To get proper wrap-around behavior for the various kind parameter values of the optional COUNT= and COUNT_MAX= dummy arguments to the intrinsic subroutine SYSTEM_CLOCK, add an extra argument to the APIs for lowering to pass the integer kind of the actual argument. Avoid confusion by requiring that both actual arguments have the same kind when both are present. The results of the runtime functions remain std::int64_t and lowering should still convert them before storing to the actual argument variables. Rework the implementation a bit to accomodate the dynamic specification of the kind parameter, and to clean up some coding issues with preprocessing and templates. Use the kind of the COUNT=/COUNT_MAX= actual arguments to determine the clock's resolution, where possible, in conformance with other Fortran implementations. Differential Revision: https://reviews.llvm.org/D111281
380 lines
15 KiB
C++
380 lines
15 KiB
C++
//===-- runtime/time-intrinsic.cpp ----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Implements time-related intrinsic subroutines.
|
|
|
|
#include "flang/Runtime/time-intrinsic.h"
|
|
#include "terminator.h"
|
|
#include "tools.h"
|
|
#include "flang/Runtime/cpp-type.h"
|
|
#include "flang/Runtime/descriptor.h"
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#ifndef _WIN32
|
|
#include <sys/time.h> // gettimeofday
|
|
#endif
|
|
|
|
// CPU_TIME (Fortran 2018 16.9.57)
|
|
// SYSTEM_CLOCK (Fortran 2018 16.9.168)
|
|
//
|
|
// We can use std::clock() from the <ctime> header as a fallback implementation
|
|
// that should be available everywhere. This may not provide the best resolution
|
|
// and is particularly troublesome on (some?) POSIX systems where CLOCKS_PER_SEC
|
|
// is defined as 10^6 regardless of the actual precision of std::clock().
|
|
// Therefore, we will usually prefer platform-specific alternatives when they
|
|
// are available.
|
|
//
|
|
// We can use SFINAE to choose a platform-specific alternative. To do so, we
|
|
// introduce a helper function template, whose overload set will contain only
|
|
// implementations relying on interfaces which are actually available. Each
|
|
// overload will have a dummy parameter whose type indicates whether or not it
|
|
// should be preferred. Any other parameters required for SFINAE should have
|
|
// default values provided.
|
|
namespace {
|
|
// Types for the dummy parameter indicating the priority of a given overload.
|
|
// We will invoke our helper with an integer literal argument, so the overload
|
|
// with the highest priority should have the type int.
|
|
using fallback_implementation = double;
|
|
using preferred_implementation = int;
|
|
|
|
// This is the fallback implementation, which should work everywhere.
|
|
template <typename Unused = void> double GetCpuTime(fallback_implementation) {
|
|
std::clock_t timestamp{std::clock()};
|
|
if (timestamp != static_cast<std::clock_t>(-1)) {
|
|
return static_cast<double>(timestamp) / CLOCKS_PER_SEC;
|
|
}
|
|
// Return some negative value to represent failure.
|
|
return -1.0;
|
|
}
|
|
|
|
#if defined CLOCK_THREAD_CPUTIME_ID
|
|
#define CLOCKID CLOCK_THREAD_CPUTIME_ID
|
|
#elif defined CLOCK_PROCESS_CPUTIME_ID
|
|
#define CLOCKID CLOCK_PROCESS_CPUTIME_ID
|
|
#elif defined CLOCK_MONOTONIC
|
|
#define CLOCKID CLOCK_MONOTONIC
|
|
#else
|
|
#define CLOCKID CLOCK_REALTIME
|
|
#endif
|
|
|
|
// POSIX implementation using clock_gettime. This is only enabled where
|
|
// clock_gettime is available.
|
|
template <typename T = int, typename U = struct timespec>
|
|
double GetCpuTime(preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
struct timespec tspec;
|
|
if (clock_gettime(CLOCKID, &tspec) == 0) {
|
|
return tspec.tv_nsec * 1.0e-9 + tspec.tv_sec;
|
|
}
|
|
// Return some negative value to represent failure.
|
|
return -1.0;
|
|
}
|
|
|
|
using count_t = std::int64_t;
|
|
using unsigned_count_t = std::uint64_t;
|
|
|
|
// Computes HUGE(INT(0,kind)) as an unsigned integer value.
|
|
static constexpr inline unsigned_count_t GetHUGE(int kind) {
|
|
if (kind > 8) {
|
|
kind = 8;
|
|
}
|
|
return (unsigned_count_t{1} << ((8 * kind) - 1)) - 1;
|
|
}
|
|
|
|
// This is the fallback implementation, which should work everywhere. Note that
|
|
// in general we can't recover after std::clock has reached its maximum value.
