FuncOp has been moved to the `func` namespace for a little over a month, the using directive can be dropped now.
499 lines
20 KiB
C++
499 lines
20 KiB
C++
//===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the linalg dialect Tiling pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <utility>
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Linalg/Utils/Utils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/Transforms.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/Transforms/FoldUtils.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::linalg;
|
|
using namespace mlir::scf;
|
|
|
|
#define DEBUG_TYPE "linalg-tiling"
|
|
|
|
static bool isZero(Value v) {
|
|
if (auto cst = v.getDefiningOp<arith::ConstantIndexOp>())
|
|
return cst.value() == 0;
|
|
return false;
|
|
}
|
|
|
|
std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
|
|
mlir::linalg::makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map,
|
|
ValueRange allShapeSizes,
|
|
ValueRange allTileSizes) {
|
|
assert(allTileSizes.size() == map.getNumResults());
|
|
// Apply `map` to get shape sizes in loop order.
|
|
auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
|
|
SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
|
|
|
|
// Traverse the tile sizes, which are in loop order, erase zeros everywhere.
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
|
|
if (isZero(tileSizes[idx - zerosCount])) {
|
|
shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
|
|
tileSizes.erase(tileSizes.begin() + idx - zerosCount);
|
|
++zerosCount;
|
|
continue;
|
|
}
|
|
loopIndexToRangeIndex[idx] = idx - zerosCount;
|
|
}
|
|
|
|
// Create a new range with the applied tile sizes.
|
|
SmallVector<Range, 4> res;
|
|
for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
|
|
res.push_back(Range{b.create<arith::ConstantIndexOp>(loc, 0),
|
|
shapeSizes[idx], tileSizes[idx]});
|
|
return std::make_tuple(res, loopIndexToRangeIndex);
|
|
}
|
|
|
|
void mlir::linalg::transformIndexOps(
|
|
RewriterBase &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
|
|
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
|
|
SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
|
|
for (auto &en : enumerate(allIvs)) {
|
|
auto rangeIndex = loopIndexToRangeIndex.find(en.index());
|
|
if (rangeIndex == loopIndexToRangeIndex.end())
|
|
continue;
|
|
en.value() = ivs[rangeIndex->second];
|
|
}
|
|
addTileLoopIvsToIndexOpResults(b, op, allIvs);
|
|
}
|
|
|
|
// Insert a tile `source` into the destination tensor `dest`. The position at
|
|
// which the tile is inserted (as well as size of tile) is taken from a given
|
|
// ExtractSliceOp `sliceOp`.
|
|
static Value insertSliceIntoTensor(RewriterBase &b, Location loc,
|
|
tensor::ExtractSliceOp sliceOp, Value source,
|
|
Value dest) {
|
|
return b.create<tensor::InsertSliceOp>(
|
|
loc, sliceOp.source().getType(), source, dest, sliceOp.offsets(),
|
|
sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(),
|
|
sliceOp.static_sizes(), sliceOp.static_strides());
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
static FailureOr<TiledLinalgOp>
|
|
tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ValueRange tileSizes,
|
|
const LinalgTilingOptions &options) {
|
|
auto nLoops = op.getNumLoops();
|
|
// Initial tile sizes may be too big, only take the first nLoops.
|
|
tileSizes = tileSizes.take_front(nLoops);
|
|
|
|
if (llvm::all_of(tileSizes, isZero)) {
|
|
TiledLinalgOp tiledOp;
|
|
tiledOp.op = cast<LinalgOp>(b.clone(*op.getOperation()));
|
|
tiledOp.tensorResults.assign(tiledOp.op->result_begin(),
|
|
tiledOp.op->result_end());
|
|
return tiledOp;
|
|
}
|
|
|
|
// 1. Build the tiled loop ranges.
|
|
auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc());
|
|
AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
|
|
if (!shapeSizesToLoopsMap)
|
|
return failure();
|
|
|
|
SmallVector<Range, 4> loopRanges;
|
|
LoopIndexToRangeIndexMap loopIndexToRangeIndex;
|
|
std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
|
|
b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
|
|
|
|
SmallVector<Attribute, 4> iteratorTypes;
|
|
for (const auto &attr :
|
|
enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) {
|
|
if (loopIndexToRangeIndex.count(attr.index()))
|
|
iteratorTypes.push_back(attr.value());
|
|
}
|
|
// If interchangeVector is empty, use the identity. Build the permutation map
|
|
// otherwise.
