Files
clang-p2996/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp
River Riddle 58ceae9561 [mlir:NFC] Remove the forward declaration of FuncOp in the mlir namespace
FuncOp has been moved to the `func` namespace for a little over a month, the
using directive can be dropped now.
2022-04-18 12:01:55 -07:00

713 lines
30 KiB
C++

//===- TestLinalgTransforms.cpp - Test Linalg transformation patterns -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements logic for testing Linalg transformations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
using namespace mlir;
using namespace mlir::linalg;
namespace {
struct TestLinalgTransforms
: public PassWrapper<TestLinalgTransforms, OperationPass<func::FuncOp>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLinalgTransforms)
TestLinalgTransforms() = default;
TestLinalgTransforms(const TestLinalgTransforms &pass) : PassWrapper(pass) {}
void getDependentDialects(DialectRegistry &registry) const override {
// clang-format off
registry.insert<AffineDialect,
memref::MemRefDialect,
scf::SCFDialect,
linalg::LinalgDialect,
vector::VectorDialect,
gpu::GPUDialect>();
// clang-format on
}
StringRef getArgument() const final {
return "test-linalg-transform-patterns";
}
StringRef getDescription() const final {
return "Test Linalg transformation patterns by applying them greedily.";
}
void runOnOperation() override;
Option<bool> testPatterns{*this, "test-patterns",
llvm::cl::desc("Test a mixed set of patterns"),
llvm::cl::init(false)};
Option<bool> testMatmulToVectorPatterns1dTiling{
*this, "test-matmul-to-vector-patterns-tile-1d",
llvm::cl::desc(
"Test a fused pass that applies patterns from matmul to vectors via "
"1-d tiling"),
llvm::cl::init(false)};
Option<bool> testMatmulToVectorPatterns2dTiling{
*this, "test-matmul-to-vector-patterns-tile-2d",
llvm::cl::desc(
"Test a fused pass that applies patterns from matmul to vectors via "
"2-d tiling"),
llvm::cl::init(false)};
Option<bool> testPromotionOptions{*this, "test-linalg-promotion-options",
llvm::cl::desc("Test promotion options"),
llvm::cl::init(false)};
Option<bool> testTileAndDistributionOptions{
*this, "test-tile-and-distribute-options",
llvm::cl::desc("Test tile and distribute options"),
llvm::cl::init(false)};
Option<bool> testTileFuseAndDistributionOptions{
*this, "test-tile-fuse-and-distribute-options",
llvm::cl::desc("Test tile, fuse and distribute options"),
llvm::cl::init(false)};
Option<bool> testVectorTransferForwardingPatterns{
*this, "test-vector-transfer-forwarding-patterns",
llvm::cl::desc(
"Test a fused pass that forwards memref.copy to vector.transfer"),
llvm::cl::init(false)};
Option<bool> testGenericToVectorPattern{
*this, "test-linalg-to-vector-patterns",
llvm::cl::desc("Test a set of patterns that rewrite a linalg contraction "
"in vector.contract form"),
llvm::cl::init(false)};
Option<bool> testTilePattern{*this, "test-tile-pattern",
llvm::cl::desc("Test tile pattern"),
llvm::cl::init(false)};
Option<bool> testTileScalarizeDynamicDims{
*this, "test-tile-scalarize-dynamic-dims",
llvm::cl::desc("Test tiling of dynamic dims by 1"),
llvm::cl::init(false)};
