VEC: %index.next = add nuw i64 %index, 2
|
|
; FORCE-VEC: icmp eq i64 %index.next, 512
|
|
define i32 @ind_plus2(ptr %A) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %entry, %for.body
|
|
%A.addr = phi ptr [ %A, %entry ], [ %inc.ptr, %for.body ]
|
|
%i = phi i32 [ 0, %entry ], [ %add1, %for.body ]
|
|
%sum = phi i32 [ 0, %entry ], [ %add, %for.body ]
|
|
%inc.ptr = getelementptr inbounds i32, ptr %A.addr, i64 1
|
|
%0 = load i32, ptr %A.addr, align 4
|
|
%mul = mul nsw i32 %0, %i
|
|
%add = add nsw i32 %mul, %sum
|
|
%add1 = add nsw i32 %i, 2
|
|
%cmp = icmp slt i32 %add1, 1024
|
|
br i1 %cmp, label %for.body, label %for.end
|
|
|
|
for.end: ; preds = %for.body
|
|
%add.lcssa = phi i32 [ %add, %for.body ]
|
|
ret i32 %add.lcssa
|
|
}
|
|
|
|
|
|
; Test integer induction variable of step -2:
|
|
; for (int i = 1024; i > 0; i-=2) {
|
|
; int tmp = *A++;
|
|
; sum += i * tmp;
|
|
; }
|
|
|
|
; CHECK-LABEL: @ind_minus2(
|
|
; CHECK: load <4 x i32>, ptr
|
|
; CHECK: load <4 x i32>, ptr
|
|
; CHECK: mul nsw <4 x i32>
|
|
; CHECK: mul nsw <4 x i32>
|
|
; CHECK: add <4 x i32>
|
|
; CHECK: add <4 x i32>
|
|
; CHECK: %index.next = add nuw i64 %index, 8
|
|
; CHECK: icmp eq i64 %index.next, 512
|
|
|
|
; FORCE-VEC-LABEL: @ind_minus2(
|
|
; FORCE-VEC: %wide.load = load <2 x i32>, ptr
|
|
; FORCE-VEC: mul nsw <2 x i32>
|
|
; FORCE-VEC: add <2 x i32>
|
|
; FORCE-VEC: %index.next = add nuw i64 %index, 2
|
|
; FORCE-VEC: icmp eq i64 %index.next, 512
|
|
define i32 @ind_minus2(ptr %A) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %entry, %for.body
|
|
%A.addr = phi ptr [ %A, %entry ], [ %inc.ptr, %for.body ]
|
|
%i = phi i32 [ 1024, %entry ], [ %sub, %for.body ]
|
|
%sum = phi i32 [ 0, %entry ], [ %add, %for.body ]
|
|
%inc.ptr = getelementptr inbounds i32, ptr %A.addr, i64 1
|
|
%0 = load i32, ptr %A.addr, align 4
|
|
%mul = mul nsw i32 %0, %i
|
|
%add = add nsw i32 %mul, %sum
|
|
%sub = add nsw i32 %i, -2
|
|
%cmp = icmp sgt i32 %i, 2
|
|
br i1 %cmp, label %for.body, label %for.end
|
|
|
|
for.end: ; preds = %for.body
|
|
%add.lcssa = phi i32 [ %add, %for.body ]
|
|
ret i32 %add.lcssa
|
|
}
|
|
|
|
|
|
; Test pointer induction variable of step 2. As currently we don't support
|
|
; masked load/store, vectorization is possible but not beneficial. If loop
|
|
; vectorization is not enforced, LV will only do interleave.
|
|
; for (int i = 0; i < 1024; i++) {
|
|
; int tmp0 = *A++;
|
|
; int tmp1 = *A++;
|
|
; sum += tmp0 * tmp1;
|
|
; }
|
|
|
|
; CHECK-LABEL: @ptr_ind_plus2(
|
|
; CHECK: %[[V0:.*]] = load <8 x i32>
|
|
; CHECK: shufflevector <8 x i32> %[[V0]], <8 x i32> poison, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
|
|
; CHECK: shufflevector <8 x i32> %[[V0]], <8 x i32> poison, <4 x i32> <i32 1, i32 3, i32 5, i32 7>
|
|
; CHECK: %[[V1:.*]] = load <8 x i32>
|
|
; CHECK: shufflevector <8 x i32> %[[V1]], <8 x i32> poison, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
|
|
; CHECK: shufflevector <8 x i32> %[[V1]], <8 x i32> poison, <4 x i32> <i32 1, i32 3, i32 5, i32 7>
|
|
; CHECK: mul nsw <4 x i32>
|
|
; CHECK: mul nsw <4 x i32>
|
|
; CHECK: add <4 x i32>
|
|
; CHECK: add <4 x i32>
|
|
; CHECK: %index.next = add nuw i64 %index, 8
|
|
; CHECK: icmp eq i64 %index.next, 1024
|
|
|
|
; FORCE-VEC-LABEL: @ptr_ind_plus2(
|
|
; FORCE-VEC: %[[V:.*]] = load <4 x i32>
|
|
; FORCE-VEC: shufflevector <4 x i32> %[[V]], <4 x i32> poison, <2 x i32> <i32 0, i32 2>
|
|
; FORCE-VEC: shufflevector <4 x i32> %[[V]], <4 x i32> poison, <2 x i32> <i32 1, i32 3>
|
|
; FORCE-VEC: mul nsw <2 x i32>
|
|
; FORCE-VEC: add <2 x i32>
|
|
; FORCE-VEC: %index.next = add nuw i64 %index, 2
|
|
; FORCE-VEC: icmp eq i64 %index.next, 1024
|
|
define i32 @ptr_ind_plus2(ptr %A) {
|
|
entry:
|
|
br label %for.body
|
|
|
|
for.body: ; preds = %for.body, %entry
|
|
%A.addr = phi ptr [ %A, %entry ], [ %inc.ptr1, %for.body ]
|
|
%sum = phi i32 [ 0, %entry ], [ %add, %for.body ]
|
|
%i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
|
|
%inc.ptr = getelementptr inbounds i32, ptr %A.addr, i64 1
|
|
%0 = load i32, ptr %A.addr, align 4
|
|
%inc.ptr1 = getelementptr inbounds i32, ptr %A.addr, i64 2
|
|
%1 = load i32, ptr %inc.ptr, align 4
|
|
%mul = mul nsw i32 %1, %0
|
|
%add = add nsw i32 %mul, %sum
|
|
%inc = add nsw i32 %i, 1
|
|
%exitcond = icmp eq i32 %inc, 1024
|
|
br i1 %exitcond, label %for.end, label %for.body
|
|
|
|
for.end: ; preds = %for.body
|
|
%add.lcssa = phi i32 [ %add, %for.body ]
|
|
ret i32 %add.lcssa
|
|
}
|