|
|
auto invPermutationMap =
|
|
AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
|
|
if (!options.interchangeVector.empty()) {
|
|
// Based on the pruned iterations (due to zero tile size), recompute the
|
|
// interchange vector.
|
|
SmallVector<unsigned, 4> interchangeVector;
|
|
interchangeVector.reserve(options.interchangeVector.size());
|
|
for (auto pos : options.interchangeVector) {
|
|
auto it = loopIndexToRangeIndex.find(pos);
|
|
if (it == loopIndexToRangeIndex.end())
|
|
continue;
|
|
interchangeVector.push_back(it->second);
|
|
}
|
|
// Interchange vector is guaranteed to be a permutation,
|
|
// `inversePermutation` must succeed.
|
|
invPermutationMap = inversePermutation(
|
|
AffineMap::getPermutationMap(interchangeVector, b.getContext()));
|
|
assert(invPermutationMap);
|
|
SmallVector<int64_t> permutation(interchangeVector.begin(),
|
|
interchangeVector.end());
|
|
applyPermutationToVector(loopRanges, permutation);
|
|
applyPermutationToVector(iteratorTypes, permutation);
|
|
}
|
|
|
|
// 2. Create the tiled loops.
|
|
LinalgOp res = op;
|
|
SmallVector<Value, 4> ivs, tensorResults;
|
|
auto tiledLoopBodyBuilder =
|
|
[&](OpBuilder &builder, Location loc, ValueRange localIvs,
|
|
ValueRange operandValuesToUse) -> scf::ValueVector {
|
|
ivs.assign(localIvs.begin(), localIvs.end());
|
|
|
|
// When an `interchangeVector` is present, it has been applied to the
|
|
// loop ranges and the iterator types. Apply its inverse to the
|
|
// resulting loop `ivs` to match the op definition.
|
|
SmallVector<Value, 4> interchangedIvs;
|
|
if (!options.interchangeVector.empty())
|
|
interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs);
|
|
else
|
|
interchangedIvs.assign(ivs.begin(), ivs.end());
|
|
|
|
// Tile the `operandValuesToUse` that either match the `op` operands
|
|
// themselves or the tile loop arguments forwarding them.
|
|
assert(operandValuesToUse.size() ==
|
|
static_cast<size_t>(op.getNumInputsAndOutputs()) &&
|
|
"expect the number of operands and inputs and outputs to match");
|
|
SmallVector<Value> valuesToTile = operandValuesToUse;
|
|
auto sizeBounds =
|
|
applyMapToValues(b, loc, shapeSizesToLoopsMap, allShapeSizes);
|
|
SmallVector<Value, 4> tiledOperands =
|
|
makeTiledShapes(b, loc, op, valuesToTile, interchangedIvs, tileSizes,
|
|
sizeBounds, /*omitPartialTileCheck=*/false);
|
|
|
|
// TODO: use an interface/adaptor to avoid leaking position in
|
|
// `tiledOperands`.
|
|
SmallVector<Type, 4> resultTensorTypes;
|
|
for (OpOperand *opOperand : op.getOutputTensorOperands())
|
|
resultTensorTypes.push_back(
|
|
tiledOperands[opOperand->getOperandNumber()].getType());
|
|
|
|
res = op.clone(b, loc, resultTensorTypes, tiledOperands);
|
|
|
|
// Insert a insert_slice for each output tensor.
|
|
unsigned resultIdx = 0;
|
|
for (OpOperand *opOperand : op.getOutputTensorOperands()) {
|
|
// TODO: use an interface/adaptor to avoid leaking position in
|
|
// `tiledOperands`.
|
|
Value outputTensor = tiledOperands[opOperand->getOperandNumber()];
|
|
// TODO: Propagate RewriterBase everywhere.
