This borrows as much as possible from the SDAG version of the code (originally added with D27129 and since updated with big endian support). In IR, we can test more easily for correctness than we did in the original patch. I'm using the simplest cases that I could find for InstSimplify: we computeKnownBits on variable shift amounts to see if they are zero or in range. So shuffle constant elements into a vector, cast it, and shift it. The motivating x86 example from https://llvm.org/PR50123 is also here. We computeKnownBits in the caller code, but we only check if the shift amount is in range. That could be enhanced to catch the 2nd x86 test - if the shift amount is known too big, the result is 0. Alive2 understands the datalayout and agrees that the tests here are correct - example: https://alive2.llvm.org/ce/z/KZJFMZ Differential Revision: https://reviews.llvm.org/D104472
363 lines
13 KiB
LLVM
363 lines
13 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
|
; RUN: opt < %s -instsimplify -S -data-layout="E" | FileCheck %s --check-prefixes=CHECK,BIGENDIAN
|
|
; RUN: opt < %s -instsimplify -S -data-layout="e" | FileCheck %s --check-prefixes=CHECK,LITTLEENDIAN
|
|
|
|
; If any bits of the shift amount are known to make it exceed or equal
|
|
; the number of bits in the type, the shift causes undefined behavior.
|
|
|
|
define i32 @shl_amount_is_known_bogus(i32 %a, i32 %b) {
|
|
; CHECK-LABEL: @shl_amount_is_known_bogus(
|
|
; CHECK-NEXT: ret i32 poison
|
|
;
|
|
%or = or i32 %b, 32
|
|
%shl = shl i32 %a, %or
|
|
ret i32 %shl
|
|
}
|
|
|
|
; Check some weird types and the other shift ops.
|
|
|
|
define i31 @lshr_amount_is_known_bogus(i31 %a, i31 %b) {
|
|
; CHECK-LABEL: @lshr_amount_is_known_bogus(
|
|
; CHECK-NEXT: ret i31 poison
|
|
;
|
|
%or = or i31 %b, 31
|
|
%shr = lshr i31 %a, %or
|
|
ret i31 %shr
|
|
}
|
|
|
|
define i33 @ashr_amount_is_known_bogus(i33 %a, i33 %b) {
|
|
; CHECK-LABEL: @ashr_amount_is_known_bogus(
|
|
; CHECK-NEXT: ret i33 poison
|
|
;
|
|
%or = or i33 %b, 33
|
|
%shr = ashr i33 %a, %or
|
|
ret i33 %shr
|
|
}
|
|
|
|
|
|
; If all valid bits of the shift amount are known 0, there's no shift.
|
|
; It doesn't matter if high bits are set because that would be undefined.
|
|
; Therefore, the only possible valid result of these shifts is %a.
|
|
|
|
define i16 @ashr_amount_is_zero(i16 %a, i16 %b) {
|
|
; CHECK-LABEL: @ashr_amount_is_zero(
|
|
; CHECK-NEXT: ret i16 [[A:%.*]]
|
|
;
|
|
%and = and i16 %b, 65520 ; 0xfff0
|
|
%shr = ashr i16 %a, %and
|
|
ret i16 %shr
|
|
}
|
|
|
|
define i300 @lshr_amount_is_zero(i300 %a, i300 %b) {
|
|
; CHECK-LABEL: @lshr_amount_is_zero(
|
|
; CHECK-NEXT: ret i300 [[A:%.*]]
|
|
;
|
|
%and = and i300 %b, 2048
|
|
%shr = lshr i300 %a, %and
|
|
ret i300 %shr
|
|
}
|
|
|
|
define i9 @shl_amount_is_zero(i9 %a, i9 %b) {
|
|
; CHECK-LABEL: @shl_amount_is_zero(
|
|
; CHECK-NEXT: ret i9 [[A:%.*]]
|
|
;
|
|
%and = and i9 %b, 496 ; 0x1f0
|
|
%shl = shl i9 %a, %and
|
|
ret i9 %shl
|
|
}
|
|
|
|
|
|
; Verify that we've calculated the log2 boundary of valid bits correctly for a weird type.
|
|
|
|
define i9 @shl_amount_is_not_known_zero(i9 %a, i9 %b) {
|
|
; CHECK-LABEL: @shl_amount_is_not_known_zero(
|
|
; CHECK-NEXT: [[AND:%.*]] = and i9 [[B:%.*]], -8
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl i9 [[A:%.*]], [[AND]]
|
|
; CHECK-NEXT: ret i9 [[SHL]]
|
|
;
|
|
%and = and i9 %b, 504 ; 0x1f8
|
|
%shl = shl i9 %a, %and
|
|
ret i9 %shl
|
|
}
|
|
|
|
|
|
; For vectors, we need all scalar elements to meet the requirements to optimize.