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCount(int kind, fallback_implementation) {
|
|
std::clock_t timestamp{std::clock()};
|
|
if (timestamp == static_cast<std::clock_t>(-1)) {
|
|
// Return -HUGE(COUNT) to represent failure.
|
|
return -static_cast<count_t>(GetHUGE(kind));
|
|
}
|
|
// Convert the timestamp to std::uint64_t with wrap-around. The timestamp is
|
|
// most likely a floating-point value (since C'11), so compute the modulus
|
|
// carefully when one is required.
|
|
constexpr auto maxUnsignedCount{std::numeric_limits<unsigned_count_t>::max()};
|
|
if constexpr (std::numeric_limits<std::clock_t>::max() > maxUnsignedCount) {
|
|
timestamp -= maxUnsignedCount * std::floor(timestamp / maxUnsignedCount);
|
|
}
|
|
unsigned_count_t unsignedCount{static_cast<unsigned_count_t>(timestamp)};
|
|
// Return the modulus of the unsigned integral count with HUGE(COUNT)+1.
|
|
// The result is a signed integer but never negative.
|
|
return static_cast<count_t>(unsignedCount % (GetHUGE(kind) + 1));
|
|
}
|
|
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCountRate(int kind, fallback_implementation) {
|
|
return CLOCKS_PER_SEC;
|
|
}
|
|
|
|
template <typename Unused = void>
|
|
count_t GetSystemClockCountMax(int kind, fallback_implementation) {
|
|
constexpr auto max_clock_t{std::numeric_limits<std::clock_t>::max()};
|
|
unsigned_count_t maxCount{GetHUGE(kind)};
|
|
return max_clock_t <= maxCount ? static_cast<count_t>(max_clock_t)
|
|
: static_cast<count_t>(maxCount);
|
|
}
|
|
|
|
// POSIX implementation using clock_gettime. This is only enabled where
|
|
// clock_gettime is available. Use a millisecond CLOCK_RATE for kinds
|
|
// of COUNT/COUNT_MAX less than 64 bits, and nanoseconds otherwise.
|
|
constexpr unsigned_count_t MILLIS_PER_SEC{1'000u};
|
|
constexpr unsigned_count_t NSECS_PER_SEC{1'000'000'000u};
|
|
constexpr unsigned_count_t maxSecs{
|
|
std::numeric_limits<unsigned_count_t>::max() / NSECS_PER_SEC};
|
|
|
|
// Use a millisecond clock rate for smaller COUNT= kinds.
|
|
static inline unsigned_count_t ScaleResult(unsigned_count_t nsecs, int kind) {
|
|
return kind >= 8 ? nsecs : nsecs / (NSECS_PER_SEC / MILLIS_PER_SEC);
|
|
}
|
|
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCount(int kind, preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
struct timespec tspec;
|
|
if (clock_gettime(CLOCKID, &tspec) != 0) {
|
|
// Return -HUGE() to represent failure.
|
|
return -GetHUGE(kind);
|
|
}
|
|
// Wrap around to avoid overflows.
|
|
unsigned_count_t wrappedSecs{
|
|
static_cast<unsigned_count_t>(tspec.tv_sec) % maxSecs};
|
|
unsigned_count_t unsignedNsecs{static_cast<unsigned_count_t>(tspec.tv_nsec) +
|
|
wrappedSecs * NSECS_PER_SEC};
|
|
unsigned_count_t unsignedCount{ScaleResult(unsignedNsecs, kind)};
|
|
// Return the modulus of the unsigned integral count with HUGE(COUNT)+1.
|
|
// The result is a signed integer but never negative.
|
|
return static_cast<count_t>(unsignedCount % (GetHUGE(kind) + 1));
|
|
}
|
|
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCountRate(int kind, preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
return kind >= 8 ? static_cast<count_t>(NSECS_PER_SEC) : MILLIS_PER_SEC;
|
|
}
|
|
|
|
template <typename T = int, typename U = struct timespec>
|
|
count_t GetSystemClockCountMax(int kind, preferred_implementation,
|
|
// We need some dummy parameters to pass to decltype(clock_gettime).
