Precursor: https://reviews.llvm.org/D110200 Removed redundant ops from the standard dialect that were moved to the `arith` or `math` dialects. Renamed all instances of operations in the codebase and in tests. Reviewed By: rriddle, jpienaar Differential Revision: https://reviews.llvm.org/D110797
151 lines
6.8 KiB
C++
151 lines
6.8 KiB
C++
//===- ExpandOps.cpp - Pass to legalize Arithmetic ops for LLVM lowering --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
#include "mlir/Dialect/Arithmetic/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
/// Expands CeilDivSIOp (n, m) into
|
|
/// 1) x = (m > 0) ? -1 : 1
|
|
/// 2) (n*m>0) ? ((n+x) / m) + 1 : - (-n / m)
|
|
struct CeilDivSIOpConverter : public OpRewritePattern<arith::CeilDivSIOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(arith::CeilDivSIOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
Location loc = op.getLoc();
|
|
auto signedCeilDivIOp = cast<arith::CeilDivSIOp>(op);
|
|
Type type = signedCeilDivIOp.getType();
|
|
Value a = signedCeilDivIOp.lhs();
|
|
Value b = signedCeilDivIOp.rhs();
|
|
Value plusOne = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(type, 1));
|
|
Value zero = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(type, 0));
|
|
Value minusOne = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(type, -1));
|
|
// Compute x = (b>0) ? -1 : 1.
|
|
Value compare =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
|
|
Value x = rewriter.create<SelectOp>(loc, compare, minusOne, plusOne);
|
|
// Compute positive res: 1 + ((x+a)/b).
|
|
Value xPlusA = rewriter.create<arith::AddIOp>(loc, x, a);
|
|
Value xPlusADivB = rewriter.create<arith::DivSIOp>(loc, xPlusA, b);
|
|
Value posRes = rewriter.create<arith::AddIOp>(loc, plusOne, xPlusADivB);
|
|
// Compute negative res: - ((-a)/b).
|
|
Value minusA = rewriter.create<arith::SubIOp>(loc, zero, a);
|
|
Value minusADivB = rewriter.create<arith::DivSIOp>(loc, minusA, b);
|
|
Value negRes = rewriter.create<arith::SubIOp>(loc, zero, minusADivB);
|
|
// Result is (a*b>0) ? pos result : neg result.
|
|
// Note, we want to avoid using a*b because of possible overflow.
|
|
// The case that matters are a>0, a==0, a<0, b>0 and b<0. We do
|
|
// not particuliarly care if a*b<0 is true or false when b is zero
|
|
// as this will result in an illegal divide. So `a*b<0` can be reformulated
|
|
// as `(a<0 && b<0) || (a>0 && b>0)' or `(a<0 && b<0) || (a>0 && b>=0)'.
|
|
// We pick the first expression here.
|
|
Value aNeg =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, a, zero);
|
|
Value aPos =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, a, zero);
|
|
Value bNeg =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
|
|
Value bPos =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
|
|
Value firstTerm = rewriter.create<arith::AndIOp>(loc, aNeg, bNeg);
|
|
Value secondTerm = rewriter.create<arith::AndIOp>(loc, aPos, bPos);
|
|
Value compareRes =
|
|
rewriter.create<arith::OrIOp>(loc, firstTerm, secondTerm);
|
|
Value res = rewriter.create<SelectOp>(loc, compareRes, posRes, negRes);
|
|
// Perform substitution and return success.
|
|
rewriter.replaceOp(op, {res});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Expands FloorDivSIOp (n, m) into
|
|
/// 1) x = (m<0) ? 1 : -1
|
|
/// 2) return (n*m<0) ? - ((-n+x) / m) -1 : n / m
|
|
struct FloorDivSIOpConverter : public OpRewritePattern<arith::FloorDivSIOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(arith::FloorDivSIOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
Location loc = op.getLoc();
|
|
arith::FloorDivSIOp signedFloorDivIOp = cast<arith::FloorDivSIOp>(op);
|
|
Type type = signedFloorDivIOp.getType();
|
|
Value a = signedFloorDivIOp.lhs();
|
|
Value b = signedFloorDivIOp.rhs();
|
|
Value plusOne = rewriter.create<arith::ConstantIntOp>(loc, 1, type);
|
|
Value zero = rewriter.create<arith::ConstantIntOp>(loc, 0, type);
|
|
Value minusOne = rewriter.create<arith::ConstantIntOp>(loc, -1, type);
|
|
// Compute x = (b<0) ? 1 : -1.
|
|
Value compare =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
|
|
Value x = rewriter.create<SelectOp>(loc, compare, plusOne, minusOne);
|
|
// Compute negative res: -1 - ((x-a)/b).
|
|
Value xMinusA = rewriter.create<arith::SubIOp>(loc, x, a);
|
|
Value xMinusADivB = rewriter.create<arith::DivSIOp>(loc, xMinusA, b);
|
|
Value negRes = rewriter.create<arith::SubIOp>(loc, minusOne, xMinusADivB);
|
|
// Compute positive res: a/b.
|
|
Value posRes = rewriter.create<arith::DivSIOp>(loc, a, b);
|
|
// Result is (a*b<0) ? negative result : positive result.
|
|
// Note, we want to avoid using a*b because of possible overflow.
|
|
// The case that matters are a>0, a==0, a<0, b>0 and b<0. We do
|
|
// not particuliarly care if a*b<0 is true or false when b is zero
|
|
// as this will result in an illegal divide. So `a*b<0` can be reformulated
|
|
// as `(a>0 && b<0) || (a>0 && b<0)' or `(a>0 && b<0) || (a>0 && b<=0)'.
|
|
// We pick the first expression here.
|
|
Value aNeg =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, a, zero);
|
|
Value aPos =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, a, zero);
|
|
Value bNeg =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, b, zero);
|
|
Value bPos =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sgt, b, zero);
|
|
Value firstTerm = rewriter.create<arith::AndIOp>(loc, aNeg, bPos);
|
|
Value secondTerm = rewriter.create<arith::AndIOp>(loc, aPos, bNeg);
|
|
Value compareRes =
|
|
rewriter.create<arith::OrIOp>(loc, firstTerm, secondTerm);
|
|
Value res = rewriter.create<SelectOp>(loc, compareRes, negRes, posRes);
|
|
// Perform substitution and return success.
|
|
rewriter.replaceOp(op, {res});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct ArithmeticExpandOpsPass
|
|
: public ArithmeticExpandOpsBase<ArithmeticExpandOpsPass> {
|
|
void runOnFunction() override {
|
|
RewritePatternSet patterns(&getContext());
|
|
ConversionTarget target(getContext());
|
|
|
|
arith::populateArithmeticExpandOpsPatterns(patterns);
|
|
|
|
target.addLegalDialect<arith::ArithmeticDialect, StandardOpsDialect>();
|
|
target.addIllegalOp<arith::CeilDivSIOp, arith::FloorDivSIOp>();
|
|
|
|
if (failed(
|
|
applyPartialConversion(getFunction(), target, std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void mlir::arith::populateArithmeticExpandOpsPatterns(
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<CeilDivSIOpConverter, FloorDivSIOpConverter>(
|
|
patterns.getContext());
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::arith::createArithmeticExpandOpsPass() {
|
|
return std::make_unique<ArithmeticExpandOpsPass>();
|
|
}
|