|
|
|
|
define <2 x i32> @ashr_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
|
|
; CHECK-LABEL: @ashr_vector_bogus(
|
|
; CHECK-NEXT: ret <2 x i32> poison
|
|
;
|
|
%or = or <2 x i32> %b, <i32 32, i32 32>
|
|
%shr = ashr <2 x i32> %a, %or
|
|
ret <2 x i32> %shr
|
|
}
|
|
|
|
; FIXME: This is undef, but computeKnownBits doesn't handle the union.
|
|
define <2 x i32> @shl_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
|
|
; CHECK-LABEL: @shl_vector_bogus(
|
|
; CHECK-NEXT: [[OR:%.*]] = or <2 x i32> [[B:%.*]], <i32 32, i32 64>
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[A:%.*]], [[OR]]
|
|
; CHECK-NEXT: ret <2 x i32> [[SHL]]
|
|
;
|
|
%or = or <2 x i32> %b, <i32 32, i32 64>
|
|
%shl = shl <2 x i32> %a, %or
|
|
ret <2 x i32> %shl
|
|
}
|
|
|
|
define <2 x i32> @lshr_vector_zero(<2 x i32> %a, <2 x i32> %b) {
|
|
; CHECK-LABEL: @lshr_vector_zero(
|
|
; CHECK-NEXT: ret <2 x i32> [[A:%.*]]
|
|
;
|
|
%and = and <2 x i32> %b, <i32 64, i32 256>
|
|
%shr = lshr <2 x i32> %a, %and
|
|
ret <2 x i32> %shr
|
|
}
|
|
|
|
; Make sure that weird vector types work too.
|
|
define <2 x i15> @shl_vector_zero(<2 x i15> %a, <2 x i15> %b) {
|
|
; CHECK-LABEL: @shl_vector_zero(
|
|
; CHECK-NEXT: ret <2 x i15> [[A:%.*]]
|
|
;
|
|
%and = and <2 x i15> %b, <i15 1024, i15 1024>
|
|
%shl = shl <2 x i15> %a, %and
|
|
ret <2 x i15> %shl
|
|
}
|
|
|
|
define <2 x i32> @shl_vector_for_real(<2 x i32> %a, <2 x i32> %b) {
|
|
; CHECK-LABEL: @shl_vector_for_real(
|
|
; CHECK-NEXT: [[AND:%.*]] = and <2 x i32> [[B:%.*]], <i32 3, i32 3>
|
|
; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[A:%.*]], [[AND]]
|
|
; CHECK-NEXT: ret <2 x i32> [[SHL]]
|
|
;
|
|
%and = and <2 x i32> %b, <i32 3, i32 3> ; a necessary mask op
|
|
%shl = shl <2 x i32> %a, %and
|
|
ret <2 x i32> %shl
|
|
}
|
|
|
|
|
|
; We calculate the valid bits of the shift using log2, and log2 of 1 (the type width) is 0.
|
|
; That should be ok. Either the shift amount is 0 or invalid (1), so we can always return %a.
|
|
|
|
define i1 @shl_i1(i1 %a, i1 %b) {
|
|
; CHECK-LABEL: @shl_i1(
|
|
; CHECK-NEXT: ret i1 [[A:%.*]]
|
|
;
|
|
%shl = shl i1 %a, %b
|
|
ret i1 %shl
|
|
}
|
|
|
|
; The following cases only get folded by InstCombine,
|
|
; see InstCombine/lshr.ll.