Option<bool> testTransformPadTensor{
*this, "test-transform-pad-tensor",
llvm::cl::desc("Test transform pad tensor by copying with generic ops"),
llvm::cl::init(false)};
Option<bool> testGeneralizePadTensor{
*this, "test-generalize-pad-tensor",
llvm::cl::desc("Test transform pad tensor by copying with generic ops"),
llvm::cl::init(false)};
Option<bool> testSwapSubTensorPadTensor{
*this, "test-swap-subtensor-padtensor",
llvm::cl::desc("Test rewrite of subtensor(pad_tensor) into "
"pad_tensor(subtensor)"),
llvm::cl::init(false)};
Option<bool> testSplitReduction{
*this, "test-split-reduction",
llvm::cl::desc("Test split reduction transformation"),
llvm::cl::init(false)};
ListOption<int64_t> peeledLoops{
*this, "peeled-loops",
llvm::cl::desc("Loops to be peeled when test-tile-pattern"),
llvm::cl::ZeroOrMore};
ListOption<int64_t> tileSizes{
*this, "tile-sizes",
llvm::cl::desc("Linalg tile sizes for test-tile-pattern"),
llvm::cl::ZeroOrMore};
Option<bool> skipPartial{
*this, "skip-partial",
llvm::cl::desc("Skip loops inside partial iterations during peeling"),
llvm::cl::init(false)};
Option<std::string> loopType{
*this, "loop-type",
llvm::cl::desc("Specify the type of loops to generate: for, parallel or "
"tiled_loop"),
llvm::cl::init("for")};
Option<bool> testBubbleUpExtractSliceOpPattern{
*this, "test-bubble-up-extract-slice-op-pattern",
llvm::cl::desc("Test rewrite of linalgOp + extract_slice into "
"extract_slice + linalgOp"),
llvm::cl::init(false)};
};
} // namespace
static void applyPatterns(func::FuncOp funcOp) {
MLIRContext *ctx = funcOp.getContext();
RewritePatternSet patterns(ctx);
//===--------------------------------------------------------------------===//
// Linalg tiling patterns.
//===--------------------------------------------------------------------===//
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions().setTileSizes({2000, 3000, 4000}),
LinalgTransformationFilter(StringAttr::get(ctx, "MEM"),
StringAttr::get(ctx, "L3")));
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions().setTileSizes({200, 300, 400}),
LinalgTransformationFilter(StringAttr::get(ctx, "L3"),
StringAttr::get(ctx, "L2")));
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions().setTileSizes({20, 30, 40}),
LinalgTransformationFilter(StringAttr::get(ctx, "L2"),
StringAttr::get(ctx, "L1")));
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions().setTileSizes({2, 3, 4}),
LinalgTransformationFilter(StringAttr::get(ctx, "L1"),
StringAttr::get(ctx, "REG")));
patterns.add<LinalgTilingPattern>(
MatvecOp::getOperationName(), ctx,
LinalgTilingOptions().setTileSizes({5, 6}).setLoopType(
LinalgTilingLoopType::ParallelLoops),
LinalgTransformationFilter(ArrayRef<StringAttr>{},
StringAttr::get(ctx, "L1")));
patterns.add<LinalgTilingPattern>(
DotOp::getOperationName(), ctx, LinalgTilingOptions().setTileSizes(8000),
LinalgTransformationFilter(
ArrayRef<StringAttr>{StringAttr::get(ctx, "MEM"),
StringAttr::get(ctx, "L3"),
StringAttr::get(ctx, "L2")},
StringAttr::get(ctx, "REG")));
//===--------------------------------------------------------------------===//
// Linalg tiling and permutation patterns.
