Files
clang-p2996/mlir/lib/Transforms/Utils/LoopUtils.cpp
Alex Zinenko 5a5bba0279 Introduce affine terminator
Due to legacy reasons (ML/CFG function separation), regions in affine control
flow operations require contained blocks not to have terminators.  This is
inconsistent with the notion of the block and may complicate code motion
between regions of affine control operations and other regions.

Introduce `affine.terminator`, a special terminator operation that must be used
to terminate blocks inside affine operations and transfers the control back to
he region enclosing the affine operation.  For brevity and readability reasons,
allow `affine.for` and `affine.if` to omit the `affine.terminator` in their
regions when using custom printing and parsing format.  The custom parser
injects the `affine.terminator` if it is missing so as to always have it
present in constructed operations.

Update transformations to account for the presence of terminator.  In
particular, most code motion transformation between loops should leave the
terminator in place, and code motion between loops and non-affine blocks should
drop the terminator.

PiperOrigin-RevId: 240536998
2019-03-29 17:44:24 -07:00

630 lines
26 KiB
C++

//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Operation.h"
#include "mlir/StandardOps/Ops.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "LoopUtils"
using namespace mlir;
/// Computes the cleanup loop lower bound of the loop being unrolled with
/// the specified unroll factor; this bound will also be upper bound of the main
/// part of the unrolled loop. Computes the bound as an AffineMap with its
/// operands or a null map when the trip count can't be expressed as an affine
/// expression.
void mlir::getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor,
AffineMap *map,
SmallVectorImpl<Value *> *operands,
FuncBuilder *b) {
auto lbMap = forOp.getLowerBoundMap();
// Single result lower bound map only.
if (lbMap.getNumResults() != 1) {
*map = AffineMap();
return;
}
AffineMap tripCountMap;
SmallVector<Value *, 4> tripCountOperands;
buildTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands);
// Sometimes the trip count cannot be expressed as an affine expression.
if (!tripCountMap) {
*map = AffineMap();
return;
}
unsigned step = forOp.getStep();
SmallVector<Value *, 4> lbOperands(forOp.getLowerBoundOperands());
auto lb = b->create<AffineApplyOp>(forOp.getLoc(), lbMap, lbOperands);
// For each upper bound expr, get the range.
// Eg: affine.for %i = lb to min (ub1, ub2),
// where tripCountExprs yield (tr1, tr2), we create affine.apply's:
// lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all
// these affine.apply's make up the cleanup loop lower bound.
SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults());
SmallVector<Value *, 4> bumpValues(tripCountMap.getNumResults());
for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) {
auto tripCountExpr = tripCountMap.getResult(i);
bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step;
auto bumpMap =
b->getAffineMap(tripCountMap.getNumDims(), tripCountMap.getNumSymbols(),
bumpExprs[i], {});
bumpValues[i] =
b->create<AffineApplyOp>(forOp.getLoc(), bumpMap, tripCountOperands);
}
SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults());
for (unsigned i = 0, e = bumpExprs.size(); i < e; i++)
newUbExprs[i] = b->getAffineDimExpr(0) + b->getAffineDimExpr(i + 1);
operands->clear();
operands->push_back(lb);
operands->append(bumpValues.begin(), bumpValues.end());
*map = b->getAffineMap(1 + tripCountMap.getNumResults(), 0, newUbExprs, {});
// Simplify the map + operands.
fullyComposeAffineMapAndOperands(map, operands);
*map = simplifyAffineMap(*map);
canonicalizeMapAndOperands(map, operands);
// Remove any affine.apply's that became dead from the simplification above.
for (auto *v : bumpValues) {
if (v->use_empty()) {
v->getDefiningOp()->erase();
}
}
if (lb.use_empty())
lb.erase();
}
/// Promotes the loop body of a forOp to its containing block if the forOp
/// was known to have a single iteration.
// TODO(bondhugula): extend this for arbitrary affine bounds.