|
|
IRRewriter rewriter(b);
|
|
if (auto sliceOp = outputTensor.getDefiningOp<tensor::ExtractSliceOp>()) {
|
|
tensorResults.push_back(insertSliceIntoTensor(rewriter, loc, sliceOp,
|
|
res->getResult(resultIdx),
|
|
sliceOp.source()));
|
|
} else {
|
|
tensorResults.push_back(res->getResult(resultIdx));
|
|
}
|
|
++resultIdx;
|
|
}
|
|
return scf::ValueVector(tensorResults.begin(), tensorResults.end());
|
|
};
|
|
GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes,
|
|
tiledLoopBodyBuilder, options.distribution,
|
|
options.distributionTypes);
|
|
|
|
// 3. Transform IndexOp results w.r.t. the tiling.
|
|
transformIndexOps(b, res, ivs, loopIndexToRangeIndex);
|
|
|
|
// 4. Gather the newly created loops and return them with the new op.
|
|
SmallVector<Operation *, 8> loops;
|
|
loops.reserve(ivs.size());
|
|
for (auto iv : ivs) {
|
|
if (iv.isa<BlockArgument>()) {
|
|
loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
|
|
assert(loops.back() && "no owner found for induction variable!");
|
|
} else {
|
|
// TODO: Instead of doing this, try to recover the ops used instead of the
|
|
// loop.
|
|
loops.push_back(nullptr);
|
|
}
|
|
}
|
|
|
|
// 5. Get the tensor results from the outermost loop if available. Otherwise
|
|
// use the previously captured `tensorResults`.
|
|
Operation *outermostLoop = nullptr;
|
|
for (Operation *loop : loops)
|
|
if ((outermostLoop = loop))
|
|
break;
|
|
|
|
return TiledLinalgOp{
|
|
res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
|
|
}
|
|
|
|
template <typename LoopTy>
|
|
FailureOr<TiledLinalgOp> static tileLinalgOpImpl(
|
|
RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) {
|
|
OpBuilder::InsertionGuard g(b);
|
|
b.setInsertionPoint(op);
|
|
|
|
if (!options.tileSizeComputationFunction)
|
|
return failure();
|
|
|
|
// Enforce the convention that "tiling by zero" skips tiling a particular
|
|
// dimension. This convention is significantly simpler to handle instead of
|
|
// adjusting affine maps to account for missing dimensions.
|
|
auto nLoops = op.getNumLoops();
|
|
SmallVector<Value, 4> tileSizeVector =
|
|
options.tileSizeComputationFunction(b, op);
|
|
if (tileSizeVector.size() < nLoops) {
|
|
auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0);
|
|
tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
|
|
}
|
|
|
|
return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
|
|
}
|
|
|
|
FailureOr<TiledLinalgOp>
|
|
mlir::linalg::tileLinalgOp(RewriterBase &b, LinalgOp op,
|
|
const LinalgTilingOptions &options) {
|
|
switch (options.loopType) {
|
|
case LinalgTilingLoopType::Loops:
|
|
return tileLinalgOpImpl<scf::ForOp>(b, op, options);
|
|
case LinalgTilingLoopType::ParallelLoops:
|
|
return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
|
|
default:;
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
/// Generate a loop nest around a given tensor::PadOp (for tiling). `newPadOp`
|
|
/// and `loopNest` are output parameters that return the new (tiled)
|
|
/// tensor::PadOp and the loop nest.
|
|
static LogicalResult tilePadOp(RewriterBase &builder, tensor::PadOp op,
|
|
tensor::PadOp &newPadOp, LoopNest &loopNest,
|
|
const LinalgTilingOptions &options) {
|
|
Location loc = op.getLoc();
|
|
OpBuilder::InsertionGuard g(builder);
|
|
builder.setInsertionPoint(op);
|
|
|
|
// Clone tensor::PadOp so that the existing op can be replaced more easily.
|
|
newPadOp = cast<tensor::PadOp>(builder.clone(*op.getOperation()));
|
|
// Get rank and tile sizes.
|
|
int64_t rank = op.getResultType().getRank();
|
|
SmallVector<Value> tileSizes =
|
|
options.tileSizeComputationFunction(builder, op);
|
|
// Normalize untiled padding dimensions to 0.