//===--------------------------------------------------------------------===//
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions()
.setTileSizes({2000, 3000, 4000})
.setInterchange({1, 2, 0}),
LinalgTransformationFilter(StringAttr::get(ctx, "__with_perm__"),
StringAttr::get(ctx, "L2__with_perm__")));
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions()
.setTileSizes({200, 300, 400})
.setInterchange({1, 0, 2}),
LinalgTransformationFilter(StringAttr::get(ctx, "L2__with_perm__"),
StringAttr::get(ctx, "L1__with_perm__")));
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions().setTileSizes({20, 30, 40}),
LinalgTransformationFilter(StringAttr::get(ctx, "L1__with_perm__"),
StringAttr::get(ctx, "REG__with_perm__")));
patterns.add<LinalgTilingPattern>(
MatvecOp::getOperationName(), ctx,
LinalgTilingOptions().setTileSizes({5, 6}).setInterchange({1, 0}),
LinalgTransformationFilter(StringAttr::get(ctx, "__with_perm__"),
StringAttr::get(ctx, "L1__with_perm__")));
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions()
.setTileSizes({16, 8, 4})
.setInterchange({1, 2, 0})
.setLoopType(LinalgTilingLoopType::ParallelLoops),
LinalgTransformationFilter(
StringAttr::get(ctx, "par__with_perm__"),
StringAttr::get(ctx, "after_par__with_perm__")));
//===--------------------------------------------------------------------===//
// Linalg to loops patterns.
//===--------------------------------------------------------------------===//
patterns.add<LinalgLoweringPattern<DotOp>>(
ctx,
/*loweringType=*/LinalgLoweringType::Loops,
LinalgTransformationFilter(StringAttr::get(ctx, "REG")));
//===--------------------------------------------------------------------===//
// Linalg distribution patterns.
//===--------------------------------------------------------------------===//
LinalgLoopDistributionOptions distributionOptions;
//===--------------------------------------------------------------------===//
// Linalg to vector contraction patterns.
//===--------------------------------------------------------------------===//
patterns.add<LinalgVectorizationPattern>(
ctx, LinalgTransformationFilter(StringAttr::get(ctx, "VECTORIZE"))
.addOpFilter<MatmulOp, FillOp, GenericOp>());
patterns.add<CopyVectorizationPattern>(ctx);
//===--------------------------------------------------------------------===//
// Linalg generic interchange pattern.
//===--------------------------------------------------------------------===//
patterns.add<GenericOpInterchangePattern>(
ctx,
/*interchangeVector=*/ArrayRef<unsigned>{1, 2, 0},
LinalgTransformationFilter(ArrayRef<StringAttr>{},
StringAttr::get(ctx, "PERMUTED")));
//===--------------------------------------------------------------------===//
// Linalg subview operands promotion.
//===--------------------------------------------------------------------===//
patterns.add<LinalgPromotionPattern<MatmulOp>>(
ctx, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
LinalgTransformationFilter(StringAttr::get(ctx, "_promote_views_"),
StringAttr::get(ctx, "_views_promoted_")));
patterns.add<LinalgPromotionPattern<MatmulOp>>(
ctx,
LinalgPromotionOptions()
.setOperandsToPromote({0})
.setUseFullTileBuffersByDefault(true),
LinalgTransformationFilter(
StringAttr::get(ctx, "_promote_first_view_"),
StringAttr::get(ctx, "_first_view_promoted_")));
patterns.add<LinalgPromotionPattern<FillOp>>(
ctx,
LinalgPromotionOptions()
.setOperandsToPromote({1})
.setUseFullTileBuffers({false, true})
.setAlignment(32),
LinalgTransformationFilter(
StringAttr::get(ctx, "_promote_views_aligned_"),
StringAttr::get(ctx, "_views_aligned_promoted_")));
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
// Drop the marker.