|
|
T ClockId = 0, U *Timespec = nullptr,
|
|
decltype(clock_gettime(ClockId, Timespec)) *Enabled = nullptr) {
|
|
unsigned_count_t maxClockNsec{maxSecs * NSECS_PER_SEC + NSECS_PER_SEC - 1};
|
|
unsigned_count_t maxClock{ScaleResult(maxClockNsec, kind)};
|
|
unsigned_count_t maxCount{GetHUGE(kind)};
|
|
return static_cast<count_t>(maxClock <= maxCount ? maxClock : maxCount);
|
|
}
|
|
|
|
// DATE_AND_TIME (Fortran 2018 16.9.59)
|
|
|
|
// Helper to store integer value in result[at].
|
|
template <int KIND> struct StoreIntegerAt {
|
|
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
|
|
std::int64_t value) const {
|
|
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>(at) = value;
|
|
}
|
|
};
|
|
|
|
// Helper to set an integer value to -HUGE
|
|
template <int KIND> struct StoreNegativeHugeAt {
|
|
void operator()(
|
|
const Fortran::runtime::Descriptor &result, std::size_t at) const {
|
|
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>(at) =
|
|
-std::numeric_limits<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>::max();
|
|
}
|
|
};
|
|
|
|
// Default implementation when date and time information is not available (set
|
|
// strings to blanks and values to -HUGE as defined by the standard).
|
|
static void DateAndTimeUnavailable(Fortran::runtime::Terminator &terminator,
|
|
char *date, std::size_t dateChars, char *time, std::size_t timeChars,
|
|
char *zone, std::size_t zoneChars,
|
|
const Fortran::runtime::Descriptor *values) {
|
|
if (date) {
|
|
std::memset(date, static_cast<int>(' '), dateChars);
|
|
}
|
|
if (time) {
|
|
std::memset(time, static_cast<int>(' '), timeChars);
|
|
}
|
|
if (zone) {
|
|
std::memset(zone, static_cast<int>(' '), zoneChars);
|
|
}
|
|
if (values) {
|
|
auto typeCode{values->type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(terminator,
|
|
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
|
|
typeCode &&
|
|
typeCode->first == Fortran::common::TypeCategory::Integer);
|
|
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
|
|
// KIND 1 here.
|
|
int kind{typeCode->second};
|
|
RUNTIME_CHECK(terminator, kind != 1);
|
|
for (std::size_t i = 0; i < 8; ++i) {
|
|
Fortran::runtime::ApplyIntegerKind<StoreNegativeHugeAt, void>(
|
|
kind, terminator, *values, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
|
|
// SFINAE helper to return the struct tm.tm_gmtoff which is not a POSIX standard
|
|
// field.
|
|
template <int KIND, typename TM = struct tm>
|
|
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
|
|
GetGmtOffset(const TM &tm, preferred_implementation,
|
|
decltype(tm.tm_gmtoff) *Enabled = nullptr) {
|
|
// Returns the GMT offset in minutes.
|
|
return tm.tm_gmtoff / 60;
|
|
}
|
|
template <int KIND, typename TM = struct tm>
|
|
Fortran::runtime::CppTypeFor<Fortran::common::TypeCategory::Integer, KIND>
|
|
GetGmtOffset(const TM &tm, fallback_implementation) {
|
|
// tm.tm_gmtoff is not available, there may be platform dependent alternatives
|
|
// (such as using timezone from <time.h> when available), but so far just
|
|
// return -HUGE to report that this information is not available.
|
|
return -std::numeric_limits<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>::max();
|
|
}
|
|
template <typename TM = struct tm> struct GmtOffsetHelper {
|
|
template <int KIND> struct StoreGmtOffset {
|
|
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
|
|
TM &tm) const {
|
|
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
|
|
Fortran::common::TypeCategory::Integer, KIND>>(at) =
|
|
GetGmtOffset<KIND>(tm, 0);
|
|
}
|
|
};
|
|
};
|
|
|
|
// Dispatch to posix implementation where gettimeofday and localtime_r are
|
|
// available.
