A barrier is needed at the end of initialization/copying of private variables if any of those variables is lastprivate. This ensures that all firstprivate variables receive the original value of the variable before the lastprivate clause overwrites it. Previously this barrier was added by the flang fontend, but there is not a reliable way to put the barrier in the correct place for delayed privatization, and the OpenMP dialect could some day have other users. It is important that there are safe ways to use the constructs available in the dialect. lastprivate is currently not modelled in the OpenMP dialect, and so there is no way to reliably determine whether there were lastprivate variables. Therefore the frontend will have to provide this information through this new attribute. Part of a series of patches to fix https://github.com/llvm/llvm-project/issues/136357
566 lines
25 KiB
C++
566 lines
25 KiB
C++
//===- SCFToOpenMP.cpp - Structured Control Flow to OpenMP conversion -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass to convert scf.parallel operations into OpenMP
|
|
// parallel loops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/SCFToOpenMP/SCFToOpenMP.h"
|
|
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/IR/ImplicitLocOpBuilder.h"
|
|
#include "mlir/IR/SymbolTable.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_CONVERTSCFTOOPENMPPASS
|
|
#include "mlir/Conversion/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
/// Matches a block containing a "simple" reduction. The expected shape of the
|
|
/// block is as follows.
|
|
///
|
|
/// ^bb(%arg0, %arg1):
|
|
/// %0 = OpTy(%arg0, %arg1)
|
|
/// scf.reduce.return %0
|
|
template <typename... OpTy>
|
|
static bool matchSimpleReduction(Block &block) {
|
|
if (block.empty() || llvm::hasSingleElement(block) ||
|
|
std::next(block.begin(), 2) != block.end())
|
|
return false;
|
|
|
|
if (block.getNumArguments() != 2)
|
|
return false;
|
|
|
|
SmallVector<Operation *, 4> combinerOps;
|
|
Value reducedVal = matchReduction({block.getArguments()[1]},
|
|
/*redPos=*/0, combinerOps);
|
|
|
|
if (!reducedVal || !isa<BlockArgument>(reducedVal) || combinerOps.size() != 1)
|
|
return false;
|
|
|
|
return isa<OpTy...>(combinerOps[0]) &&
|
|
isa<scf::ReduceReturnOp>(block.back()) &&
|
|
block.front().getOperands() == block.getArguments();
|
|
}
|
|
|
|
/// Matches a block containing a select-based min/max reduction. The types of
|
|
/// select and compare operations are provided as template arguments. The
|
|
/// comparison predicates suitable for min and max are provided as function
|
|
/// arguments. If a reduction is matched, `ifMin` will be set if the reduction
|
|
/// compute the minimum and unset if it computes the maximum, otherwise it
|
|
/// remains unmodified. The expected shape of the block is as follows.
|
|
///
|
|
/// ^bb(%arg0, %arg1):
|
|
/// %0 = CompareOpTy(<one-of-predicates>, %arg0, %arg1)
|
|
/// %1 = SelectOpTy(%0, %arg0, %arg1) // %arg0, %arg1 may be swapped here.
|
|
/// scf.reduce.return %1
|
|
template <
|
|
typename CompareOpTy, typename SelectOpTy,
|
|
typename Predicate = decltype(std::declval<CompareOpTy>().getPredicate())>
|
|
static bool
|
|
matchSelectReduction(Block &block, ArrayRef<Predicate> lessThanPredicates,
|
|
ArrayRef<Predicate> greaterThanPredicates, bool &isMin) {
|
|
static_assert(
|
|
llvm::is_one_of<SelectOpTy, arith::SelectOp, LLVM::SelectOp>::value,
|
|
"only arithmetic and llvm select ops are supported");
|
|
|
|
// Expect exactly three operations in the block.
|
|
if (block.empty() || llvm::hasSingleElement(block) ||
|
|
std::next(block.begin(), 2) == block.end() ||
|
|
std::next(block.begin(), 3) != block.end())
|
|
return false;
|
|
|
|
// Check op kinds.
|
|
auto compare = dyn_cast<CompareOpTy>(block.front());
|
|
auto select = dyn_cast<SelectOpTy>(block.front().getNextNode());
|
|
auto terminator = dyn_cast<scf::ReduceReturnOp>(block.back());
|
|
if (!compare || !select || !terminator)
|
|
return false;
|
|
|
|
// Block arguments must be compared.