funcOp.walk([](LinalgOp op) {
op->removeAttr(LinalgTransforms::kLinalgTransformMarker);
});
}
static void fillL1TilingAndMatmulToVectorPatterns(
func::FuncOp funcOp, StringRef startMarker,
SmallVectorImpl<RewritePatternSet> &patternsVector) {
MLIRContext *ctx = funcOp.getContext();
patternsVector.emplace_back(
ctx, std::make_unique<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions()
.setTileSizes({8, 12, 16})
.setInterchange({1, 0, 2}),
LinalgTransformationFilter(StringAttr::get(ctx, startMarker),
StringAttr::get(ctx, "L1"))));
patternsVector.emplace_back(
ctx,
std::make_unique<LinalgPromotionPattern<MatmulOp>>(
ctx, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true),
LinalgTransformationFilter(StringAttr::get(ctx, "L1"),
StringAttr::get(ctx, "VEC"))));
patternsVector.emplace_back(
ctx, std::make_unique<LinalgVectorizationPattern>(
MatmulOp::getOperationName(), ctx, LinalgVectorizationOptions(),
LinalgTransformationFilter(StringAttr::get(ctx, "VEC"))));
patternsVector.back().add<LinalgVectorizationPattern>(
ctx, LinalgTransformationFilter().addOpFilter<FillOp>());
patternsVector.back().add<CopyVectorizationPattern>(ctx);
}
//===----------------------------------------------------------------------===//
// Test promotion callbacks
//===----------------------------------------------------------------------===//
// Allocation call back
static Optional<Value> allocCallBackFn(OpBuilder &b, memref::SubViewOp subView,
ArrayRef<Value> boundingSubViewSize,
DataLayout &layout) {
SmallVector<int64_t, 4> shape(boundingSubViewSize.size(), -1);
return b
.create<memref::AllocOp>(
subView.getLoc(),
MemRefType::get(shape, subView.getType().getElementType(),
/*affineMapComposition =*/{}, 3),
boundingSubViewSize)
.getResult();
}
// Deallocation callback
static LogicalResult deallocCallBackFn(OpBuilder &b, Value buffer) {
b.create<memref::DeallocOp>(buffer.getLoc(), buffer);
return success();
}
// Copy in call back
static LogicalResult copyCallBackFn(OpBuilder &b, Value src, Value dst,
bool isOutput) {
auto floatType = src.getType().cast<MemRefType>().getElementType();
if (!floatType.isa<FloatType>())
return failure();
if (!isOutput) {
Value cst = b.create<arith::ConstantOp>(src.getLoc(),
FloatAttr::get(floatType, 42.0));
b.create<FillOp>(src.getLoc(), cst, dst);
}
b.create<memref::CopyOp>(src.getLoc(), src, dst);
return success();
}
static void fillPromotionCallBackPatterns(MLIRContext *ctx,
RewritePatternSet &patterns) {
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions().setTileSizes({16, 16, 16}),
LinalgTransformationFilter(StringAttr::get(ctx, "START"),
StringAttr::get(ctx, "PROMOTE")));
patterns.add<LinalgPromotionPattern<MatmulOp>>(
ctx,
LinalgPromotionOptions()
.setOperandsToPromote({0, 2})
.setUseFullTileBuffers({false, false})
.setAllocationDeallocationFns(allocCallBackFn, deallocCallBackFn)
.setCopyInOutFns(
[](OpBuilder &b, Value src, Value dst) -> LogicalResult {
return copyCallBackFn(b, src, dst, false);
},
[](OpBuilder &b, Value src, Value dst) -> LogicalResult {
return copyCallBackFn(b, src, dst, true);
}),
LinalgTransformationFilter(StringAttr::get(ctx, "PROMOTE")));
}
template <typename IdOp, typename NProcsOp>
static SmallVector<ProcInfo, 2>
getGpuProcIds(OpBuilder &b, Location loc, ArrayRef<Range> parallelLoopRanges) {
size_t count = std::min<size_t>(3, parallelLoopRanges.size());
SmallVector<ProcInfo, 2> procInfo(count);
Type indexType = b.getIndexType();
for (unsigned i = 0; i < count; ++i) {
