Files
clang-p2996/flang/lib/Semantics/semantics.cpp
peter klausler 4fede8bc8a [flang] Implement derived type description table encoding
Define Fortran derived types that describe the characteristics
of derived types, and instantiations of parameterized derived
types, that are of relevance to the runtime language support
library.  Define a suite of corresponding C++ structure types
for the runtime library to use to interpret instances of the
descriptions.

Create instances of these description types in Semantics as
static initializers for compiler-created objects in the scopes
that define or instantiate user derived types.

Delete obsolete code from earlier attempts to package runtime
type information.

Differential Revision: https://reviews.llvm.org/D92802
2020-12-08 10:26:58 -08:00

441 lines
14 KiB
C++

//===-- lib/Semantics/semantics.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Semantics/semantics.h"
#include "assignment.h"
#include "canonicalize-acc.h"
#include "canonicalize-do.h"
#include "canonicalize-omp.h"
#include "check-acc-structure.h"
#include "check-allocate.h"
#include "check-arithmeticif.h"
#include "check-case.h"
#include "check-coarray.h"
#include "check-data.h"
#include "check-deallocate.h"
#include "check-declarations.h"
#include "check-do-forall.h"
#include "check-if-stmt.h"
#include "check-io.h"
#include "check-namelist.h"
#include "check-nullify.h"
#include "check-omp-structure.h"
#include "check-purity.h"
#include "check-return.h"
#include "check-select-rank.h"
#include "check-select-type.h"
#include "check-stop.h"
#include "compute-offsets.h"
#include "mod-file.h"
#include "resolve-labels.h"
#include "resolve-names.h"
#include "rewrite-parse-tree.h"
#include "flang/Common/default-kinds.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/symbol.h"
#include "llvm/Support/raw_ostream.h"
namespace Fortran::semantics {
using NameToSymbolMap = std::multimap<parser::CharBlock, SymbolRef>;
static void DoDumpSymbols(llvm::raw_ostream &, const Scope &, int indent = 0);
static void PutIndent(llvm::raw_ostream &, int indent);
static void GetSymbolNames(const Scope &scope, NameToSymbolMap &symbols) {
// Finds all symbol names in the scope without collecting duplicates.
for (const auto &pair : scope) {
symbols.emplace(pair.second->name(), *pair.second);
}
for (const auto &pair : scope.commonBlocks()) {
symbols.emplace(pair.second->name(), *pair.second);
}
for (const auto &child : scope.children()) {
GetSymbolNames(child, symbols);
}
}
// A parse tree visitor that calls Enter/Leave functions from each checker
// class C supplied as template parameters. Enter is called before the node's
// children are visited, Leave is called after. No two checkers may have the
// same Enter or Leave function. Each checker must be constructible from
// SemanticsContext and have BaseChecker as a virtual base class.