|
|
if (compare->getOperands() != block.getArguments())
|
|
return false;
|
|
|
|
// Detect whether the comparison is less-than or greater-than, otherwise bail.
|
|
bool isLess;
|
|
if (llvm::is_contained(lessThanPredicates, compare.getPredicate())) {
|
|
isLess = true;
|
|
} else if (llvm::is_contained(greaterThanPredicates,
|
|
compare.getPredicate())) {
|
|
isLess = false;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
if (select.getCondition() != compare.getResult())
|
|
return false;
|
|
|
|
// Detect if the operands are swapped between cmpf and select. Match the
|
|
// comparison type with the requested type or with the opposite of the
|
|
// requested type if the operands are swapped. Use generic accessors because
|
|
// std and LLVM versions of select have different operand names but identical
|
|
// positions.
|
|
constexpr unsigned kTrueValue = 1;
|
|
constexpr unsigned kFalseValue = 2;
|
|
bool sameOperands = select.getOperand(kTrueValue) == compare.getLhs() &&
|
|
select.getOperand(kFalseValue) == compare.getRhs();
|
|
bool swappedOperands = select.getOperand(kTrueValue) == compare.getRhs() &&
|
|
select.getOperand(kFalseValue) == compare.getLhs();
|
|
if (!sameOperands && !swappedOperands)
|
|
return false;
|
|
|
|
if (select.getResult() != terminator.getResult())
|
|
return false;
|
|
|
|
// The reduction is a min if it uses less-than predicates with same operands
|
|
// or greather-than predicates with swapped operands. Similarly for max.
|
|
isMin = (isLess && sameOperands) || (!isLess && swappedOperands);
|
|
return isMin || (isLess & swappedOperands) || (!isLess && sameOperands);
|
|
}
|
|
|
|
/// Returns the float semantics for the given float type.
|
|
static const llvm::fltSemantics &fltSemanticsForType(FloatType type) {
|
|
if (type.isF16())
|
|
return llvm::APFloat::IEEEhalf();
|
|
if (type.isF32())
|
|
return llvm::APFloat::IEEEsingle();
|
|
if (type.isF64())
|
|
return llvm::APFloat::IEEEdouble();
|
|
if (type.isF128())
|
|
return llvm::APFloat::IEEEquad();
|
|
if (type.isBF16())
|
|
return llvm::APFloat::BFloat();
|
|
if (type.isF80())
|
|
return llvm::APFloat::x87DoubleExtended();
|
|
llvm_unreachable("unknown float type");
|
|
}
|
|
|
|
/// Returns an attribute with the minimum (if `min` is set) or the maximum value
|
|
/// (otherwise) for the given float type.
|
|
static Attribute minMaxValueForFloat(Type type, bool min) {
|
|
auto fltType = cast<FloatType>(type);
|
|
return FloatAttr::get(
|
|
type, llvm::APFloat::getLargest(fltSemanticsForType(fltType), min));
|
|
}
|
|
|
|
/// Returns an attribute with the signed integer minimum (if `min` is set) or
|
|
/// the maximum value (otherwise) for the given integer type, regardless of its
|
|
/// signedness semantics (only the width is considered).
|
|
static Attribute minMaxValueForSignedInt(Type type, bool min) {
|
|
auto intType = cast<IntegerType>(type);
|
|
unsigned bitwidth = intType.getWidth();
|
|
return IntegerAttr::get(type, min ? llvm::APInt::getSignedMinValue(bitwidth)
|
|
: llvm::APInt::getSignedMaxValue(bitwidth));
|
|
}
|
|
|
|
/// Returns an attribute with the unsigned integer minimum (if `min` is set) or
|
|
/// the maximum value (otherwise) for the given integer type, regardless of its
|
|
/// signedness semantics (only the width is considered).
|
|
static Attribute minMaxValueForUnsignedInt(Type type, bool min) {
|
|
auto intType = cast<IntegerType>(type);
|
|
unsigned bitwidth = intType.getWidth();
|
|
return IntegerAttr::get(type, min ? llvm::APInt::getZero(bitwidth)
|
|
: llvm::APInt::getAllOnes(bitwidth));
|
|
}
|
|
|
|
/// Creates an OpenMP reduction declaration and inserts it into the provided
|
|
/// symbol table. The declaration has a constant initializer with the neutral
|
|
/// value `initValue`, and the `reductionIndex`-th reduction combiner carried
|
|
/// over from `reduce`.