LogicalResult mlir::promoteIfSingleIteration(AffineForOp forOp) {
Optional<uint64_t> tripCount = getConstantTripCount(forOp);
if (!tripCount.hasValue() || tripCount.getValue() != 1)
return failure();
// TODO(mlir-team): there is no builder for a max.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// Replaces all IV uses to its single iteration value.
auto *iv = forOp.getInductionVar();
Instruction *forInst = forOp.getOperation();
if (!iv->use_empty()) {
if (forOp.hasConstantLowerBound()) {
auto *mlFunc = forInst->getFunction();
FuncBuilder topBuilder(mlFunc);
auto constOp = topBuilder.create<ConstantIndexOp>(
forOp.getLoc(), forOp.getConstantLowerBound());
iv->replaceAllUsesWith(constOp);
} else {
AffineBound lb = forOp.getLowerBound();
SmallVector<Value *, 4> lbOperands(lb.operand_begin(), lb.operand_end());
FuncBuilder builder(forInst->getBlock(), Block::iterator(forInst));
if (lb.getMap() == builder.getDimIdentityMap()) {
// No need of generating an affine.apply.
iv->replaceAllUsesWith(lbOperands[0]);
} else {
auto affineApplyOp = builder.create<AffineApplyOp>(
forInst->getLoc(), lb.getMap(), lbOperands);
iv->replaceAllUsesWith(affineApplyOp);
}
}
}
// Move the loop body instructions, except for terminator, to the loop's
// containing block.
auto *block = forInst->getBlock();
forOp.getBody()->getOperations().back().erase();
block->getOperations().splice(Block::iterator(forInst),
forOp.getBody()->getOperations());
forOp.erase();
return success();
}
/// Promotes all single iteration for inst's in the Function, i.e., moves
/// their body into the containing Block.
void mlir::promoteSingleIterationLoops(Function *f) {
// Gathers all innermost loops through a post order pruned walk.
f->walkPostOrder<AffineForOp>(
[](AffineForOp forOp) { promoteIfSingleIteration(forOp); });
}
/// Generates a 'affine.for' inst with the specified lower and upper bounds
/// while generating the right IV remappings for the shifted instructions. The
/// instruction blocks that go into the loop are specified in instGroupQueue
/// starting from the specified offset, and in that order; the first element of
/// the pair specifies the shift applied to that group of instructions; note
/// that the shift is multiplied by the loop step before being applied. Returns
/// nullptr if the generated loop simplifies to a single iteration one.
static AffineForOp
generateLoop(AffineMap lbMap, AffineMap ubMap,
const std::vector<std::pair<uint64_t, ArrayRef<Instruction *>>>
&instGroupQueue,
unsigned offset, AffineForOp srcForInst, FuncBuilder *b) {
SmallVector<Value *, 4> lbOperands(srcForInst.getLowerBoundOperands());
SmallVector<Value *, 4> ubOperands(srcForInst.getUpperBoundOperands());
assert(lbMap.getNumInputs() == lbOperands.size());
assert(ubMap.getNumInputs() == ubOperands.size());
auto loopChunk =
b->create<AffineForOp>(srcForInst.getLoc(), lbOperands, lbMap, ubOperands,
ubMap, srcForInst.getStep());
auto *loopChunkIV = loopChunk.getInductionVar();
auto *srcIV = srcForInst.getInductionVar();
BlockAndValueMapping operandMap;
FuncBuilder bodyBuilder = loopChunk.getBodyBuilder();
for (auto it = instGroupQueue.begin() + offset, e = instGroupQueue.end();
it != e; ++it) {
uint64_t shift = it->first;
auto insts = it->second;
// All 'same shift' instructions get added with their operands being
// remapped to results of cloned instructions, and their IV used remapped.