|
|
|
|
declare i32 @llvm.cttz.i32(i32, i1) nounwind readnone
|
|
declare i32 @llvm.ctlz.i32(i32, i1) nounwind readnone
|
|
declare <2 x i8> @llvm.cttz.v2i8(<2 x i8>, i1) nounwind readnone
|
|
declare <2 x i8> @llvm.ctlz.v2i8(<2 x i8>, i1) nounwind readnone
|
|
|
|
define i32 @lshr_ctlz_zero_is_undef(i32 %x) {
|
|
; CHECK-LABEL: @lshr_ctlz_zero_is_undef(
|
|
; CHECK-NEXT: [[CT:%.*]] = call i32 @llvm.ctlz.i32(i32 [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[CT]], 5
|
|
; CHECK-NEXT: ret i32 [[SH]]
|
|
;
|
|
%ct = call i32 @llvm.ctlz.i32(i32 %x, i1 true)
|
|
%sh = lshr i32 %ct, 5
|
|
ret i32 %sh
|
|
}
|
|
|
|
define i32 @lshr_cttz_zero_is_undef(i32 %x) {
|
|
; CHECK-LABEL: @lshr_cttz_zero_is_undef(
|
|
; CHECK-NEXT: [[CT:%.*]] = call i32 @llvm.cttz.i32(i32 [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[CT]], 5
|
|
; CHECK-NEXT: ret i32 [[SH]]
|
|
;
|
|
%ct = call i32 @llvm.cttz.i32(i32 %x, i1 true)
|
|
%sh = lshr i32 %ct, 5
|
|
ret i32 %sh
|
|
}
|
|
|
|
define <2 x i8> @lshr_ctlz_zero_is_undef_splat_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @lshr_ctlz_zero_is_undef_splat_vec(
|
|
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 3>
|
|
; CHECK-NEXT: ret <2 x i8> [[SH]]
|
|
;
|
|
%ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true)
|
|
%sh = lshr <2 x i8> %ct, <i8 3, i8 3>
|
|
ret <2 x i8> %sh
|
|
}
|
|
|
|
define i8 @lshr_ctlz_zero_is_undef_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @lshr_ctlz_zero_is_undef_vec(
|
|
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 0>
|
|
; CHECK-NEXT: [[EX:%.*]] = extractelement <2 x i8> [[SH]], i32 0
|
|
; CHECK-NEXT: ret i8 [[EX]]
|
|
;
|
|
%ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true)
|
|
%sh = lshr <2 x i8> %ct, <i8 3, i8 0>
|
|
%ex = extractelement <2 x i8> %sh, i32 0
|
|
ret i8 %ex
|
|
}
|
|
|
|
define <2 x i8> @lshr_cttz_zero_is_undef_splat_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @lshr_cttz_zero_is_undef_splat_vec(
|
|
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 3>
|
|
; CHECK-NEXT: ret <2 x i8> [[SH]]
|
|
;
|
|
%ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true)
|
|
%sh = lshr <2 x i8> %ct, <i8 3, i8 3>
|
|
ret <2 x i8> %sh
|
|
}
|
|
|
|
define i8 @lshr_cttz_zero_is_undef_vec(<2 x i8> %x) {
|
|
; CHECK-LABEL: @lshr_cttz_zero_is_undef_vec(
|
|
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> [[X:%.*]], i1 true)
|
|
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 0>
|
|
; CHECK-NEXT: [[EX:%.*]] = extractelement <2 x i8> [[SH]], i32 0
|
|
; CHECK-NEXT: ret i8 [[EX]]
|
|
;
|
|
%ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true)
|
|
%sh = lshr <2 x i8> %ct, <i8 3, i8 0>
|
|
%ex = extractelement <2 x i8> %sh, i32 0
|
|
ret i8 %ex
|
|
}
|
|
|
|
; The shift amount is 0 on either of high/low bytes. The middle byte doesn't matter.
|
|
|
|
define i24 @bitcast_noshift_scalar(<3 x i8> %v1, i24 %v2) {
|
|
; CHECK-LABEL: @bitcast_noshift_scalar(
|
|
; CHECK-NEXT: ret i24 [[V2:%.*]]
|
|
;
|
|
%c = insertelement <3 x i8> poison, i8 0, i64 0
|
|
%s = shufflevector <3 x i8> %v1, <3 x i8> %c, <3 x i32> <i32 3, i32 1, i32 3>
|
|
%b = bitcast <3 x i8> %s to i24
|
|
%r = shl i24 %v2, %b
|
|
ret i24 %r
|
|
}
|
|
|
|
; The shift amount is 0 on low byte of big-endian and unknown on little-endian.
