Files
clang-p2996/llvm/lib/IR/Operator.cpp
Stephen Tozer b9ca73e1a8 [DebugInfo] Correctly handle arrays with 0-width elements in GEP salvaging
Fixes an issue where GEP salvaging did not properly account for GEP
instructions which stepped over array elements of width 0 (effectively a
no-op). This unnecessarily produced long expressions by appending
`... + (x * 0)` and potentially extended the number of SSA values used
in the dbg.value. This also erroneously triggered an assert in the
salvage function that the element width would be strictly positive.
These issues are resolved by simply ignoring these useless operands.

Reviewed By: aprantl

Differential Revision: https://reviews.llvm.org/D111809
2021-10-18 12:01:12 +01:00

205 lines
7.7 KiB
C++

//===-- Operator.cpp - Implement the LLVM operators -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the non-inline methods for the LLVM Operator classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Operator.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "ConstantsContext.h"
namespace llvm {
Type *GEPOperator::getSourceElementType() const {
if (auto *I = dyn_cast<GetElementPtrInst>(this))
return I->getSourceElementType();
return cast<GetElementPtrConstantExpr>(this)->getSourceElementType();
}
Type *GEPOperator::getResultElementType() const {
if (auto *I = dyn_cast<GetElementPtrInst>(this))
return I->getResultElementType();
return cast<GetElementPtrConstantExpr>(this)->getResultElementType();
}
Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const {
/// compute the worse possible offset for every level of the GEP et accumulate
/// the minimum alignment into Result.
Align Result = Align(llvm::Value::MaximumAlignment);
for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
GTI != GTE; ++GTI) {
int64_t Offset = 1;
ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
if (StructType *STy = GTI.getStructTypeOrNull()) {
const StructLayout *SL = DL.getStructLayout(STy);
Offset = SL->getElementOffset(OpC->getZExtValue());
} else {
assert(GTI.isSequential() && "should be sequencial");
/// If the index isn't know we take 1 because it is the index that will
/// give the worse alignment of the offset.
int64_t ElemCount = 1;
if (OpC)
ElemCount = OpC->getZExtValue();
Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount;
}
Result = Align(MinAlign(Offset, Result.value()));
}
return Result;
}
bool GEPOperator::accumulateConstantOffset(
const DataLayout &DL, APInt &Offset,
function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
assert(Offset.getBitWidth() ==
DL.getIndexSizeInBits(getPointerAddressSpace()) &&
"The offset bit width does not match DL specification.");
SmallVector<const Value *> Index(value_op_begin() + 1, value_op_end());
return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index,
DL, Offset, ExternalAnalysis);
}
bool GEPOperator::accumulateConstantOffset(
Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL,
APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) {
bool UsedExternalAnalysis = false;
auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool {
Index = Index.sextOrTrunc(Offset.getBitWidth());
APInt IndexedSize = APInt(Offset.getBitWidth(), Size);
// For array or vector indices, scale the index by the size of the type.
if (!UsedExternalAnalysis) {
Offset += Index * IndexedSize;
} else {
// External Analysis can return a result higher/lower than the value
// represents. We need to detect overflow/underflow.
bool Overflow = false;
APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow);
if (Overflow)
return false;
Offset = Offset.sadd_ov(OffsetPlus, Overflow);
if (Overflow)
return false;
}
return true;
};
auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin(
SourceType, Index.begin());
auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end());
for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) {
// Scalable vectors are multiplied by a runtime constant.
bool ScalableType = false;
if (isa<ScalableVectorType>(GTI.getIndexedType()))
ScalableType = true;
Value *V = GTI.getOperand();
StructType *STy = GTI.getStructTypeOrNull();
// Handle ConstantInt if possible.
if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
if (ConstOffset->isZero())
continue;
// if the type is scalable and the constant is not zero (vscale * n * 0 =
// 0) bailout.
if (ScalableType)
return false;
// Handle a struct index, which adds its field offset to the pointer.
if (STy) {
unsigned ElementIdx = ConstOffset->getZExtValue();
const StructLayout *SL = DL.getStructLayout(STy);
// Element offset is in bytes.
if (!AccumulateOffset(
APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)),
1))
return false;
continue;
}
if (!AccumulateOffset(ConstOffset->getValue(),
DL.getTypeAllocSize(GTI.getIndexedType())))
return false;
continue;
}
// The operand is not constant, check if an external analysis was provided.
// External analsis is not applicable to a struct type.
if (!ExternalAnalysis || STy || ScalableType)
return false;
APInt AnalysisIndex;
if (!ExternalAnalysis(*V, AnalysisIndex))
return false;
UsedExternalAnalysis = true;
if (!AccumulateOffset(AnalysisIndex,
DL.getTypeAllocSize(GTI.getIndexedType())))
return false;
}
return true;
}
bool GEPOperator::collectOffset(
const DataLayout &DL, unsigned BitWidth,
MapVector<Value *, APInt> &VariableOffsets,
APInt &ConstantOffset) const {
assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) &&
"The offset bit width does not match DL specification.");
auto CollectConstantOffset = [&](APInt Index, uint64_t Size) {
Index = Index.sextOrTrunc(BitWidth);
APInt IndexedSize = APInt(BitWidth, Size);
ConstantOffset += Index * IndexedSize;
};
for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this);
GTI != GTE; ++GTI) {
// Scalable vectors are multiplied by a runtime constant.
bool ScalableType = isa<ScalableVectorType>(GTI.getIndexedType());
Value *V = GTI.getOperand();
StructType *STy = GTI.getStructTypeOrNull();
// Handle ConstantInt if possible.
if (auto ConstOffset = dyn_cast<ConstantInt>(V)) {
if (ConstOffset->isZero())
continue;
// If the type is scalable and the constant is not zero (vscale * n * 0 =
// 0) bailout.
// TODO: If the runtime value is accessible at any point before DWARF
// emission, then we could potentially keep a forward reference to it
// in the debug value to be filled in later.
if (ScalableType)
return false;
// Handle a struct index, which adds its field offset to the pointer.
if (STy) {
unsigned ElementIdx = ConstOffset->getZExtValue();
const StructLayout *SL = DL.getStructLayout(STy);
// Element offset is in bytes.
CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)),
1);
continue;
}
CollectConstantOffset(ConstOffset->getValue(),
DL.getTypeAllocSize(GTI.getIndexedType()));
continue;
}
if (STy || ScalableType)
return false;
APInt IndexedSize =
APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType()));
// Insert an initial offset of 0 for V iff none exists already, then
// increment the offset by IndexedSize.
if (!IndexedSize.isZero()) {
VariableOffsets.insert({V, APInt(BitWidth, 0)});
VariableOffsets[V] += IndexedSize;
}
}
return true;
}
} // namespace llvm