// Generate the remapping if the shift is not zero: remappedIV = newIV -
// shift.
if (!srcIV->use_empty() && shift != 0) {
auto ivRemap = bodyBuilder.create<AffineApplyOp>(
srcForInst.getLoc(),
bodyBuilder.getSingleDimShiftAffineMap(
-static_cast<int64_t>(srcForInst.getStep() * shift)),
loopChunkIV);
operandMap.map(srcIV, ivRemap);
} else {
operandMap.map(srcIV, loopChunkIV);
}
for (auto *inst : insts) {
if (!inst->isa<AffineTerminatorOp>())
bodyBuilder.clone(*inst, operandMap);
}
};
if (succeeded(promoteIfSingleIteration(loopChunk)))
return AffineForOp();
return loopChunk;
}
/// Skew the instructions in the body of a 'affine.for' instruction with the
/// specified instruction-wise shifts. The shifts are with respect to the
/// original execution order, and are multiplied by the loop 'step' before being
/// applied. A shift of zero for each instruction will lead to no change.
// The skewing of instructions with respect to one another can be used for
// example to allow overlap of asynchronous operations (such as DMA
// communication) with computation, or just relative shifting of instructions
// for better register reuse, locality or parallelism. As such, the shifts are
// typically expected to be at most of the order of the number of instructions.
// This method should not be used as a substitute for loop distribution/fission.
// This method uses an algorithm// in time linear in the number of instructions
// in the body of the for loop - (using the 'sweep line' paradigm). This method
// asserts preservation of SSA dominance. A check for that as well as that for
// memory-based depedence preservation check rests with the users of this
// method.
LogicalResult mlir::instBodySkew(AffineForOp forOp, ArrayRef<uint64_t> shifts,
bool unrollPrologueEpilogue) {
if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return success();
// If the trip counts aren't constant, we would need versioning and
// conditional guards (or context information to prevent such versioning). The
// better way to pipeline for such loops is to first tile them and extract
// constant trip count "full tiles" before applying this.
auto mayBeConstTripCount = getConstantTripCount(forOp);
if (!mayBeConstTripCount.hasValue()) {
LLVM_DEBUG(forOp.emitNote("non-constant trip count loop not handled"));
return success();
}
uint64_t tripCount = mayBeConstTripCount.getValue();
assert(isInstwiseShiftValid(forOp, shifts) &&
"shifts will lead to an invalid transformation\n");
int64_t step = forOp.getStep();
unsigned numChildInsts = forOp.getBody()->getOperations().size();
// Do a linear time (counting) sort for the shifts.
uint64_t maxShift = 0;
for (unsigned i = 0; i < numChildInsts; i++) {
maxShift = std::max(maxShift, shifts[i]);
}
// Such large shifts are not the typical use case.
if (maxShift >= numChildInsts) {
forOp.emitWarning("not shifting because shifts are unrealistically large");
return success();
}
// An array of instruction groups sorted by shift amount; each group has all
// instructions with the same shift in the order in which they appear in the
// body of the 'affine.for' inst.
std::vector<std::vector<Instruction *>> sortedInstGroups(maxShift + 1);
unsigned pos = 0;
for (auto &inst : *forOp.getBody()) {
auto shift = shifts[pos++];
sortedInstGroups[shift].push_back(&inst);
}
// Unless the shifts have a specific pattern (which actually would be the
// common use case), prologue and epilogue are not meaningfully defined.
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
// loop generated as the prologue and the last as epilogue and unroll these
// fully.
AffineForOp prologue;
AffineForOp epilogue;
// Do a sweep over the sorted shifts while storing open groups in a
// vector, and generating loop portions as necessary during the sweep. A block
// of instructions is paired with its shift.
std::vector<std::pair<uint64_t, ArrayRef<Instruction *>>> instGroupQueue;
auto origLbMap = forOp.getLowerBoundMap();
uint64_t lbShift = 0;
FuncBuilder b(forOp.getOperation());
for (uint64_t d = 0, e = sortedInstGroups.size(); d < e; ++d) {
// If nothing is shifted by d, continue.
if (sortedInstGroups[d].empty())
continue;
if (!instGroupQueue.empty()) {
assert(d >= 1 &&
"Queue expected to be empty when the first block is found");
// The interval for which the loop needs to be generated here is:
// [lbShift, min(lbShift + tripCount, d)) and the body of the
// loop needs to have all instructions in instQueue in that order.