|
|
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
|
|
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
|
|
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
|
|
|
|
timeval t;
|
|
if (gettimeofday(&t, nullptr) != 0) {
|
|
DateAndTimeUnavailable(
|
|
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
|
|
return;
|
|
}
|
|
time_t timer{t.tv_sec};
|
|
tm localTime;
|
|
localtime_r(&timer, &localTime);
|
|
std::intmax_t ms{t.tv_usec / 1000};
|
|
|
|
static constexpr std::size_t buffSize{16};
|
|
char buffer[buffSize];
|
|
auto copyBufferAndPad{
|
|
[&](char *dest, std::size_t destChars, std::size_t len) {
|
|
auto copyLen{std::min(len, destChars)};
|
|
std::memcpy(dest, buffer, copyLen);
|
|
for (auto i{copyLen}; i < destChars; ++i) {
|
|
dest[i] = ' ';
|
|
}
|
|
}};
|
|
if (date) {
|
|
auto len = std::strftime(buffer, buffSize, "%Y%m%d", &localTime);
|
|
copyBufferAndPad(date, dateChars, len);
|
|
}
|
|
if (time) {
|
|
auto len{std::snprintf(buffer, buffSize, "%02d%02d%02d.%03jd",
|
|
localTime.tm_hour, localTime.tm_min, localTime.tm_sec, ms)};
|
|
copyBufferAndPad(time, timeChars, len);
|
|
}
|
|
if (zone) {
|
|
// Note: this may leave the buffer empty on many platforms. Classic flang
|
|
// has a much more complex way of doing this (see __io_timezone in classic
|
|
// flang).
|
|
auto len{std::strftime(buffer, buffSize, "%z", &localTime)};
|
|
copyBufferAndPad(zone, zoneChars, len);
|
|
}
|
|
if (values) {
|
|
auto typeCode{values->type().GetCategoryAndKind()};
|
|
RUNTIME_CHECK(terminator,
|
|
values->rank() == 1 && values->GetDimension(0).Extent() >= 8 &&
|
|
typeCode &&
|
|
typeCode->first == Fortran::common::TypeCategory::Integer);
|
|
// DATE_AND_TIME values argument must have decimal range > 4. Do not accept
|
|
// KIND 1 here.
|
|
int kind{typeCode->second};
|
|
RUNTIME_CHECK(terminator, kind != 1);
|
|
auto storeIntegerAt = [&](std::size_t atIndex, std::int64_t value) {
|
|
Fortran::runtime::ApplyIntegerKind<StoreIntegerAt, void>(
|
|
kind, terminator, *values, atIndex, value);
|
|
};
|
|
storeIntegerAt(0, localTime.tm_year + 1900);
|
|
storeIntegerAt(1, localTime.tm_mon + 1);
|
|
storeIntegerAt(2, localTime.tm_mday);
|
|
Fortran::runtime::ApplyIntegerKind<
|
|
GmtOffsetHelper<struct tm>::StoreGmtOffset, void>(
|
|
kind, terminator, *values, 3, localTime);
|
|
storeIntegerAt(4, localTime.tm_hour);
|
|
storeIntegerAt(5, localTime.tm_min);
|
|
storeIntegerAt(6, localTime.tm_sec);
|
|
storeIntegerAt(7, ms);
|
|
}
|
|
}
|
|
|
|
#else
|
|
// Fallback implementation where gettimeofday or localtime_r are not both
|
|
// available (e.g. windows).
|
|
static void GetDateAndTime(Fortran::runtime::Terminator &terminator, char *date,
|
|
std::size_t dateChars, char *time, std::size_t timeChars, char *zone,
|
|
std::size_t zoneChars, const Fortran::runtime::Descriptor *values) {
|
|
// TODO: An actual implementation for non Posix system should be added.
|
|
// So far, implement as if the date and time is not available on those
|
|
// platforms.
|
|
DateAndTimeUnavailable(
|
|
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
|
|
}
|
|
#endif
|
|
} // namespace
|
|
|
|
namespace Fortran::runtime {
|
|
extern "C" {
|
|
|
|
double RTNAME(CpuTime)() { return GetCpuTime(0); }
|
|
|
|
std::int64_t RTNAME(SystemClockCount)(int kind) {
|
|
return GetSystemClockCount(kind, 0);
|
|
}
|
|
|
|
std::int64_t RTNAME(SystemClockCountRate)(int kind) {
|
|
return GetSystemClockCountRate(kind, 0);
|
|
}
|
|
|
|
std::int64_t RTNAME(SystemClockCountMax)(int kind) {
|
|
return GetSystemClockCountMax(kind, 0);
|
|
}
|
|
|
|
void RTNAME(DateAndTime)(char *date, std::size_t dateChars, char *time,
|
|
std::size_t timeChars, char *zone, std::size_t zoneChars,
|
|
const char *source, int line, const Descriptor *values) {
|
|
Fortran::runtime::Terminator terminator{source, line};
|
|
return GetDateAndTime(
|
|
terminator, date, dateChars, time, timeChars, zone, zoneChars, values);
|
|
}
|
|
|
|
} // extern "C"
|
|
} // namespace Fortran::runtime
|