Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/Hoisting.cpp
Andrzej Warzyński 541f33e075 [mlir][linalg] Prevent hoisting of transfer pairs in the presence of aliases (#145235)
This patch adds additional checks to the hoisting logic to prevent hoisting of
`vector.transfer_read` / `vector.transfer_write` pairs when the underlying
memref has users that introduce aliases via operations implementing
`ViewLikeOpInterface`.

Note: This may conservatively block some valid hoisting opportunities and could
affect performance. However, as demonstrated by the included tests, the current
logic is too permissive and can lead to incorrect transformations.

If this change prevents hoisting in cases that are provably safe, please share
a minimal repro - I'm happy to explore ways to relax the check.

Special treatment is given to `memref.assume_alignment`, mainly to accommodate
recent updates in:

* https://github.com/llvm/llvm-project/pull/139521

Note that such special casing does not scale and should generally be avoided.
The current hoisting logic lacks robust alias analysis. While better support
would require more work, the broader semantics of `memref.assume_alignment`
remain somewhat unclear. It's possible this op may eventually be replaced with
the "alignment" attribute added in:

* https://github.com/llvm/llvm-project/pull/144344
2025-06-27 13:18:15 +01:00

412 lines
16 KiB
C++

//===- Hoisting.cpp - Linalg hoisting transformations ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with hoisting invariant operations
// in the context of Linalg transformations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/LoopInvariantCodeMotionUtils.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
using llvm::dbgs;
#define DEBUG_TYPE "linalg-hoisting"
#define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")
using namespace mlir;
using namespace mlir::linalg;
/// Replace `loop` with a new loop that has a different init operand at
/// position `index`. The body of this loop is moved over to the new loop.
///
/// `newInitOperands` specifies the replacement "init" operands.
/// `newYieldValue` is the replacement yield value of the loop at position
/// `index`.
static scf::ForOp replaceWithDifferentYield(RewriterBase &rewriter,
scf::ForOp loop,
Value newInitOperand,
unsigned index,
Value newYieldValue) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(loop.getOperation());
auto inits = llvm::to_vector(loop.getInits());
// Replace the init value with the new operand.
assert(index < inits.size());
inits[index] = newInitOperand;
scf::ForOp newLoop = rewriter.create<scf::ForOp>(
loop.getLoc(), loop.getLowerBound(), loop.getUpperBound(), loop.getStep(),
inits, [](OpBuilder &, Location, Value, ValueRange) {});
// Generate the new yield with the replaced operand.
auto yieldOp = cast<scf::YieldOp>(loop.getBody()->getTerminator());
yieldOp.setOperand(index, newYieldValue);
// Move the loop body to the new op.
rewriter.mergeBlocks(loop.getBody(), newLoop.getBody(),
newLoop.getBody()->getArguments());
// Replace the old loop.
rewriter.replaceOp(loop.getOperation(), newLoop->getResults());
return newLoop;
}
// Hoist out a pair of corresponding vector.extract+vector.broadcast
// operations. This function transforms a loop like this:
// %res = scf.for _ = _ to _ step _ iter_args(%iarg = %v) -> (t1) {
// %e = vector.extract %iarg : t1 to t2
// %u = "some_use"(%e) : (t2) -> t2
// %b = vector.broadcast %u : t2 to t1
// scf.yield %b : t1
// }
// into the following:
// %e = vector.extract %v: t1 to t2
// %res' = scf.for _ = _ to _ step _ iter_args(%iarg = %e) -> (t2) {