AffineForOp res;
if (lbShift + tripCount * step < d * step) {
res = generateLoop(
b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step),
instGroupQueue, 0, forOp, &b);
// Entire loop for the queued inst groups generated, empty it.
instGroupQueue.clear();
lbShift += tripCount * step;
} else {
res = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, d), instGroupQueue,
0, forOp, &b);
lbShift = d * step;
}
if (!prologue && res)
prologue = res;
epilogue = res;
} else {
// Start of first interval.
lbShift = d * step;
}
// Augment the list of instructions that get into the current open interval.
instGroupQueue.push_back({d, sortedInstGroups[d]});
}
// Those instructions groups left in the queue now need to be processed (FIFO)
// and their loops completed.
for (unsigned i = 0, e = instGroupQueue.size(); i < e; ++i) {
uint64_t ubShift = (instGroupQueue[i].first + tripCount) * step;
epilogue = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, ubShift),
instGroupQueue, i, forOp, &b);
lbShift = ubShift;
if (!prologue)
prologue = epilogue;
}
// Erase the original for inst.
forOp.erase();
if (unrollPrologueEpilogue && prologue)
loopUnrollFull(prologue);
if (unrollPrologueEpilogue && !epilogue &&
epilogue.getOperation() != prologue.getOperation())
loopUnrollFull(epilogue);
return success();
}
/// Unrolls this loop completely.
LogicalResult mlir::loopUnrollFull(AffineForOp forOp) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue()) {
uint64_t tripCount = mayBeConstantTripCount.getValue();
if (tripCount == 1) {
return promoteIfSingleIteration(forOp);
}
return loopUnrollByFactor(forOp, tripCount);
}
return failure();
}
/// Unrolls and jams this loop by the specified factor or by the trip count (if
/// constant) whichever is lower.
LogicalResult mlir::loopUnrollUpToFactor(AffineForOp forOp,
uint64_t unrollFactor) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return loopUnrollByFactor(forOp, mayBeConstantTripCount.getValue());
return loopUnrollByFactor(forOp, unrollFactor);
}
/// Unrolls this loop by the specified factor. Returns success if the loop
/// is successfully unrolled.
LogicalResult mlir::loopUnrollByFactor(AffineForOp forOp,
uint64_t unrollFactor) {
assert(unrollFactor >= 1 && "unroll factor should be >= 1");
if (unrollFactor == 1)
return promoteIfSingleIteration(forOp);
if (forOp.getBody()->empty() ||
forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return failure();
// Loops where the lower bound is a max expression isn't supported for
// unrolling since the trip count can be expressed as an affine function when
// both the lower bound and the upper bound are multi-result maps. However,
// one meaningful way to do such unrolling would be to specialize the loop for
// the 'hotspot' case and unroll that hotspot.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// If the trip count is lower than the unroll factor, no unrolled body.
// TODO(bondhugula): option to specify cleanup loop unrolling.
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return failure();
// Generate the cleanup loop if trip count isn't a multiple of unrollFactor.
Instruction *forInst = forOp.getOperation();
if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) {
FuncBuilder builder(forInst->getBlock(), ++Block::iterator(forInst));
auto cleanupForInst = builder.clone(*forInst)->cast<AffineForOp>();
AffineMap cleanupMap;
SmallVector<Value *, 4> cleanupOperands;
getCleanupLoopLowerBound(forOp, unrollFactor, &cleanupMap, &cleanupOperands,
&builder);
assert(cleanupMap &&
"cleanup loop lower bound map for single result lower bound maps "
"can always be determined");
cleanupForInst.setLowerBound(cleanupOperands, cleanupMap);
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(cleanupForInst);
// Adjust upper bound of the original loop; this is the same as the lower
// bound of the cleanup loop.
forOp.setUpperBound(cleanupOperands, cleanupMap);
}
// Scale the step of loop being unrolled by unroll factor.
int64_t step = forOp.getStep();
forOp.setStep(step * unrollFactor);
// Builder to insert unrolled bodies just before the terminator of the body of
// 'forOp'.