|
|
|
|
define i24 @bitcast_noshift_scalar_bigend(<3 x i8> %v1, i24 %v2) {
|
|
; BIGENDIAN-LABEL: @bitcast_noshift_scalar_bigend(
|
|
; BIGENDIAN-NEXT: ret i24 [[V2:%.*]]
|
|
;
|
|
; LITTLEENDIAN-LABEL: @bitcast_noshift_scalar_bigend(
|
|
; LITTLEENDIAN-NEXT: [[S:%.*]] = shufflevector <3 x i8> [[V1:%.*]], <3 x i8> <i8 0, i8 poison, i8 poison>, <3 x i32> <i32 0, i32 1, i32 3>
|
|
; LITTLEENDIAN-NEXT: [[B:%.*]] = bitcast <3 x i8> [[S]] to i24
|
|
; LITTLEENDIAN-NEXT: [[R:%.*]] = shl i24 [[V2:%.*]], [[B]]
|
|
; LITTLEENDIAN-NEXT: ret i24 [[R]]
|
|
;
|
|
%c = insertelement <3 x i8> poison, i8 0, i64 0
|
|
%s = shufflevector <3 x i8> %v1, <3 x i8> %c, <3 x i32> <i32 0, i32 1, i32 3>
|
|
%b = bitcast <3 x i8> %s to i24
|
|
%r = shl i24 %v2, %b
|
|
ret i24 %r
|
|
}
|
|
|
|
; The shift amount is 0 on low byte of little-endian and unknown on big-endian.
|
|
|
|
define i24 @bitcast_noshift_scalar_littleend(<3 x i8> %v1, i24 %v2) {
|
|
; BIGENDIAN-LABEL: @bitcast_noshift_scalar_littleend(
|
|
; BIGENDIAN-NEXT: [[S:%.*]] = shufflevector <3 x i8> [[V1:%.*]], <3 x i8> <i8 0, i8 poison, i8 poison>, <3 x i32> <i32 3, i32 1, i32 2>
|
|
; BIGENDIAN-NEXT: [[B:%.*]] = bitcast <3 x i8> [[S]] to i24
|
|
; BIGENDIAN-NEXT: [[R:%.*]] = shl i24 [[V2:%.*]], [[B]]
|
|
; BIGENDIAN-NEXT: ret i24 [[R]]
|
|
;
|
|
; LITTLEENDIAN-LABEL: @bitcast_noshift_scalar_littleend(
|
|
; LITTLEENDIAN-NEXT: ret i24 [[V2:%.*]]
|
|
;
|
|
%c = insertelement <3 x i8> poison, i8 0, i64 0
|
|
%s = shufflevector <3 x i8> %v1, <3 x i8> %c, <3 x i32> <i32 3, i32 1, i32 2>
|
|
%b = bitcast <3 x i8> %s to i24
|
|
%r = shl i24 %v2, %b
|
|
ret i24 %r
|
|
}
|
|
|
|
; The shift amount is known 24 on little-endian and known 24<<16 on big-endian
|
|
; across all vector elements, so it's an overshift either way.
|
|
|
|
define <3 x i24> @bitcast_overshift_vector(<9 x i8> %v1, <3 x i24> %v2) {
|
|
; CHECK-LABEL: @bitcast_overshift_vector(
|
|
; CHECK-NEXT: ret <3 x i24> poison
|
|
;
|
|
%c = insertelement <9 x i8> poison, i8 24, i64 0
|
|
%s = shufflevector <9 x i8> %v1, <9 x i8> %c, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 9, i32 7, i32 8>
|
|
%b = bitcast <9 x i8> %s to <3 x i24>
|
|
%r = shl <3 x i24> %v2, %b
|
|
ret <3 x i24> %r
|
|
}
|
|
|
|
; The shift amount is known 23 on little-endian and known 23<<16 on big-endian
|
|
; across all vector elements, so it's an overshift for big-endian.
|
|
|
|
define <3 x i24> @bitcast_overshift_vector_bigend(<9 x i8> %v1, <3 x i24> %v2) {
|
|
; BIGENDIAN-LABEL: @bitcast_overshift_vector_bigend(
|
|
; BIGENDIAN-NEXT: ret <3 x i24> poison
|
|
;
|
|
; LITTLEENDIAN-LABEL: @bitcast_overshift_vector_bigend(
|
|
; LITTLEENDIAN-NEXT: [[S:%.*]] = shufflevector <9 x i8> [[V1:%.*]], <9 x i8> <i8 23, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison>, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 9, i32 7, i32 8>
|
|
; LITTLEENDIAN-NEXT: [[B:%.*]] = bitcast <9 x i8> [[S]] to <3 x i24>
|
|
; LITTLEENDIAN-NEXT: [[R:%.*]] = shl <3 x i24> [[V2:%.*]], [[B]]
|
|
; LITTLEENDIAN-NEXT: ret <3 x i24> [[R]]
|
|
;
|
|
%c = insertelement <9 x i8> poison, i8 23, i64 0
|
|
%s = shufflevector <9 x i8> %v1, <9 x i8> %c, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 9, i32 7, i32 8>
|
|
%b = bitcast <9 x i8> %s to <3 x i24>
|
|
%r = shl <3 x i24> %v2, %b
|
|
ret <3 x i24> %r
|
|
}
|
|
|
|
; The shift amount is known 23 on big-endian and known 23<<16 on little-endian
|
|
; across all vector elements, so it's an overshift for little-endian.