|
|
static omp::DeclareReductionOp
|
|
createDecl(PatternRewriter &builder, SymbolTable &symbolTable,
|
|
scf::ReduceOp reduce, int64_t reductionIndex, Attribute initValue) {
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
Type type = reduce.getOperands()[reductionIndex].getType();
|
|
auto decl = builder.create<omp::DeclareReductionOp>(reduce.getLoc(),
|
|
"__scf_reduction", type);
|
|
symbolTable.insert(decl);
|
|
|
|
builder.createBlock(&decl.getInitializerRegion(),
|
|
decl.getInitializerRegion().end(), {type},
|
|
{reduce.getOperands()[reductionIndex].getLoc()});
|
|
builder.setInsertionPointToEnd(&decl.getInitializerRegion().back());
|
|
Value init =
|
|
builder.create<LLVM::ConstantOp>(reduce.getLoc(), type, initValue);
|
|
builder.create<omp::YieldOp>(reduce.getLoc(), init);
|
|
|
|
Operation *terminator =
|
|
&reduce.getReductions()[reductionIndex].front().back();
|
|
assert(isa<scf::ReduceReturnOp>(terminator) &&
|
|
"expected reduce op to be terminated by redure return");
|
|
builder.setInsertionPoint(terminator);
|
|
builder.replaceOpWithNewOp<omp::YieldOp>(terminator,
|
|
terminator->getOperands());
|
|
builder.inlineRegionBefore(reduce.getReductions()[reductionIndex],
|
|
decl.getReductionRegion(),
|
|
decl.getReductionRegion().end());
|
|
return decl;
|
|
}
|
|
|
|
/// Adds an atomic reduction combiner to the given OpenMP reduction declaration
|
|
/// using llvm.atomicrmw of the given kind.
|
|
static omp::DeclareReductionOp addAtomicRMW(OpBuilder &builder,
|
|
LLVM::AtomicBinOp atomicKind,
|
|
omp::DeclareReductionOp decl,
|
|
scf::ReduceOp reduce,
|
|
int64_t reductionIndex) {
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
auto ptrType = LLVM::LLVMPointerType::get(builder.getContext());
|
|
Location reduceOperandLoc = reduce.getOperands()[reductionIndex].getLoc();
|
|
builder.createBlock(&decl.getAtomicReductionRegion(),
|
|
decl.getAtomicReductionRegion().end(), {ptrType, ptrType},
|
|
{reduceOperandLoc, reduceOperandLoc});
|
|
Block *atomicBlock = &decl.getAtomicReductionRegion().back();
|
|
builder.setInsertionPointToEnd(atomicBlock);
|
|
Value loaded = builder.create<LLVM::LoadOp>(reduce.getLoc(), decl.getType(),
|
|
atomicBlock->getArgument(1));
|
|
builder.create<LLVM::AtomicRMWOp>(reduce.getLoc(), atomicKind,
|
|
atomicBlock->getArgument(0), loaded,
|
|
LLVM::AtomicOrdering::monotonic);
|
|
builder.create<omp::YieldOp>(reduce.getLoc(), ArrayRef<Value>());
|
|
return decl;
|
|
}
|
|
|
|
/// Creates an OpenMP reduction declaration that corresponds to the given SCF
|
|
/// reduction and returns it. Recognizes common reductions in order to identify
|
|
/// the neutral value, necessary for the OpenMP declaration. If the reduction
|
|
/// cannot be recognized, returns null.
|
|
static omp::DeclareReductionOp declareReduction(PatternRewriter &builder,
|
|
scf::ReduceOp reduce,
|
|
int64_t reductionIndex) {
|
|
Operation *container = SymbolTable::getNearestSymbolTable(reduce);
|
|
SymbolTable symbolTable(container);
|
|
|
|
// Insert reduction declarations in the symbol-table ancestor before the
|
|
// ancestor of the current insertion point.