gpu::Dimension dim = *gpu::symbolizeDimension(i);
procInfo[count - 1 - i] = {b.create<IdOp>(loc, indexType, dim),
b.create<NProcsOp>(loc, indexType, dim)};
}
return procInfo;
}
static void fillTileAndDistributePatterns(MLIRContext *context,
RewritePatternSet &patterns) {
{
LinalgLoopDistributionOptions cyclicNprocsEqNiters;
cyclicNprocsEqNiters.distributionMethod.resize(
2, DistributionMethod::CyclicNumProcsEqNumIters);
cyclicNprocsEqNiters.procInfo =
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsEqNiters),
LinalgTransformationFilter(
StringAttr::get(context, "distribute1"),
StringAttr::get(context, "after_distribute1")));
}
{
LinalgLoopDistributionOptions cyclicNprocsGeNiters;
cyclicNprocsGeNiters.distributionMethod.resize(
2, DistributionMethod::CyclicNumProcsGeNumIters);
cyclicNprocsGeNiters.procInfo =
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsGeNiters),
LinalgTransformationFilter(
StringAttr::get(context, "distribute2"),
StringAttr::get(context, "after_distribute2")));
}
{
LinalgLoopDistributionOptions cyclicNprocsDefault;
cyclicNprocsDefault.distributionMethod.resize(2,
DistributionMethod::Cyclic);
cyclicNprocsDefault.procInfo =
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsDefault),
LinalgTransformationFilter(
StringAttr::get(context, "distribute3"),
StringAttr::get(context, "after_distribute3")));
}
{
LinalgLoopDistributionOptions cyclicNprocsMixed1;
cyclicNprocsMixed1.distributionMethod = {
DistributionMethod::CyclicNumProcsEqNumIters,
DistributionMethod::CyclicNumProcsGeNumIters};
cyclicNprocsMixed1.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsMixed1),
LinalgTransformationFilter(
StringAttr::get(context, "distribute4"),
StringAttr::get(context, "after_distribute4")));
}
{
LinalgLoopDistributionOptions cyclicNprocsMixed2;
cyclicNprocsMixed2.distributionMethod = {
DistributionMethod::CyclicNumProcsGeNumIters,
DistributionMethod::Cyclic};
cyclicNprocsMixed2.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsMixed2),
LinalgTransformationFilter(
StringAttr::get(context, "distribute5"),
StringAttr::get(context, "after_distribute5")));
}
{
LinalgLoopDistributionOptions cyclicNprocsMixed3;
cyclicNprocsMixed3.distributionMethod = {
DistributionMethod::Cyclic,
DistributionMethod::CyclicNumProcsEqNumIters};
cyclicNprocsMixed3.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::ParallelLoops)
.setDistributionOptions(cyclicNprocsMixed3),
LinalgTransformationFilter(
StringAttr::get(context, "distribute6"),
StringAttr::get(context, "after_distribute6")));
}
{
LinalgLoopDistributionOptions cyclicNprocsEqNiters;
cyclicNprocsEqNiters.distributionMethod.resize(2,
DistributionMethod::Cyclic);
cyclicNprocsEqNiters.procInfo =
getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.add<LinalgTilingPattern>(
MatmulOp::getOperationName(), context,
LinalgTilingOptions()
.setTileSizes({8, 8, 4})
.setLoopType(LinalgTilingLoopType::Loops)
.setDistributionOptions(cyclicNprocsEqNiters),
LinalgTransformationFilter(
StringAttr::get(context, "tensors_distribute1"),
StringAttr::get(context, "tensors_after_distribute1")));
}
}
static void fillTileFuseAndDistributePatterns(MLIRContext *context,
RewritePatternSet &patterns) {
LinalgLoopDistributionOptions cyclicNprocsEqNiters;
cyclicNprocsEqNiters.distributionMethod.resize(2, DistributionMethod::Cyclic);
cyclicNprocsEqNiters.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>;
patterns.add<LinalgTileAndFuseTensorOpsPattern>(
MatmulOp::getOperationName(), context,
LinalgTilingAndFusionOptions()