template <typename... C> class SemanticsVisitor : public virtual C... {
public:
using C::Enter...;
using C::Leave...;
using BaseChecker::Enter;
using BaseChecker::Leave;
SemanticsVisitor(SemanticsContext &context)
: C{context}..., context_{context} {}
template <typename N> bool Pre(const N &node) {
if constexpr (common::HasMember<const N *, ConstructNode>) {
context_.PushConstruct(node);
}
Enter(node);
return true;
}
template <typename N> void Post(const N &node) {
Leave(node);
if constexpr (common::HasMember<const N *, ConstructNode>) {
context_.PopConstruct();
}
}
template <typename T> bool Pre(const parser::Statement<T> &node) {
context_.set_location(node.source);
Enter(node);
return true;
}
template <typename T> bool Pre(const parser::UnlabeledStatement<T> &node) {
context_.set_location(node.source);
Enter(node);
return true;
}
template <typename T> void Post(const parser::Statement<T> &node) {
Leave(node);
context_.set_location(std::nullopt);
}
template <typename T> void Post(const parser::UnlabeledStatement<T> &node) {
Leave(node);
context_.set_location(std::nullopt);
}
bool Walk(const parser::Program &program) {
parser::Walk(program, *this);
return !context_.AnyFatalError();
}
private:
SemanticsContext &context_;
};
class MiscChecker : public virtual BaseChecker {
public:
explicit MiscChecker(SemanticsContext &context) : context_{context} {}
void Leave(const parser::EntryStmt &) {
if (!context_.constructStack().empty()) { // C1571
context_.Say("ENTRY may not appear in an executable construct"_err_en_US);
}
}
void Leave(const parser::AssignStmt &stmt) {
CheckAssignGotoName(std::get<parser::Name>(stmt.t));
}
void Leave(const parser::AssignedGotoStmt &stmt) {
CheckAssignGotoName(std::get<parser::Name>(stmt.t));
}
private:
void CheckAssignGotoName(const parser::Name &name) {
if (context_.HasError(name.symbol)) {
return;
}
const Symbol &symbol{DEREF(name.symbol)};
auto type{evaluate::DynamicType::From(symbol)};
if (!IsVariableName(symbol) || symbol.Rank() != 0 || !type ||
type->category() != TypeCategory::Integer ||
type->kind() !=
context_.defaultKinds().GetDefaultKind(TypeCategory::Integer)) {
context_
.Say(name.source,
"'%s' must be a default integer scalar variable"_err_en_US,
name.source)
.Attach(symbol.name(), "Declaration of '%s'"_en_US, symbol.name());
}
}
SemanticsContext &context_;
};
using StatementSemanticsPass1 = ExprChecker;
using StatementSemanticsPass2 = SemanticsVisitor<AccStructureChecker,
AllocateChecker, ArithmeticIfStmtChecker, AssignmentChecker, CaseChecker,
CoarrayChecker, DataChecker, DeallocateChecker, DoForallChecker,
IfStmtChecker, IoChecker, MiscChecker, NamelistChecker, NullifyChecker,
OmpStructureChecker, PurityChecker, ReturnStmtChecker,
SelectRankConstructChecker, SelectTypeChecker, StopChecker>;
static bool PerformStatementSemantics(
SemanticsContext &context, parser::Program &program) {
ResolveNames(context, program);
RewriteParseTree(context, program);
ComputeOffsets(context);
CheckDeclarations(context);
StatementSemanticsPass1{context}.Walk(program);
StatementSemanticsPass2 pass2{context};
pass2.Walk(program);
if (!context.AnyFatalError()) {
pass2.CompileDataInitializationsIntoInitializers();
}
return !context.AnyFatalError();
}
SemanticsContext::SemanticsContext(
const common::IntrinsicTypeDefaultKinds &defaultKinds,
const common::LanguageFeatureControl &languageFeatures,
parser::AllCookedSources &allCookedSources)
: defaultKinds_{defaultKinds}, languageFeatures_{languageFeatures},
allCookedSources_{allCookedSources},
intrinsics_{evaluate::IntrinsicProcTable::Configure(defaultKinds_)},
foldingContext_{
