Files
clang-p2996/mlir/lib/CAPI/Dialect/SparseTensor.cpp
Stella Laurenzo bcfa7baec8 [mlir][CAPI] Add CAPI bindings for the sparse_tensor dialect.
* Adds dialect registration, hand coded 'encoding' attribute and test.
* An MLIR CAPI tablegen backend for attributes does not exist, and this is a relatively complicated case. I opted to hand code it in a canonical way for now, which will provide a reasonable blueprint for building out the tablegen version in the future.
* Also added a (local) CMake function for declaring new CAPI tests, since it was getting repetitive/buggy.

Differential Revision: https://reviews.llvm.org/D102141
2021-05-10 16:54:56 +00:00

72 lines
3.0 KiB
C++

//===- Tensor.cpp - C API for SparseTensor dialect ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir-c/Dialect/SparseTensor.h"
#include "mlir-c/IR.h"
#include "mlir/CAPI/AffineMap.h"
#include "mlir/CAPI/Registration.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Support/LLVM.h"
using namespace llvm;
using namespace mlir::sparse_tensor;
MLIR_DEFINE_CAPI_DIALECT_REGISTRATION(SparseTensor, sparse_tensor,
mlir::sparse_tensor::SparseTensorDialect)
// Ensure the C-API enums are int-castable to C++ equivalents.
static_assert(
static_cast<int>(MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE) ==
static_cast<int>(SparseTensorEncodingAttr::DimLevelType::Dense) &&
static_cast<int>(MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED) ==
static_cast<int>(
SparseTensorEncodingAttr::DimLevelType::Compressed) &&
static_cast<int>(MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON) ==
static_cast<int>(SparseTensorEncodingAttr::DimLevelType::Singleton),
"MlirSparseTensorDimLevelType (C-API) and DimLevelType (C++) mismatch");
bool mlirAttributeIsASparseTensorEncodingAttr(MlirAttribute attr) {
return unwrap(attr).isa<SparseTensorEncodingAttr>();
}
MlirAttribute mlirSparseTensorEncodingAttrGet(
MlirContext ctx, intptr_t numDimLevelTypes,
MlirSparseTensorDimLevelType const *dimLevelTypes,
MlirAffineMap dimOrdering, int pointerBitWidth, int indexBitWidth) {
SmallVector<SparseTensorEncodingAttr::DimLevelType> cppDimLevelTypes;
cppDimLevelTypes.resize(numDimLevelTypes);
for (intptr_t i = 0; i < numDimLevelTypes; ++i)
cppDimLevelTypes[i] =
static_cast<SparseTensorEncodingAttr::DimLevelType>(dimLevelTypes[i]);
return wrap(SparseTensorEncodingAttr::get(unwrap(ctx), cppDimLevelTypes,
unwrap(dimOrdering),
pointerBitWidth, indexBitWidth));
}
MlirAffineMap mlirSparseTensorEncodingAttrGetDimOrdering(MlirAttribute attr) {
return wrap(unwrap(attr).cast<SparseTensorEncodingAttr>().getDimOrdering());
}
intptr_t mlirSparseTensorEncodingGetNumDimLevelTypes(MlirAttribute attr) {
return unwrap(attr).cast<SparseTensorEncodingAttr>().getDimLevelType().size();
}
MlirSparseTensorDimLevelType
mlirSparseTensorEncodingAttrGetDimLevelType(MlirAttribute attr, intptr_t pos) {
return static_cast<MlirSparseTensorDimLevelType>(
unwrap(attr).cast<SparseTensorEncodingAttr>().getDimLevelType()[pos]);
}
int mlirSparseTensorEncodingAttrGetPointerBitWidth(MlirAttribute attr) {
return unwrap(attr).cast<SparseTensorEncodingAttr>().getPointerBitWidth();
}
int mlirSparseTensorEncodingAttrGetIndexBitWidth(MlirAttribute attr) {
return unwrap(attr).cast<SparseTensorEncodingAttr>().getIndexBitWidth();
}