.setTileSizes({8, 8, 4})
.setDistributionOptions(cyclicNprocsEqNiters),
LinalgTransformationFilter(
StringAttr::get(context, "tensors_fuse_distribute1"),
StringAttr::get(context, "tensors_after_fuse_distribute1")));
}
static void
applyMatmulToVectorPatterns(func::FuncOp funcOp,
bool testMatmulToVectorPatterns1dTiling,
bool testMatmulToVectorPatterns2dTiling) {
MLIRContext *ctx = funcOp.getContext();
SmallVector<RewritePatternSet, 4> stage1Patterns;
if (testMatmulToVectorPatterns1dTiling) {
fillL1TilingAndMatmulToVectorPatterns(funcOp, "START", stage1Patterns);
} else if (testMatmulToVectorPatterns2dTiling) {
stage1Patterns.emplace_back(
ctx, std::make_unique<LinalgTilingPattern>(
MatmulOp::getOperationName(), ctx,
LinalgTilingOptions()
.setTileSizes({768, 264, 768})
.setInterchange({1, 2, 0}),
LinalgTransformationFilter(StringAttr::get(ctx, "START"),
StringAttr::get(ctx, "L2"))));
fillL1TilingAndMatmulToVectorPatterns(funcOp, "L2", stage1Patterns);
}
{
// Canonicalization patterns
RewritePatternSet canonicalizationPatterns(funcOp.getContext());
vector::populateVectorTransferPermutationMapLoweringPatterns(
canonicalizationPatterns);
vector::populateVectorReductionToContractPatterns(canonicalizationPatterns);
stage1Patterns.push_back(std::move(canonicalizationPatterns));
}
SmallVector<FrozenRewritePatternSet, 4> frozenStage1Patterns;
llvm::move(stage1Patterns, std::back_inserter(frozenStage1Patterns));
FrozenRewritePatternSet stage2Patterns =
getLinalgTilingCanonicalizationPatterns(ctx);
(void)applyStagedPatterns(funcOp, frozenStage1Patterns, stage2Patterns);
}
static void applyVectorTransferForwardingPatterns(func::FuncOp funcOp) {
RewritePatternSet forwardPattern(funcOp.getContext());
forwardPattern.add<LinalgCopyVTRForwardingPattern>(funcOp.getContext());
forwardPattern.add<LinalgCopyVTWForwardingPattern>(funcOp.getContext());
(void)applyPatternsAndFoldGreedily(funcOp, std::move(forwardPattern));
}
static void applyLinalgToVectorPatterns(func::FuncOp funcOp) {
RewritePatternSet patterns(funcOp.getContext());
auto *ctx = funcOp.getContext();
patterns.add<LinalgVectorizationPattern>(
ctx, LinalgTransformationFilter()
.addOpFilter<ContractionOpInterface, FillOp, GenericOp>());
patterns.add<CopyVectorizationPattern>(ctx);
populatePadOpVectorizationPatterns(patterns);
populateConvolutionVectorizationPatterns(patterns);
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
static void applyPadTensorToGenericPatterns(func::FuncOp funcOp) {
RewritePatternSet patterns(funcOp.getContext());
patterns.add<PadOpTransformationPattern>(funcOp.getContext());
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
static void applyGeneralizePadTensorPatterns(func::FuncOp funcOp) {
RewritePatternSet patterns(funcOp.getContext());
patterns.add<GeneralizePadOpPattern>(funcOp.getContext());
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
static void applyExtractSliceOfPadTensorSwapPattern(func::FuncOp funcOp) {
RewritePatternSet patterns(funcOp.getContext());
patterns.add<ExtractSliceOfPadTensorSwapPattern>(funcOp.getContext());
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
static void applyTilePattern(func::FuncOp funcOp, const std::string &loopType,
ArrayRef<int64_t> tileSizes,
ArrayRef<int64_t> peeledLoops,
bool scalarizeDynamicDims) {
MLIRContext *context = funcOp.getContext();
RewritePatternSet tilingPattern(context);
LinalgTilingLoopType type =
llvm::StringSwitch<LinalgTilingLoopType>(loopType)
.Case("for", LinalgTilingLoopType::Loops)