parser::ContextualMessages{&messages_}, defaultKinds_, intrinsics_} {}
SemanticsContext::~SemanticsContext() {}
int SemanticsContext::GetDefaultKind(TypeCategory category) const {
return defaultKinds_.GetDefaultKind(category);
}
bool SemanticsContext::IsEnabled(common::LanguageFeature feature) const {
return languageFeatures_.IsEnabled(feature);
}
bool SemanticsContext::ShouldWarn(common::LanguageFeature feature) const {
return languageFeatures_.ShouldWarn(feature);
}
const DeclTypeSpec &SemanticsContext::MakeNumericType(
TypeCategory category, int kind) {
if (kind == 0) {
kind = GetDefaultKind(category);
}
return globalScope_.MakeNumericType(category, KindExpr{kind});
}
const DeclTypeSpec &SemanticsContext::MakeLogicalType(int kind) {
if (kind == 0) {
kind = GetDefaultKind(TypeCategory::Logical);
}
return globalScope_.MakeLogicalType(KindExpr{kind});
}
bool SemanticsContext::AnyFatalError() const {
return !messages_.empty() &&
(warningsAreErrors_ || messages_.AnyFatalError());
}
bool SemanticsContext::HasError(const Symbol &symbol) {
return errorSymbols_.count(symbol) > 0;
}
bool SemanticsContext::HasError(const Symbol *symbol) {
return !symbol || HasError(*symbol);
}
bool SemanticsContext::HasError(const parser::Name &name) {
return HasError(name.symbol);
}
void SemanticsContext::SetError(const Symbol &symbol, bool value) {
if (value) {
CheckError(symbol);
errorSymbols_.emplace(symbol);
}
}
void SemanticsContext::CheckError(const Symbol &symbol) {
if (!AnyFatalError()) {
std::string buf;
llvm::raw_string_ostream ss{buf};
ss << symbol;
common::die(
"No error was reported but setting error on: %s", ss.str().c_str());
}
}
const Scope &SemanticsContext::FindScope(parser::CharBlock source) const {
return const_cast<SemanticsContext *>(this)->FindScope(source);
}
Scope &SemanticsContext::FindScope(parser::CharBlock source) {
if (auto *scope{globalScope_.FindScope(source)}) {
return *scope;
} else {
common::die("SemanticsContext::FindScope(): invalid source location");
}
}
void SemanticsContext::PopConstruct() {
CHECK(!constructStack_.empty());
constructStack_.pop_back();
}
void SemanticsContext::CheckIndexVarRedefine(const parser::CharBlock &location,
const Symbol &variable, parser::MessageFixedText &&message) {
if (const Symbol * root{GetAssociationRoot(variable)}) {
auto it{activeIndexVars_.find(*root)};
if (it != activeIndexVars_.end()) {
std::string kind{EnumToString(it->second.kind)};
Say(location, std::move(message), kind, root->name())
.Attach(it->second.location, "Enclosing %s construct"_en_US, kind);
}
}
}
void SemanticsContext::WarnIndexVarRedefine(
const parser::CharBlock &location, const Symbol &variable) {
CheckIndexVarRedefine(
location, variable, "Possible redefinition of %s variable '%s'"_en_US);
}
void SemanticsContext::CheckIndexVarRedefine(
const parser::CharBlock &location, const Symbol &variable) {
CheckIndexVarRedefine(
location, variable, "Cannot redefine %s variable '%s'"_err_en_US);
}
void SemanticsContext::CheckIndexVarRedefine(const parser::Variable &variable) {
if (const Symbol * entity{GetLastName(variable).symbol}) {
CheckIndexVarRedefine(variable.GetSource(), *entity);
}
}
void SemanticsContext::CheckIndexVarRedefine(const parser::Name &name) {
if (const Symbol * entity{name.symbol}) {
CheckIndexVarRedefine(name.source, *entity);
}
}
void SemanticsContext::ActivateIndexVar(
const parser::Name &name, IndexVarKind kind) {
CheckIndexVarRedefine(name);
if (const Symbol * indexVar{name.symbol}) {
if (const Symbol * root{GetAssociationRoot(*indexVar)}) {
activeIndexVars_.emplace(*root, IndexVarInfo{name.source, kind});
}
}
}