// %u' = "some_use"(%iarg) : (t2) -> t2
// scf.yield %u' : t2
// }
// %res = vector.broadcast %res' : t2 to t1
void mlir::linalg::hoistRedundantVectorBroadcasts(RewriterBase &rewriter,
Operation *root) {
bool changed = true;
while (changed) {
changed = false;
// First move loop invariant ops outside of their loop. This needs to be
// done before as we cannot move ops without interrupting the function walk.
root->walk(
[&](LoopLikeOpInterface loopLike) { moveLoopInvariantCode(loopLike); });
root->walk([&](vector::ExtractOp extractOp) {
LLVM_DEBUG(DBGS() << "Candidate for hoisting: "
<< *extractOp.getOperation() << "\n");
auto loop = dyn_cast<scf::ForOp>(extractOp->getParentOp());
if (!loop)
return WalkResult::advance();
// Check that the vector to extract from is a BlockArgument.
auto blockArg = dyn_cast<BlockArgument>(extractOp.getVector());
if (!blockArg)
return WalkResult::advance();
// Check that the blockArg is an iter_arg of the loop.
OpOperand *initArg = loop.getTiedLoopInit(blockArg);
if (!initArg)
return WalkResult::advance();
// If the iter_arg does not have only one use, it won't be possible to
// hoist the extractOp out.
if (!blockArg.hasOneUse())
return WalkResult::advance();
unsigned index = blockArg.getArgNumber() - loop.getNumInductionVars();
// Check that the loop yields a broadcast that has just one use.
Operation *yieldedVal =
loop.getTiedLoopYieldedValue(blockArg)->get().getDefiningOp();
auto broadcast = dyn_cast<vector::BroadcastOp>(yieldedVal);
if (!broadcast || !broadcast.getResult().hasOneUse())
return WalkResult::advance();
LLVM_DEBUG(DBGS() << "Candidate broadcast: " << broadcast << "\n");
Type broadcastInputType = broadcast.getSourceType();
if (broadcastInputType != extractOp.getType())
return WalkResult::advance();
// The position of the extract must be defined outside of the loop if
// it is dynamic.
for (auto operand : extractOp.getDynamicPosition())
if (!loop.isDefinedOutsideOfLoop(operand))
return WalkResult::advance();
rewriter.modifyOpInPlace(broadcast, [&] {
extractOp.getVectorMutable().assign(initArg->get());
});
loop.moveOutOfLoop(extractOp);
rewriter.moveOpAfter(broadcast, loop);
scf::ForOp newLoop = replaceWithDifferentYield(
rewriter, loop, extractOp.getResult(), index, broadcast.getSource());
LLVM_DEBUG(DBGS() << "New loop: " << newLoop << "\n");
rewriter.replaceAllUsesWith(newLoop.getResult(index), broadcast);
rewriter.modifyOpInPlace(
broadcast, [&] { broadcast.setOperand(newLoop.getResult(index)); });
changed = true;
return WalkResult::interrupt();
});
}
}
static bool noAliasingUseInLoop(vector::TransferReadOp transferRead,
LoopLikeOpInterface loop) {
Value source = transferRead.getBase();
// Skip view-like Ops and retrive the actual soruce Operation
while (auto srcOp =
dyn_cast_or_null<ViewLikeOpInterface>(source.getDefiningOp()))
source = srcOp.getViewSource();
llvm::SmallVector<Operation *, 32> users(source.getUsers().begin(),
source.getUsers().end());
llvm::SmallDenseSet<Operation *, 32> processed;
while (!users.empty()) {
Operation *user = users.pop_back_val();
// If the user has already been processed skip.
if (!processed.insert(user).second)
continue;
if (auto viewLike = dyn_cast<ViewLikeOpInterface>(user)) {
users.append(viewLike->getUsers().begin(), viewLike->getUsers().end());
continue;
}
if (isMemoryEffectFree(user) || isa<vector::TransferReadOp>(user))
continue;
if (!loop->isAncestor(user))
continue;
return false;
}
return true;
}
void mlir::linalg::hoistRedundantVectorTransfers(Operation *root,
bool verifyNonZeroTrip) {