|
|
Operation *insertionPoint = reduce;
|
|
while (insertionPoint->getParentOp() != container)
|
|
insertionPoint = insertionPoint->getParentOp();
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
builder.setInsertionPoint(insertionPoint);
|
|
|
|
assert(llvm::hasSingleElement(reduce.getReductions()[reductionIndex]) &&
|
|
"expected reduction region to have a single element");
|
|
|
|
// Match simple binary reductions that can be expressed with atomicrmw.
|
|
Type type = reduce.getOperands()[reductionIndex].getType();
|
|
Block &reduction = reduce.getReductions()[reductionIndex].front();
|
|
if (matchSimpleReduction<arith::AddFOp, LLVM::FAddOp>(reduction)) {
|
|
omp::DeclareReductionOp decl =
|
|
createDecl(builder, symbolTable, reduce, reductionIndex,
|
|
builder.getFloatAttr(type, 0.0));
|
|
return addAtomicRMW(builder, LLVM::AtomicBinOp::fadd, decl, reduce,
|
|
reductionIndex);
|
|
}
|
|
if (matchSimpleReduction<arith::AddIOp, LLVM::AddOp>(reduction)) {
|
|
omp::DeclareReductionOp decl =
|
|
createDecl(builder, symbolTable, reduce, reductionIndex,
|
|
builder.getIntegerAttr(type, 0));
|
|
return addAtomicRMW(builder, LLVM::AtomicBinOp::add, decl, reduce,
|
|
reductionIndex);
|
|
}
|
|
if (matchSimpleReduction<arith::OrIOp, LLVM::OrOp>(reduction)) {
|
|
omp::DeclareReductionOp decl =
|
|
createDecl(builder, symbolTable, reduce, reductionIndex,
|
|
builder.getIntegerAttr(type, 0));
|
|
return addAtomicRMW(builder, LLVM::AtomicBinOp::_or, decl, reduce,
|
|
reductionIndex);
|
|
}
|
|
if (matchSimpleReduction<arith::XOrIOp, LLVM::XOrOp>(reduction)) {
|
|
omp::DeclareReductionOp decl =
|
|
createDecl(builder, symbolTable, reduce, reductionIndex,
|
|
builder.getIntegerAttr(type, 0));
|
|
return addAtomicRMW(builder, LLVM::AtomicBinOp::_xor, decl, reduce,
|
|
reductionIndex);
|
|
}
|
|
if (matchSimpleReduction<arith::AndIOp, LLVM::AndOp>(reduction)) {
|
|
omp::DeclareReductionOp decl = createDecl(
|
|
builder, symbolTable, reduce, reductionIndex,
|
|
builder.getIntegerAttr(
|
|
type, llvm::APInt::getAllOnes(type.getIntOrFloatBitWidth())));
|
|
return addAtomicRMW(builder, LLVM::AtomicBinOp::_and, decl, reduce,
|
|
reductionIndex);
|
|
}
|
|
|
|
// Match simple binary reductions that cannot be expressed with atomicrmw.
|
|
// TODO: add atomic region using cmpxchg (which needs atomic load to be
|
|
// available as an op).
|
|
if (matchSimpleReduction<arith::MulFOp, LLVM::FMulOp>(reduction)) {
|
|
return createDecl(builder, symbolTable, reduce, reductionIndex,
|
|
builder.getFloatAttr(type, 1.0));
|
|
}
|
|
if (matchSimpleReduction<arith::MulIOp, LLVM::MulOp>(reduction)) {
|
|
return createDecl(builder, symbolTable, reduce, reductionIndex,
|
|
builder.getIntegerAttr(type, 1));
|
|
}
|
|
|
|
// Match select-based min/max reductions.