void SemanticsContext::DeactivateIndexVar(const parser::Name &name) {
if (Symbol * indexVar{name.symbol}) {
if (const Symbol * root{GetAssociationRoot(*indexVar)}) {
auto it{activeIndexVars_.find(*root)};
if (it != activeIndexVars_.end() && it->second.location == name.source) {
activeIndexVars_.erase(it);
}
}
}
}
SymbolVector SemanticsContext::GetIndexVars(IndexVarKind kind) {
SymbolVector result;
for (const auto &[symbol, info] : activeIndexVars_) {
if (info.kind == kind) {
result.push_back(symbol);
}
}
return result;
}
SourceName SemanticsContext::GetTempName(const Scope &scope) {
for (const auto &str : tempNames_) {
SourceName name{str};
if (scope.find(name) == scope.end()) {
return name;
}
}
tempNames_.emplace_back(".F18.");
tempNames_.back() += std::to_string(tempNames_.size());
return {tempNames_.back()};
}
bool Semantics::Perform() {
return ValidateLabels(context_, program_) &&
parser::CanonicalizeDo(program_) && // force line break
CanonicalizeAcc(context_.messages(), program_) &&
CanonicalizeOmp(context_.messages(), program_) &&
PerformStatementSemantics(context_, program_) &&
ModFileWriter{context_}.WriteAll();
}
void Semantics::EmitMessages(llvm::raw_ostream &os) const {
context_.messages().Emit(os, context_.allCookedSources());
}
void Semantics::DumpSymbols(llvm::raw_ostream &os) {
DoDumpSymbols(os, context_.globalScope());
}
void Semantics::DumpSymbolsSources(llvm::raw_ostream &os) const {
NameToSymbolMap symbols;
GetSymbolNames(context_.globalScope(), symbols);
const parser::AllCookedSources &allCooked{context_.allCookedSources()};
for (const auto &pair : symbols) {
const Symbol &symbol{pair.second};
if (auto sourceInfo{allCooked.GetSourcePositionRange(symbol.name())}) {
os << symbol.name().ToString() << ": " << sourceInfo->first.file.path()
<< ", " << sourceInfo->first.line << ", " << sourceInfo->first.column
<< "-" << sourceInfo->second.column << "\n";
} else if (symbol.has<semantics::UseDetails>()) {
os << symbol.name().ToString() << ": "
<< symbol.GetUltimate().owner().symbol()->name().ToString() << "\n";
}
}
}
void DoDumpSymbols(llvm::raw_ostream &os, const Scope &scope, int indent) {
PutIndent(os, indent);
os << Scope::EnumToString(scope.kind()) << " scope:";
if (const auto *symbol{scope.symbol()}) {
os << ' ' << symbol->name();
}
if (scope.alignment().has_value()) {
os << " size=" << scope.size() << " alignment=" << *scope.alignment();
}
if (scope.derivedTypeSpec()) {
os << " instantiation of " << *scope.derivedTypeSpec();
}
os << '\n';
++indent;
for (const auto &pair : scope) {
const auto &symbol{*pair.second};
PutIndent(os, indent);
os << symbol << '\n';
if (const auto *details{symbol.detailsIf<GenericDetails>()}) {
if (const auto &type{details->derivedType()}) {
PutIndent(os, indent);
os << *type << '\n';
}
}
}
if (!scope.equivalenceSets().empty()) {
PutIndent(os, indent);
os << "Equivalence Sets:";
for (const auto &set : scope.equivalenceSets()) {
os << ' ';
char sep = '(';
for (const auto &object : set) {
os << sep << object.AsFortran();
sep = ',';
}
os << ')';
}
os << '\n';
}
if (!scope.crayPointers().empty()) {
PutIndent(os, indent);
os << "Cray Pointers:";
for (const auto &[pointee, pointer] : scope.crayPointers()) {
os << " (" << pointer->name() << ',' << pointee << ')';
}
}
for (const auto &pair : scope.commonBlocks()) {
const auto &symbol{*pair.second};
PutIndent(os, indent);
os << symbol << '\n';
}
for (const auto &child : scope.children()) {
DoDumpSymbols(os, child, indent);
}
--indent;
}
static void PutIndent(llvm::raw_ostream &os, int indent) {
for (int i = 0; i < indent; ++i) {
os << " ";
}
}
} // namespace Fortran::semantics