bool changed = true;
while (changed) {
changed = false;
// First move loop invariant ops outside of their loop. This needs to be
// done before as we cannot move ops without interrupting the function walk.
root->walk(
[&](LoopLikeOpInterface loopLike) { moveLoopInvariantCode(loopLike); });
// Find all loops that are certain to have non zero trip count. Any loops
// that are not part of this set cannot be hoisted from, since hoisting from
// a potentially zero trip count loop may cause a vector transfer to be
// executed when it shouldn't be.
llvm::DenseSet<LoopLikeOpInterface> definiteNonZeroTripCountLoops;
if (verifyNonZeroTrip) {
root->walk([&](LoopLikeOpInterface loopLike) {
std::optional<SmallVector<OpFoldResult>> lbs =
loopLike.getLoopLowerBounds();
std::optional<SmallVector<OpFoldResult>> ubs =
loopLike.getLoopUpperBounds();
// If loop bounds cannot be found, assume possibly zero trip count.
if (!lbs || !ubs)
return;
// Otherwise, use ValueBounds to find the maximum lower bound and
// minimum upper bound. If the bounds are found, and maxLb is less
// than the minUb, then the loop will not have zero trip count.
for (auto [lb, ub] : llvm::zip_equal(lbs.value(), ubs.value())) {
FailureOr<int64_t> maxLb =
ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType::UB, lb,
/*stopCondition=*/nullptr, /*closedUB=*/true);
if (failed(maxLb))
return;
FailureOr<int64_t> minUb =
ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType::LB, ub);
if (failed(minUb))
return;
if (minUb.value() <= maxLb.value())
return;
definiteNonZeroTripCountLoops.insert(loopLike);
}
});
}
root->walk([&](vector::TransferReadOp transferRead) {
if (!isa<MemRefType>(transferRead.getShapedType()))
return WalkResult::advance();
LLVM_DEBUG(DBGS() << "Candidate for hoisting: "
<< *transferRead.getOperation() << "\n");
auto loop = dyn_cast<LoopLikeOpInterface>(transferRead->getParentOp());
LLVM_DEBUG(DBGS() << "Parent op: " << *transferRead->getParentOp()
<< "\n");
if (!isa_and_nonnull<scf::ForOp, affine::AffineForOp>(loop))
return WalkResult::advance();
if (verifyNonZeroTrip && !definiteNonZeroTripCountLoops.contains(loop)) {
LLVM_DEBUG(DBGS() << "Loop may have zero trip count: " << *loop
<< "\n");
return WalkResult::advance();
}
LLVM_DEBUG(DBGS() << "Candidate read: " << *transferRead.getOperation()
<< "\n");
SetVector<Operation *> forwardSlice;
getForwardSlice(transferRead.getOperation(), &forwardSlice);
// Look for the last TransferWriteOp in the forwardSlice of
// `transferRead` that operates on the same memref.
vector::TransferWriteOp transferWrite;
for (auto *sliceOp : llvm::reverse(forwardSlice)) {
auto candidateWrite = dyn_cast<vector::TransferWriteOp>(sliceOp);
if (!candidateWrite ||
candidateWrite.getBase() != transferRead.getBase())
continue;
transferWrite = candidateWrite;
}
// All operands of the TransferRead must be defined outside of the loop.
for (auto operand : transferRead.getOperands())
if (!loop.isDefinedOutsideOfLoop(operand))
return WalkResult::advance();
// Only hoist transfer_read / transfer_write pairs and singleton
// transfer_reads for now.
if (!transferWrite) {
// Make sure there are no other accesses to the memref before
// hoisting transfer_read.
if (noAliasingUseInLoop(transferRead, loop))
loop.moveOutOfLoop(transferRead);
return WalkResult::advance();
}
LLVM_DEBUG(DBGS() << "Candidate: " << *transferWrite.getOperation()
<< "\n");
// Approximate aliasing by checking that:
// 1. indices, vector type and permutation map are the same (i.e., the
// transfer_read/transfer_write ops are matching),
// 2. source operands for transfer.{read|write} do not originate from