|
|
bool isMin;
|
|
if (matchSelectReduction<arith::CmpFOp, arith::SelectOp>(
|
|
reduction, {arith::CmpFPredicate::OLT, arith::CmpFPredicate::OLE},
|
|
{arith::CmpFPredicate::OGT, arith::CmpFPredicate::OGE}, isMin) ||
|
|
matchSelectReduction<LLVM::FCmpOp, LLVM::SelectOp>(
|
|
reduction, {LLVM::FCmpPredicate::olt, LLVM::FCmpPredicate::ole},
|
|
{LLVM::FCmpPredicate::ogt, LLVM::FCmpPredicate::oge}, isMin)) {
|
|
return createDecl(builder, symbolTable, reduce, reductionIndex,
|
|
minMaxValueForFloat(type, !isMin));
|
|
}
|
|
if (matchSelectReduction<arith::CmpIOp, arith::SelectOp>(
|
|
reduction, {arith::CmpIPredicate::slt, arith::CmpIPredicate::sle},
|
|
{arith::CmpIPredicate::sgt, arith::CmpIPredicate::sge}, isMin) ||
|
|
matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>(
|
|
reduction, {LLVM::ICmpPredicate::slt, LLVM::ICmpPredicate::sle},
|
|
{LLVM::ICmpPredicate::sgt, LLVM::ICmpPredicate::sge}, isMin)) {
|
|
omp::DeclareReductionOp decl =
|
|
createDecl(builder, symbolTable, reduce, reductionIndex,
|
|
minMaxValueForSignedInt(type, !isMin));
|
|
return addAtomicRMW(builder,
|
|
isMin ? LLVM::AtomicBinOp::min : LLVM::AtomicBinOp::max,
|
|
decl, reduce, reductionIndex);
|
|
}
|
|
if (matchSelectReduction<arith::CmpIOp, arith::SelectOp>(
|
|
reduction, {arith::CmpIPredicate::ult, arith::CmpIPredicate::ule},
|
|
{arith::CmpIPredicate::ugt, arith::CmpIPredicate::uge}, isMin) ||
|
|
matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>(
|
|
reduction, {LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::ule},
|
|
{LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::uge}, isMin)) {
|
|
omp::DeclareReductionOp decl =
|
|
createDecl(builder, symbolTable, reduce, reductionIndex,
|
|
minMaxValueForUnsignedInt(type, !isMin));
|
|
return addAtomicRMW(
|
|
builder, isMin ? LLVM::AtomicBinOp::umin : LLVM::AtomicBinOp::umax,
|
|
decl, reduce, reductionIndex);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct ParallelOpLowering : public OpRewritePattern<scf::ParallelOp> {
|
|
static constexpr unsigned kUseOpenMPDefaultNumThreads = 0;
|
|
unsigned numThreads;
|
|
|
|
ParallelOpLowering(MLIRContext *context,
|
|
unsigned numThreads = kUseOpenMPDefaultNumThreads)
|
|
: OpRewritePattern<scf::ParallelOp>(context), numThreads(numThreads) {}
|
|
|
|
LogicalResult matchAndRewrite(scf::ParallelOp parallelOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Declare reductions.
|
|
// TODO: consider checking it here is already a compatible reduction
|
|
// declaration and use it instead of redeclaring.
|
|
SmallVector<Attribute> reductionSyms;
|
|
SmallVector<omp::DeclareReductionOp> ompReductionDecls;
|
|
auto reduce = cast<scf::ReduceOp>(parallelOp.getBody()->getTerminator());
|
|
for (int64_t i = 0, e = parallelOp.getNumReductions(); i < e; ++i) {
|
|
omp::DeclareReductionOp decl = declareReduction(rewriter, reduce, i);
|
|
ompReductionDecls.push_back(decl);
|
|
if (!decl)
|
|
return failure();
|
|
reductionSyms.push_back(
|
|
SymbolRefAttr::get(rewriter.getContext(), decl.getSymName()));
|
|
}
|
|
|
|
// Allocate reduction variables. Make sure the we don't overflow the stack
|
|
// with local `alloca`s by saving and restoring the stack pointer.
|
|
Location loc = parallelOp.getLoc();
|
|
Value one = rewriter.create<LLVM::ConstantOp>(
|
|
loc, rewriter.getIntegerType(64), rewriter.getI64IntegerAttr(1));
|
|
SmallVector<Value> reductionVariables;
|
|
reductionVariables.reserve(parallelOp.getNumReductions());
|
|
auto ptrType = LLVM::LLVMPointerType::get(parallelOp.getContext());
|
|
for (Value init : parallelOp.getInitVals()) {
|
|
assert((LLVM::isCompatibleType(init.getType()) ||
|
|
isa<LLVM::PointerElementTypeInterface>(init.getType())) &&
|
|
"cannot create a reduction variable if the type is not an LLVM "
|
|
"pointer element");
|
|
Value storage =
|
|
rewriter.create<LLVM::AllocaOp>(loc, ptrType, init.getType(), one, 0);
|
|
rewriter.create<LLVM::StoreOp>(loc, init, storage);
|
|
reductionVariables.push_back(storage);
|
|
}
|
|
|
|
// Replace the reduction operations contained in this loop. Must be done
|
|
// here rather than in a separate pattern to have access to the list of
|
|
// reduction variables.