.Case("affine", LinalgTilingLoopType::AffineLoops)
.Case("parallel", LinalgTilingLoopType::ParallelLoops);
auto linalgTilingOptions = linalg::LinalgTilingOptions()
.setPeeledLoops(peeledLoops)
.setLoopType(type);
if (scalarizeDynamicDims) {
linalgTilingOptions.scalarizeDynamicDims();
assert(tileSizes.empty() &&
"tileSizes and scalarizeDynamicDims is mutually exclusive");
} else {
linalgTilingOptions.setTileSizes(tileSizes);
}
linalg::LinalgTransformationFilter f(StringAttr::get(context, "tile"));
TilingPatterns<linalg::MatmulOp, linalg::GenericOp>::insert(
tilingPattern, linalgTilingOptions, f);
(void)applyPatternsAndFoldGreedily(funcOp, std::move(tilingPattern));
}
static void applySplitReduction(func::FuncOp funcOp) {
RewritePatternSet patterns(funcOp.getContext());
linalg::populateSplitReductionPattern(
patterns,
[](LinalgOp op) {
unsigned insertDimIndex = op.getNumLoops() - 1;
return std::make_pair(4, insertDimIndex);
},
LinalgTransformationFilter(
ArrayRef<StringAttr>{},
StringAttr::get(funcOp.getContext(), "SPLIT")));
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
static void applyBubbleUpExtractSliceOpPattern(func::FuncOp funcOp) {
RewritePatternSet patterns(funcOp.getContext());
populateBubbleUpExtractSliceOpPatterns(patterns);
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
/// Apply transformations specified as patterns.
void TestLinalgTransforms::runOnOperation() {
auto lambda = [&](void *) {
getOperation().walk([](LinalgOp op) {
op->removeAttr(LinalgTransforms::kLinalgTransformMarker);
});
};
std::unique_ptr<void, decltype(lambda)> cleanupGuard{(void *)1, lambda};
if (testPromotionOptions) {
RewritePatternSet patterns(&getContext());
fillPromotionCallBackPatterns(&getContext(), patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
return;
}
if (testTileAndDistributionOptions) {
RewritePatternSet patterns(&getContext());
fillTileAndDistributePatterns(&getContext(), patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
return;
}
if (testTileFuseAndDistributionOptions) {
RewritePatternSet patterns(&getContext());
fillTileFuseAndDistributePatterns(&getContext(), patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
return;
}
if (testPatterns)
return applyPatterns(getOperation());
if (testMatmulToVectorPatterns1dTiling || testMatmulToVectorPatterns2dTiling)
return applyMatmulToVectorPatterns(getOperation(),
testMatmulToVectorPatterns1dTiling,
testMatmulToVectorPatterns2dTiling);
if (testVectorTransferForwardingPatterns)
return applyVectorTransferForwardingPatterns(getOperation());
if (testGenericToVectorPattern)
return applyLinalgToVectorPatterns(getOperation());
if (testTransformPadTensor)
return applyPadTensorToGenericPatterns(getOperation());
if (testGeneralizePadTensor)
return applyGeneralizePadTensorPatterns(getOperation());
if (testSwapSubTensorPadTensor)
return applyExtractSliceOfPadTensorSwapPattern(getOperation());
if (testTilePattern)
return applyTilePattern(getOperation(), loopType, tileSizes, peeledLoops,
/*scalarizeDynamicDims=*/false);
if (testTileScalarizeDynamicDims)
return applyTilePattern(getOperation(), loopType, tileSizes,
/*peeledLoops=*/{}, /*scalarizeDynamicDims=*/true);
if (testSplitReduction)
return applySplitReduction(getOperation());
if (testBubbleUpExtractSliceOpPattern)
return applyBubbleUpExtractSliceOpPattern(getOperation());
}
namespace mlir {
namespace test {
void registerTestLinalgTransforms() {
PassRegistration<TestLinalgTransforms>();
}
} // namespace test
} // namespace mlir