|
|
Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
|
|
tileSizes.append(rank - tileSizes.size(), zero);
|
|
// Compute lower and upper bounds of the loop nest.
|
|
TilingInterface tilingInterface =
|
|
dyn_cast<TilingInterface>(op.getOperation());
|
|
SmallVector<Range> ranges = tilingInterface.getIterationDomain(builder);
|
|
SmallVector<Value> lbs, dims, allDims, steps;
|
|
for (int64_t i = 0; i < rank; ++i) {
|
|
allDims.push_back(ranges[i].size);
|
|
if (!isZero(tileSizes[i])) {
|
|
lbs.push_back(ranges[i].offset);
|
|
dims.push_back(ranges[i].size);
|
|
steps.push_back(tileSizes[i]);
|
|
}
|
|
}
|
|
// Generate loop nest: One loop per dimension.
|
|
SmallVector<Value> destOperand =
|
|
tilingInterface.getDestinationOperands(builder);
|
|
loopNest = mlir::scf::buildLoopNest(
|
|
builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(destOperand),
|
|
[&](OpBuilder &b, Location loc, ValueRange localIvs,
|
|
ValueRange iterArgs) -> scf::ValueVector {
|
|
// Compute offsets and sizes of ExtractSliceOp.
|
|
SmallVector<Value> offsets =
|
|
computeTileOffsets(b, loc, localIvs, tileSizes);
|
|
SmallVector<Value> sizes =
|
|
computeTileSizes(b, loc, localIvs, tileSizes, allDims);
|
|
// Create ExtractSliceOp: Extract a tile from the tensor::PadOp.
|
|
// Note: The tensor::PadOp is located outside of the loop nest. It is
|
|
// later moved inside by ExtractSliceOfPadTensorSwapPattern.
|
|
auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext());
|
|
Value tiledOutput = makeTiledShape(
|
|
b, loc, newPadOp->getResult(0), tileSizes, map, offsets, allDims,
|
|
sizes, /*omitPartialTileCheck=*/false);
|
|
auto sliceOp = tiledOutput.getDefiningOp<tensor::ExtractSliceOp>();
|
|
assert(sliceOp && "expected ExtractSliceOp");
|
|
// Insert the tile into the output tensor.
|
|
// TODO: Propagate RewriterBase everywhere.
|
|
IRRewriter rewriter(b);
|
|
Value yieldValue =
|
|
insertSliceIntoTensor(rewriter, loc, sliceOp, sliceOp, iterArgs[0]);
|
|
return scf::ValueVector({yieldValue});
|
|
});
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
struct PadOpTilingPattern : public OpRewritePattern<tensor::PadOp> {
|
|
PadOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt)
|
|
: OpRewritePattern<tensor::PadOp>(ctx), options(std::move(opt)) {}
|
|
|
|
LogicalResult matchAndRewrite(tensor::PadOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (op->hasAttr(LinalgTransforms::kLinalgTransformMarker))
|
|
return failure();
|
|
tensor::PadOp newPadOp;
|
|
LoopNest loopNest;
|
|
if (failed(tilePadOp(rewriter, op, newPadOp, loopNest, options)))
|
|
return failure();
|
|
newPadOp->setAttr(LinalgTransforms::kLinalgTransformMarker,
|
|
rewriter.getUnitAttr());
|
|
// Replace all uses of the original tensor::PadOp.
|
|
rewriter.replaceOp(op, loopNest.getResults()[0]);
|
|
return success();
|
|
}
|
|
|
|
LinalgTilingOptions options;
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
/// Helper classes for type list expansion.