|
|
for (auto [x, y, rD] : llvm::zip_equal(
|
|
reductionVariables, reduce.getOperands(), ompReductionDecls)) {
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPoint(reduce);
|
|
Region &redRegion = rD.getReductionRegion();
|
|
// The SCF dialect by definition contains only structured operations
|
|
// and hence the SCF reduction region will contain a single block.
|
|
// The ompReductionDecls region is a copy of the SCF reduction region
|
|
// and hence has the same property.
|
|
assert(redRegion.hasOneBlock() &&
|
|
"expect reduction region to have one block");
|
|
Value pvtRedVar = parallelOp.getRegion().addArgument(x.getType(), loc);
|
|
Value pvtRedVal = rewriter.create<LLVM::LoadOp>(reduce.getLoc(),
|
|
rD.getType(), pvtRedVar);
|
|
// Make a copy of the reduction combiner region in the body
|
|
mlir::OpBuilder builder(rewriter.getContext());
|
|
builder.setInsertionPoint(reduce);
|
|
mlir::IRMapping mapper;
|
|
assert(redRegion.getNumArguments() == 2 &&
|
|
"expect reduction region to have two arguments");
|
|
mapper.map(redRegion.getArgument(0), pvtRedVal);
|
|
mapper.map(redRegion.getArgument(1), y);
|
|
for (auto &op : redRegion.getOps()) {
|
|
Operation *cloneOp = builder.clone(op, mapper);
|
|
if (auto yieldOp = dyn_cast<omp::YieldOp>(*cloneOp)) {
|
|
assert(yieldOp && yieldOp.getResults().size() == 1 &&
|
|
"expect YieldOp in reduction region to return one result");
|
|
Value redVal = yieldOp.getResults()[0];
|
|
rewriter.create<LLVM::StoreOp>(loc, redVal, pvtRedVar);
|
|
rewriter.eraseOp(yieldOp);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rewriter.eraseOp(reduce);
|
|
|
|
Value numThreadsVar;
|
|
if (numThreads > 0) {
|
|
numThreadsVar = rewriter.create<LLVM::ConstantOp>(
|
|
loc, rewriter.getI32IntegerAttr(numThreads));
|
|
}
|
|
// Create the parallel wrapper.
|
|
auto ompParallel = rewriter.create<omp::ParallelOp>(
|
|
loc,
|
|
/* allocate_vars = */ llvm::SmallVector<Value>{},
|
|
/* allocator_vars = */ llvm::SmallVector<Value>{},
|
|
/* if_expr = */ Value{},
|
|
/* num_threads = */ numThreadsVar,
|
|
/* private_vars = */ ValueRange(),
|
|
/* private_syms = */ nullptr,
|
|
/* private_needs_barrier = */ nullptr,
|
|
/* proc_bind_kind = */ omp::ClauseProcBindKindAttr{},
|
|
/* reduction_mod = */ nullptr,
|
|
/* reduction_vars = */ llvm::SmallVector<Value>{},
|
|
/* reduction_byref = */ DenseBoolArrayAttr{},
|
|
/* reduction_syms = */ ArrayAttr{});
|
|
{
|
|
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.createBlock(&ompParallel.getRegion());
|
|
|
|
// Replace the loop.
|
|
{
|
|
OpBuilder::InsertionGuard allocaGuard(rewriter);
|
|
// Create worksharing loop wrapper.
|
|
auto wsloopOp = rewriter.create<omp::WsloopOp>(parallelOp.getLoc());
|
|
if (!reductionVariables.empty()) {
|
|
wsloopOp.setReductionSymsAttr(
|
|
ArrayAttr::get(rewriter.getContext(), reductionSyms));
|
|
wsloopOp.getReductionVarsMutable().append(reductionVariables);
|
|
llvm::SmallVector<bool> reductionByRef;
|
|
// false because these reductions always reduce scalars and so do
|
|
// not need to pass by reference
|
|
reductionByRef.resize(reductionVariables.size(), false);
|
|
wsloopOp.setReductionByref(
|
|
DenseBoolArrayAttr::get(rewriter.getContext(), reductionByRef));
|
|
}
|
|
rewriter.create<omp::TerminatorOp>(loc); // omp.parallel terminator.
