Files
clang-p2996/mlir/lib/Dialect/StandardOps/Transforms/ExpandOps.cpp
Mogball a54f4eae0e [MLIR] Replace std ops with arith dialect ops
Precursor: https://reviews.llvm.org/D110200

Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.

Renamed all instances of operations in the codebase and in tests.

Reviewed By: rriddle, jpienaar

Differential Revision: https://reviews.llvm.org/D110797
2021-10-13 03:07:03 +00:00

222 lines
7.7 KiB
C++

//===- StdExpandDivs.cpp - Code to prepare Std for lowering Divs to LLVM -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file Std transformations to expand Divs operation to help for the
// lowering to LLVM. Currently implemented transformations are Ceil and Floor
// for Signed Integers.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Arithmetic/Transforms/Passes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Transforms/Passes.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
using namespace mlir;
namespace {
/// Converts `atomic_rmw` that cannot be lowered to a simple atomic op with
/// AtomicRMWOpLowering pattern, e.g. with "minf" or "maxf" attributes, to
/// `generic_atomic_rmw` with the expanded code.
///
/// %x = atomic_rmw "maxf" %fval, %F[%i] : (f32, memref<10xf32>) -> f32
///
/// will be lowered to
///
/// %x = std.generic_atomic_rmw %F[%i] : memref<10xf32> {
/// ^bb0(%current: f32):
/// %cmp = arith.cmpf "ogt", %current, %fval : f32
/// %new_value = select %cmp, %current, %fval : f32
/// atomic_yield %new_value : f32
/// }
struct AtomicRMWOpConverter : public OpRewritePattern<AtomicRMWOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtomicRMWOp op,
PatternRewriter &rewriter) const final {
arith::CmpFPredicate predicate;
switch (op.kind()) {
case AtomicRMWKind::maxf:
predicate = arith::CmpFPredicate::OGT;
break;
case AtomicRMWKind::minf:
predicate = arith::CmpFPredicate::OLT;
break;
default:
return failure();
}
auto loc = op.getLoc();
auto genericOp =
rewriter.create<GenericAtomicRMWOp>(loc, op.memref(), op.indices());
OpBuilder bodyBuilder =
OpBuilder::atBlockEnd(genericOp.getBody(), rewriter.getListener());
Value lhs = genericOp.getCurrentValue();
Value rhs = op.value();
Value cmp = bodyBuilder.create<arith::CmpFOp>(loc, predicate, lhs, rhs);
Value select = bodyBuilder.create<SelectOp>(loc, cmp, lhs, rhs);
bodyBuilder.create<AtomicYieldOp>(loc, select);
rewriter.replaceOp(op, genericOp.getResult());
return success();
}
};
/// Converts `memref.reshape` that has a target shape of a statically-known
/// size to `memref.reinterpret_cast`.
struct MemRefReshapeOpConverter : public OpRewritePattern<memref::ReshapeOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(memref::ReshapeOp op,
PatternRewriter &rewriter) const final {
auto shapeType = op.shape().getType().cast<MemRefType>();
if (!shapeType.hasStaticShape())
return failure();
int64_t rank = shapeType.cast<MemRefType>().getDimSize(0);
SmallVector<OpFoldResult, 4> sizes, strides;
sizes.resize(rank);
strides.resize(rank);
Location loc = op.getLoc();
Value stride = rewriter.create<arith::ConstantIndexOp>(loc, 1);
for (int i = rank - 1; i >= 0; --i) {
Value size;
// Load dynamic sizes from the shape input, use constants for static dims.
if (op.getType().isDynamicDim(i)) {
Value index = rewriter.create<arith::ConstantIndexOp>(loc, i);
size = rewriter.create<memref::LoadOp>(loc, op.shape(), index);