FuncBuilder builder = forOp.getBodyBuilder();
// Keep a pointer to the last non-terminator instruction in the original block
// so that we know what to clone (since we are doing this in-place).
Block::iterator srcBlockEnd = std::prev(forOp.getBody()->end(), 2);
// Unroll the contents of 'forOp' (append unrollFactor-1 additional copies).
auto *forOpIV = forOp.getInductionVar();
for (unsigned i = 1; i < unrollFactor; i++) {
BlockAndValueMapping operandMap;
// If the induction variable is used, create a remapping to the value for
// this unrolled instance.
if (!forOpIV->use_empty()) {
// iv' = iv + 1/2/3...unrollFactor-1;
auto d0 = builder.getAffineDimExpr(0);
auto bumpMap = builder.getAffineMap(1, 0, {d0 + i * step}, {});
auto ivUnroll =
builder.create<AffineApplyOp>(forOp.getLoc(), bumpMap, forOpIV);
operandMap.map(forOpIV, ivUnroll);
}
// Clone the original body of 'forOp'.
for (auto it = forOp.getBody()->begin(); it != std::next(srcBlockEnd);
it++) {
builder.clone(*it, operandMap);
}
}
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(forOp);
return success();
}
/// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is
/// nested within 'forOpA' as the only non-terminator operation in its block.
void mlir::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) {
auto *forOpAInst = forOpA.getOperation();
assert(&*forOpA.getBody()->begin() == forOpB.getOperation());
auto &forOpABody = forOpA.getBody()->getOperations();
auto &forOpBBody = forOpB.getBody()->getOperations();
// 1) Splice forOpA's non-terminator operations (which is just forOpB) just
// before forOpA (in ForOpA's parent's block) this should leave 'forOpA's
// body containing only the terminator.
forOpAInst->getBlock()->getOperations().splice(Block::iterator(forOpAInst),
forOpABody, forOpABody.begin(),
std::prev(forOpABody.end()));
// 2) Splice forOpB's non-terminator operations into the beginning of forOpA's
// body (this leaves forOpB's body containing only the terminator).
forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(),
std::prev(forOpBBody.end()));
// 3) Splice forOpA into the beginning of forOpB's body.
forOpBBody.splice(forOpBBody.begin(), forOpAInst->getBlock()->getOperations(),
Block::iterator(forOpAInst));
}
/// Performs a series of loop interchanges to sink 'forOp' 'loopDepth' levels
/// deeper in the loop nest.
void mlir::sinkLoop(AffineForOp forOp, unsigned loopDepth) {
for (unsigned i = 0; i < loopDepth; ++i) {
assert(forOp.getBody()->front().isa<AffineForOp>());
AffineForOp nextForOp = forOp.getBody()->front().cast<AffineForOp>();
interchangeLoops(forOp, nextForOp);
}
}
// Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the
// lower (resp. upper) loop bound. When called for both the lower and upper
// bounds, the resulting IR resembles:
//
// ```mlir
// affine.for %i = max (`iv, ...) to min (`iv` + `offset`) {
// ...
// }
// ```
static void augmentMapAndBounds(FuncBuilder *b, Value *iv, AffineMap *map,
SmallVector<Value *, 4> *operands,
int64_t offset = 0) {
auto bounds = llvm::to_vector<4>(map->getResults());
bounds.push_back(b->getAffineDimExpr(map->getNumDims()) + offset);
operands->insert(operands->begin() + map->getNumDims(), iv);
*map =
b->getAffineMap(map->getNumDims() + 1, map->getNumSymbols(), bounds, {});
canonicalizeMapAndOperands(map, operands);
}
// Clone the original body of `forOp` into the body of `newForOp` while
// substituting `oldIv` in place of
// `forOp.getInductionVariable()` and ignoring the terminator.