|
|
|
|
// The wrapper's entry block arguments will define the reduction
|
|
// variables.
|
|
llvm::SmallVector<mlir::Type> reductionTypes;
|
|
reductionTypes.reserve(reductionVariables.size());
|
|
llvm::transform(reductionVariables, std::back_inserter(reductionTypes),
|
|
[](mlir::Value v) { return v.getType(); });
|
|
rewriter.createBlock(
|
|
&wsloopOp.getRegion(), {}, reductionTypes,
|
|
llvm::SmallVector<mlir::Location>(reductionVariables.size(),
|
|
parallelOp.getLoc()));
|
|
|
|
// Create loop nest and populate region with contents of scf.parallel.
|
|
auto loopOp = rewriter.create<omp::LoopNestOp>(
|
|
parallelOp.getLoc(), parallelOp.getLowerBound(),
|
|
parallelOp.getUpperBound(), parallelOp.getStep());
|
|
|
|
rewriter.inlineRegionBefore(parallelOp.getRegion(), loopOp.getRegion(),
|
|
loopOp.getRegion().begin());
|
|
|
|
// Remove reduction-related block arguments from omp.loop_nest and
|
|
// redirect uses to the corresponding omp.wsloop block argument.
|
|
mlir::Block &loopOpEntryBlock = loopOp.getRegion().front();
|
|
unsigned numLoops = parallelOp.getNumLoops();
|
|
rewriter.replaceAllUsesWith(
|
|
loopOpEntryBlock.getArguments().drop_front(numLoops),
|
|
wsloopOp.getRegion().getArguments());
|
|
loopOpEntryBlock.eraseArguments(
|
|
numLoops, loopOpEntryBlock.getNumArguments() - numLoops);
|
|
|
|
Block *ops =
|
|
rewriter.splitBlock(&loopOpEntryBlock, loopOpEntryBlock.begin());
|
|
rewriter.setInsertionPointToStart(&loopOpEntryBlock);
|
|
|
|
auto scope = rewriter.create<memref::AllocaScopeOp>(parallelOp.getLoc(),
|
|
TypeRange());
|
|
rewriter.create<omp::YieldOp>(loc, ValueRange());
|
|
Block *scopeBlock = rewriter.createBlock(&scope.getBodyRegion());
|
|
rewriter.mergeBlocks(ops, scopeBlock);
|
|
rewriter.setInsertionPointToEnd(&*scope.getBodyRegion().begin());
|
|
rewriter.create<memref::AllocaScopeReturnOp>(loc, ValueRange());
|
|
}
|
|
}
|
|
|
|
// Load loop results.
|
|
SmallVector<Value> results;
|
|
results.reserve(reductionVariables.size());
|
|
for (auto [variable, type] :
|
|
llvm::zip(reductionVariables, parallelOp.getResultTypes())) {
|
|
Value res = rewriter.create<LLVM::LoadOp>(loc, type, variable);
|
|
results.push_back(res);
|
|
}
|
|
rewriter.replaceOp(parallelOp, results);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Applies the conversion patterns in the given function.
|
|
static LogicalResult applyPatterns(ModuleOp module, unsigned numThreads) {
|
|
ConversionTarget target(*module.getContext());
|
|
target.addIllegalOp<scf::ReduceOp, scf::ReduceReturnOp, scf::ParallelOp>();
|
|
target.addLegalDialect<omp::OpenMPDialect, LLVM::LLVMDialect,
|
|
memref::MemRefDialect>();
|
|
|
|
RewritePatternSet patterns(module.getContext());
|
|
patterns.add<ParallelOpLowering>(module.getContext(), numThreads);
|
|
FrozenRewritePatternSet frozen(std::move(patterns));
|
|
return applyPartialConversion(module, target, frozen);
|
|
}
|
|
|
|
/// A pass converting SCF operations to OpenMP operations.
|
|
struct SCFToOpenMPPass
|
|
: public impl::ConvertSCFToOpenMPPassBase<SCFToOpenMPPass> {
|
|
|
|
using Base::Base;
|
|
|
|
/// Pass entry point.
|
|
void runOnOperation() override {
|
|
if (failed(applyPatterns(getOperation(), numThreads)))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|