if (!size.getType().isa<IndexType>())
size = rewriter.create<arith::IndexCastOp>(loc, size,
rewriter.getIndexType());
sizes[i] = size;
} else {
sizes[i] = rewriter.getIndexAttr(op.getType().getDimSize(i));
size =
rewriter.create<arith::ConstantOp>(loc, sizes[i].get<Attribute>());
}
strides[i] = stride;
if (i > 0)
stride = rewriter.create<arith::MulIOp>(loc, stride, size);
}
rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>(
op, op.getType(), op.source(), /*offset=*/rewriter.getIndexAttr(0),
sizes, strides);
return success();
}
};
template <typename OpTy, arith::CmpFPredicate pred>
struct MaxMinFOpConverter : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const final {
Value lhs = op.lhs();
Value rhs = op.rhs();
Location loc = op.getLoc();
Value cmp = rewriter.create<arith::CmpFOp>(loc, pred, lhs, rhs);
Value select = rewriter.create<SelectOp>(loc, cmp, lhs, rhs);
auto floatType = getElementTypeOrSelf(lhs.getType()).cast<FloatType>();
Value isNaN = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::UNO,
lhs, rhs);
Value nan = rewriter.create<arith::ConstantFloatOp>(
loc, APFloat::getQNaN(floatType.getFloatSemantics()), floatType);
if (VectorType vectorType = lhs.getType().dyn_cast<VectorType>())
nan = rewriter.create<SplatOp>(loc, vectorType, nan);
rewriter.replaceOpWithNewOp<SelectOp>(op, isNaN, nan, select);
return success();
}
};
template <typename OpTy, arith::CmpIPredicate pred>
struct MaxMinIOpConverter : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const final {
Value lhs = op.lhs();
Value rhs = op.rhs();
Location loc = op.getLoc();
Value cmp = rewriter.create<arith::CmpIOp>(loc, pred, lhs, rhs);
rewriter.replaceOpWithNewOp<SelectOp>(op, cmp, lhs, rhs);
return success();
}
};
struct StdExpandOpsPass : public StdExpandOpsBase<StdExpandOpsPass> {
void runOnFunction() override {
MLIRContext &ctx = getContext();
RewritePatternSet patterns(&ctx);
populateStdExpandOpsPatterns(patterns);
arith::populateArithmeticExpandOpsPatterns(patterns);
ConversionTarget target(getContext());
target.addLegalDialect<arith::ArithmeticDialect, memref::MemRefDialect,
StandardOpsDialect>();
target.addIllegalOp<arith::CeilDivSIOp, arith::FloorDivSIOp>();
target.addDynamicallyLegalOp<AtomicRMWOp>([](AtomicRMWOp op) {
return op.kind() != AtomicRMWKind::maxf &&
op.kind() != AtomicRMWKind::minf;
});
target.addDynamicallyLegalOp<memref::ReshapeOp>([](memref::ReshapeOp op) {
return !op.shape().getType().cast<MemRefType>().hasStaticShape();
});
// clang-format off
target.addIllegalOp<
MaxFOp,
MaxSIOp,
MaxUIOp,
MinFOp,
MinSIOp,
MinUIOp
>();
// clang-format on
if (failed(
applyPartialConversion(getFunction(), target, std::move(patterns))))
signalPassFailure();
}
};
} // namespace
void mlir::populateStdExpandOpsPatterns(RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AtomicRMWOpConverter,
MaxMinFOpConverter<MaxFOp, arith::CmpFPredicate::OGT>,
MaxMinFOpConverter<MinFOp, arith::CmpFPredicate::OLT>,
MaxMinIOpConverter<MaxSIOp, arith::CmpIPredicate::sgt>,
MaxMinIOpConverter<MaxUIOp, arith::CmpIPredicate::ugt>,
MaxMinIOpConverter<MinSIOp, arith::CmpIPredicate::slt>,
MaxMinIOpConverter<MinUIOp, arith::CmpIPredicate::ult>,
MemRefReshapeOpConverter
>(patterns.getContext());
// clang-format on
}
std::unique_ptr<Pass> mlir::createStdExpandOpsPass() {
return std::make_unique<StdExpandOpsPass>();
}