|
|
template <typename... OpTypes>
|
|
class CanonicalizationPatternList;
|
|
|
|
template <>
|
|
class CanonicalizationPatternList<> {
|
|
public:
|
|
static void insert(RewritePatternSet &patterns) {}
|
|
};
|
|
|
|
template <typename OpTy, typename... OpTypes>
|
|
class CanonicalizationPatternList<OpTy, OpTypes...> {
|
|
public:
|
|
static void insert(RewritePatternSet &patterns) {
|
|
OpTy::getCanonicalizationPatterns(patterns, patterns.getContext());
|
|
CanonicalizationPatternList<OpTypes...>::insert(patterns);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
RewritePatternSet
|
|
mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
|
|
RewritePatternSet patterns(ctx);
|
|
populateLinalgTilingCanonicalizationPatterns(patterns);
|
|
return patterns;
|
|
}
|
|
|
|
void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
|
|
RewritePatternSet &patterns) {
|
|
auto *ctx = patterns.getContext();
|
|
AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
|
|
AffineForOp::getCanonicalizationPatterns(patterns, ctx);
|
|
AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
|
|
AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
|
|
arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
|
|
memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
|
|
scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx);
|
|
|
|
InitTensorOp::getCanonicalizationPatterns(patterns, ctx);
|
|
tensor::PadOp::getCanonicalizationPatterns(patterns, ctx);
|
|
ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns);
|
|
|
|
CanonicalizationPatternList<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
>::insert(patterns);
|
|
}
|
|
|
|
/// Populate the given list with patterns that apply Linalg tiling.
|
|
static void insertTilingPatterns(RewritePatternSet &patterns,
|
|
const LinalgTilingOptions &options) {
|
|
auto *ctx = patterns.getContext();
|
|
LinalgTransformationFilter f(ArrayRef<StringAttr>{},
|
|
StringAttr::get(ctx, "tiled"));
|
|
TilingPatterns<GenericOp,
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
|
|
>::insert(patterns, options, f);
|
|
patterns.add<PadOpTilingPattern>(ctx, options);
|
|
}
|
|
|
|
void mlir::linalg::populatePadTensorTilingPatterns(
|
|
RewritePatternSet &patterns, const LinalgTilingOptions &options) {
|
|
auto *ctx = patterns.getContext();
|
|
patterns.add<PadOpTilingPattern>(ctx, options);
|
|
}
|
|
|
|
static void applyExtractSliceOfPadTensorSwapPattern(func::FuncOp funcOp) {
|
|
MLIRContext *ctx = funcOp.getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
patterns.add<ExtractSliceOfPadTensorSwapPattern>(patterns.getContext());
|
|
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
|
|
(void)applyPatternsAndFoldGreedily(
|
|
funcOp, getLinalgTilingCanonicalizationPatterns(ctx));
|
|
}
|
|
|
|
namespace {
|
|
struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
|
|
LinalgTilingPass() = default;
|
|
LinalgTilingPass(ArrayRef<int64_t> tileSizes, LinalgTilingLoopType loopType) {
|
|
this->tileSizes = tileSizes;
|
|
this->loopType = "";
|
|
this->loopTypeEnum = loopType;
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
func::FuncOp funcOp = getOperation();
|
|
LinalgTilingLoopType type =
|
|
llvm::StringSwitch<LinalgTilingLoopType>(loopType)
|
|
.Case("for", LinalgTilingLoopType::Loops)
|
|
.Case("affine", LinalgTilingLoopType::AffineLoops)
|
|
.Case("parallel", LinalgTilingLoopType::ParallelLoops)
|
|
.Default(loopTypeEnum);
|
|
auto options =
|
|
LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(type);
|
|
MLIRContext *ctx = funcOp.getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
insertTilingPatterns(patterns, options);
|
|
scf::populateSCFForLoopCanonicalizationPatterns(patterns);
|
|
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
|
|
(void)applyPatternsAndFoldGreedily(
|
|
funcOp, getLinalgTilingCanonicalizationPatterns(ctx));
|
|
// Drop the marker.
|
|
funcOp.walk([](LinalgOp op) {
|
|
op->removeAttr(LinalgTransforms::kLinalgTransformMarker);
|
|
});
|
|
|
|
// Apply swap pattern after generating loop nest and running
|
|
// canonicalizations.
|
|
applyExtractSliceOfPadTensorSwapPattern(funcOp);
|
|
}
|
|
|
|
LinalgTilingLoopType loopTypeEnum;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes,
|
|
linalg::LinalgTilingLoopType loopType) {
|
|
return std::make_unique<LinalgTilingPass>(tileSizes, loopType);
|
|
}
|