// Note: `newForOp` may be nested under `forOp`.
static void cloneLoopBodyInto(AffineForOp forOp, Value *oldIv,
AffineForOp newForOp) {
BlockAndValueMapping map;
map.map(oldIv, newForOp.getInductionVar());
FuncBuilder b = newForOp.getBodyBuilder();
for (auto &inst : *forOp.getBody()) {
// Step over newForOp in case it is nested under forOp.
if (&inst == newForOp.getOperation()) {
continue;
}
if (inst.isa<AffineTerminatorOp>()) {
continue;
}
auto *instClone = b.clone(inst, map);
unsigned idx = 0;
for (auto r : inst.getResults()) {
// Since we do a forward pass over the body, we iteratively augment
// the `map` with everything we clone.
map.map(r, instClone->getResult(idx++));
}
}
}
// Stripmines `forOp` by `factor` and sinks it under each of the `targets`.
// Stripmine-sink is a primitive building block for generalized tiling of
// imperfectly nested loops.
// This transformation is purely mechanical and does not check legality,
// profitability or even structural correctness. It is the user's
// responsibility to specify `targets` that are dominated by `forOp`.
// Returns the new AffineForOps, one per `targets`, nested immediately under
// each of the `targets`.
static SmallVector<AffineForOp, 8>
stripmineSink(AffineForOp forOp, uint64_t factor,
ArrayRef<AffineForOp> targets) {
// TODO(ntv): Use cheap structural assertions that targets are nested under
// forOp and that targets are not nested under each other when DominanceInfo
// exposes the capability. It seems overkill to construct a whole function
// dominance tree at this point.
auto originalStep = forOp.getStep();
auto scaledStep = originalStep * factor;
forOp.setStep(scaledStep);
auto *forInst = forOp.getOperation();
FuncBuilder b(forInst->getBlock(), ++Block::iterator(forInst));
// Lower-bound map creation.
auto lbMap = forOp.getLowerBoundMap();
SmallVector<Value *, 4> lbOperands(forOp.getLowerBoundOperands());
augmentMapAndBounds(&b, forOp.getInductionVar(), &lbMap, &lbOperands);
// Upper-bound map creation.
auto ubMap = forOp.getUpperBoundMap();
SmallVector<Value *, 4> ubOperands(forOp.getUpperBoundOperands());
augmentMapAndBounds(&b, forOp.getInductionVar(), &ubMap, &ubOperands,
/*offset=*/scaledStep);
SmallVector<AffineForOp, 8> innerLoops;
for (auto t : targets) {
// Insert newForOp before the terminator of `t`.
FuncBuilder b = t.getBodyBuilder();
auto newForOp = b.create<AffineForOp>(t.getLoc(), lbOperands, lbMap,
ubOperands, ubMap, originalStep);
cloneLoopBodyInto(t, forOp.getInductionVar(), newForOp);
// Remove all instructions from `t` except `newForOp`.
auto rit = ++newForOp.getOperation()->getReverseIterator();
auto re = t.getBody()->rend();
for (auto &inst : llvm::make_early_inc_range(llvm::make_range(rit, re))) {
inst.erase();
}
innerLoops.push_back(newForOp);
}
return innerLoops;
}
// Stripmines a `forOp` by `factor` and sinks it under a single `target`.
// Returns the new AffineForOps, nested immediately under `target`.
AffineForOp stripmineSink(AffineForOp forOp, uint64_t factor,
AffineForOp target) {
auto res = stripmineSink(forOp, factor, ArrayRef<AffineForOp>{target});
assert(res.size() == 1 && "Expected 1 inner forOp");
return res[0];
}
SmallVector<SmallVector<AffineForOp, 8>, 8>
mlir::tile(ArrayRef<AffineForOp> forOps, ArrayRef<uint64_t> sizes,
ArrayRef<AffineForOp> targets) {
SmallVector<SmallVector<AffineForOp, 8>, 8> res;
SmallVector<AffineForOp, 8> currentTargets(targets.begin(), targets.end());
for (auto it : llvm::zip(forOps, sizes)) {
auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets);
res.push_back(step);
currentTargets = step;
}
return res;
}
SmallVector<AffineForOp, 8> mlir::tile(ArrayRef<AffineForOp> forOps,
ArrayRef<uint64_t> sizes,
AffineForOp target) {
return tile(forOps, sizes, ArrayRef<AffineForOp>{target})[0];
}