|
|
|
|
define <3 x i24> @bitcast_overshift_vector_littleend(<9 x i8> %v1, <3 x i24> %v2) {
|
|
; BIGENDIAN-LABEL: @bitcast_overshift_vector_littleend(
|
|
; BIGENDIAN-NEXT: [[S:%.*]] = shufflevector <9 x i8> [[V1:%.*]], <9 x i8> <i8 23, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison>, <9 x i32> <i32 0, i32 1, i32 9, i32 3, i32 4, i32 9, i32 6, i32 7, i32 9>
|
|
; BIGENDIAN-NEXT: [[B:%.*]] = bitcast <9 x i8> [[S]] to <3 x i24>
|
|
; BIGENDIAN-NEXT: [[R:%.*]] = shl <3 x i24> [[V2:%.*]], [[B]]
|
|
; BIGENDIAN-NEXT: ret <3 x i24> [[R]]
|
|
;
|
|
; LITTLEENDIAN-LABEL: @bitcast_overshift_vector_littleend(
|
|
; LITTLEENDIAN-NEXT: ret <3 x i24> poison
|
|
;
|
|
%c = insertelement <9 x i8> poison, i8 23, i64 0
|
|
%s = shufflevector <9 x i8> %v1, <9 x i8> %c, <9 x i32> <i32 0, i32 1, i32 9, i32 3, i32 4, i32 9, i32 6, i32 7, i32 9>
|
|
%b = bitcast <9 x i8> %s to <3 x i24>
|
|
%r = shl <3 x i24> %v2, %b
|
|
ret <3 x i24> %r
|
|
}
|
|
|
|
; Negative test - the shift amount is known 24 or 24<<16 on only 2 out of 3 elements.
|
|
|
|
define <3 x i24> @bitcast_partial_overshift_vector(<9 x i8> %v1, <3 x i24> %v2) {
|
|
; CHECK-LABEL: @bitcast_partial_overshift_vector(
|
|
; CHECK-NEXT: [[S:%.*]] = shufflevector <9 x i8> [[V1:%.*]], <9 x i8> <i8 24, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison>, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 6, i32 7, i32 8>
|
|
; CHECK-NEXT: [[B:%.*]] = bitcast <9 x i8> [[S]] to <3 x i24>
|
|
; CHECK-NEXT: [[R:%.*]] = shl <3 x i24> [[V2:%.*]], [[B]]
|
|
; CHECK-NEXT: ret <3 x i24> [[R]]
|
|
;
|
|
%c = insertelement <9 x i8> poison, i8 24, i64 0
|
|
%s = shufflevector <9 x i8> %v1, <9 x i8> %c, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 6, i32 7, i32 8>
|
|
%b = bitcast <9 x i8> %s to <3 x i24>
|
|
%r = shl <3 x i24> %v2, %b
|
|
ret <3 x i24> %r
|
|
}
|
|
|
|
; Negative test - don't know how to look through a cast with non-integer type (but we could handle this...).
|
|
|
|
define <1 x i64> @bitcast_noshift_vector_wrong_type(<2 x float> %v1, <1 x i64> %v2) {
|
|
; CHECK-LABEL: @bitcast_noshift_vector_wrong_type(
|
|
; CHECK-NEXT: [[S:%.*]] = shufflevector <2 x float> [[V1:%.*]], <2 x float> <float 0.000000e+00, float poison>, <2 x i32> <i32 2, i32 1>
|
|
; CHECK-NEXT: [[B:%.*]] = bitcast <2 x float> [[S]] to <1 x i64>
|
|
; CHECK-NEXT: [[R:%.*]] = shl <1 x i64> [[V2:%.*]], [[B]]
|
|
; CHECK-NEXT: ret <1 x i64> [[R]]
|
|
;
|
|
%c = insertelement <2 x float> poison, float 0.0, i64 0
|
|
%s = shufflevector <2 x float> %v1, <2 x float> %c, <2 x i32> <i32 2, i32 1>
|
|
%b = bitcast <2 x float> %s to <1 x i64>
|
|
%r = shl <1 x i64> %v2, %b
|
|
ret <1 x i64> %r
|
|
}
|