// nor have users that are Ops implementing ViewLikeOpInterface.
// 3. no other operations in the loop access the same memref except
// for transfer_read/transfer_write accessing statically disjoint
// slices.
// Check 1.
if (transferRead.getIndices() != transferWrite.getIndices() ||
transferRead.getVectorType() != transferWrite.getVectorType() ||
transferRead.getPermutationMap() != transferWrite.getPermutationMap())
return WalkResult::advance();
// Check 2. Note, since both xfer Ops share the source, we only need to
// look at one of them.
auto base = transferRead.getBase();
auto *source = base.getDefiningOp();
if (source) {
// NOTE: We treat `memref.assume_alignment` as a special case.
//
// The idea is that it is safe to look past AssumeAlignmemtOp (i.e.
// MemRef _before_ alignment) iff:
// 1. It has exactly two uses (these have to be the xfer Ops
// being looked at).
// 2. The original MemRef has only one use (i.e.
// AssumeAlignmentOp).
//
// Relaxing these conditions will most likely require proper alias
// analysis.
if (auto assume = dyn_cast<memref::AssumeAlignmentOp>(source)) {
Value memPreAlignment = assume.getMemref();
auto numInLoopUses =
llvm::count_if(base.getUses(), [&loop](OpOperand &use) {
return loop->isAncestor(use.getOwner());
});
if (numInLoopUses && memPreAlignment.hasOneUse())
source = memPreAlignment.getDefiningOp();
}
if (isa_and_nonnull<ViewLikeOpInterface>(source))
return WalkResult::advance();
}
if (llvm::any_of(base.getUsers(), llvm::IsaPred<ViewLikeOpInterface>))
return WalkResult::advance();
// Check 3.
// TODO: may want to memoize this information for performance but it
// likely gets invalidated often.
DominanceInfo dom(loop);
if (!dom.properlyDominates(transferRead.getOperation(), transferWrite))
return WalkResult::advance();
for (auto &use : transferRead.getBase().getUses()) {
if (!loop->isAncestor(use.getOwner()))
continue;
if (use.getOwner() == transferRead.getOperation() ||
use.getOwner() == transferWrite.getOperation())
continue;
if (auto transferWriteUse =
dyn_cast<vector::TransferWriteOp>(use.getOwner())) {
if (!vector::isDisjointTransferSet(
cast<VectorTransferOpInterface>(*transferWrite),
cast<VectorTransferOpInterface>(*transferWriteUse),
/*testDynamicValueUsingBounds=*/true))
return WalkResult::advance();
} else if (auto transferReadUse =
dyn_cast<vector::TransferReadOp>(use.getOwner())) {
if (!vector::isDisjointTransferSet(
cast<VectorTransferOpInterface>(*transferWrite),
cast<VectorTransferOpInterface>(*transferReadUse),
/*testDynamicValueUsingBounds=*/true))
return WalkResult::advance();
} else {
// Unknown use, we cannot prove that it doesn't alias with the
// transferRead/transferWrite operations.
return WalkResult::advance();
}
}
// Hoist read before.
loop.moveOutOfLoop(transferRead);
// Hoist write after.
transferWrite->moveAfter(loop);
// Rewrite `loop` with new yields by cloning and erase the original
// loop.
IRRewriter rewriter(transferRead.getContext());
NewYieldValuesFn yieldFn = [&](OpBuilder &b, Location loc,
ArrayRef<BlockArgument> newBBArgs) {
return SmallVector<Value>{transferWrite.getVector()};
};
auto maybeNewLoop = loop.replaceWithAdditionalYields(
rewriter, transferRead.getVector(),
/*replaceInitOperandUsesInLoop=*/true, yieldFn);
if (failed(maybeNewLoop))
return WalkResult::interrupt();
transferWrite.getValueToStoreMutable().assign(
maybeNewLoop->getOperation()->getResults().back());
changed = true;
// Need to interrupt and restart because erasing the loop messes up
// the walk.
return WalkResult::interrupt();
});
}
}