Files
clang-p2996/mlir/lib/Transforms/Vectorization/VectorizerTestPass.cpp
Nicolas Vasilache 5b87a5ef4b [MLIR] Drop strict super-vector requirement in MaterializeVector
The strict requirement (i.e. at least 2 HW vectors in a super-vector) was a
premature optimization to avoid interfering with other vector code potentially
introduced via other means.

This CL avoids this premature optimization and the spurious errors it causes
when super-vector size == HW vector size (which is a possible corner case).

This may be revisited in the future.

PiperOrigin-RevId: 227763966
2019-03-29 14:54:49 -07:00

253 lines
8.2 KiB
C++

//===- VectorizerTestPass.cpp - VectorizerTestPass Pass Impl --------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a simple testing pass for vectorization functionality.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/MLFunctionMatcher.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/VectorAnalysis.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Pass.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/STLExtras.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "vectorizer-test"
using namespace mlir;
using llvm::outs;
using llvm::SetVector;
using functional::map;
static llvm::cl::list<int> clTestVectorShapeRatio(
"vector-shape-ratio",
llvm::cl::desc("Specify the HW vector size for vectorization"),
llvm::cl::ZeroOrMore);
static llvm::cl::opt<bool> clTestForwardSlicingAnalysis(
"forward-slicing",
llvm::cl::desc(
"Specify to enable testing forward static slicing and topological sort "
"functionalities"));
static llvm::cl::opt<bool> clTestBackwardSlicingAnalysis(
"backward-slicing",
llvm::cl::desc("Specify to enable testing backward static slicing and "
"topological sort functionalities"));
static llvm::cl::opt<bool> clTestSlicingAnalysis(
"slicing",
llvm::cl::desc(
"Specify to enable testing static slicing and topological sort "
"functionalities"));
static llvm::cl::opt<bool> clTestComposeMaps(
"compose-maps",
llvm::cl::desc(
"Specify to enable testing the composition of AffineMap where each "
"AffineMap in the composition is specified as the affine_map attribute "
"in a constant op."));
namespace {
struct VectorizerTestPass : public FunctionPass {
static constexpr auto kTestAffineMapOpName = "test_affine_map";
static constexpr auto kTestAffineMapAttrName = "affine_map";
VectorizerTestPass() : FunctionPass(&VectorizerTestPass::passID) {}
PassResult runOnFunction(Function *f) override;
void testVectorShapeRatio(Function *f);
void testForwardSlicing(Function *f);
void testBackwardSlicing(Function *f);
void testSlicing(Function *f);
void testComposeMaps(Function *f);
// Thread-safe RAII contexts local to pass, BumpPtrAllocator freed on exit.
MLFunctionMatcherContext MLContext;
static char passID;
};
} // end anonymous namespace
char VectorizerTestPass::passID = 0;
void VectorizerTestPass::testVectorShapeRatio(Function *f) {
using matcher::Op;
SmallVector<int, 8> shape(clTestVectorShapeRatio.begin(),
clTestVectorShapeRatio.end());
auto subVectorType = VectorType::get(shape, Type::getF32(f->getContext()));
// Only filter instructions that operate on a strict super-vector and have one
// return. This makes testing easier.
auto filter = [subVectorType](const Instruction &inst) {
auto *opInst = dyn_cast<OperationInst>(&inst);
if (!opInst) {
return false;
}
assert(subVectorType.getElementType() ==
Type::getF32(subVectorType.getContext()) &&
"Only f32 supported for now");
if (!matcher::operatesOnSuperVectors(*opInst, subVectorType)) {
return false;
}
if (opInst->getNumResults() != 1) {
return false;
}
return true;
};
auto pat = Op(filter);
auto matches = pat.match(f);
for (auto m : matches) {
auto *opInst = cast<OperationInst>(m.first);
// This is a unit test that only checks and prints shape ratio.
// As a consequence we write only Ops with a single return type for the
// purpose of this test. If we need to test more intricate behavior in the
// future we can always extend.
auto superVectorType = opInst->getResult(0)->getType().cast<VectorType>();
auto ratio = shapeRatio(superVectorType, subVectorType);
if (!ratio.hasValue()) {
opInst->emitNote("NOT MATCHED");
} else {
outs() << "\nmatched: " << *opInst << " with shape ratio: ";
interleaveComma(MutableArrayRef<unsigned>(*ratio), outs());
}
}
}
static std::string toString(Instruction *inst) {
std::string res;
auto os = llvm::raw_string_ostream(res);
inst->print(os);
return res;
}
static MLFunctionMatches matchTestSlicingOps(Function *f) {
// Just use a custom op name for this test, it makes life easier.
constexpr auto kTestSlicingOpName = "slicing-test-op";
using functional::map;
using matcher::Op;
// Match all OpInstructions with the kTestSlicingOpName name.
auto filter = [](const Instruction &inst) {
const auto &opInst = cast<OperationInst>(inst);
return opInst.getName().getStringRef() == kTestSlicingOpName;
};
auto pat = Op(filter);
return pat.match(f);
}
void VectorizerTestPass::testBackwardSlicing(Function *f) {
auto matches = matchTestSlicingOps(f);
for (auto m : matches) {
SetVector<Instruction *> backwardSlice;
getBackwardSlice(m.first, &backwardSlice);
auto strs = map(toString, backwardSlice);
outs() << "\nmatched: " << *m.first << " backward static slice: ";
for (const auto &s : strs) {
outs() << "\n" << s;
}
}
}
void VectorizerTestPass::testForwardSlicing(Function *f) {
auto matches = matchTestSlicingOps(f);
for (auto m : matches) {
SetVector<Instruction *> forwardSlice;
getForwardSlice(m.first, &forwardSlice);
auto strs = map(toString, forwardSlice);
outs() << "\nmatched: " << *m.first << " forward static slice: ";
for (const auto &s : strs) {
outs() << "\n" << s;
}
}
}
void VectorizerTestPass::testSlicing(Function *f) {
auto matches = matchTestSlicingOps(f);
for (auto m : matches) {
SetVector<Instruction *> staticSlice = getSlice(m.first);
auto strs = map(toString, staticSlice);
outs() << "\nmatched: " << *m.first << " static slice: ";
for (const auto &s : strs) {
outs() << "\n" << s;
}
}
}
bool customOpWithAffineMapAttribute(const Instruction &inst) {
const auto &opInst = cast<OperationInst>(inst);
return opInst.getName().getStringRef() ==
VectorizerTestPass::kTestAffineMapOpName;
}
void VectorizerTestPass::testComposeMaps(Function *f) {
using matcher::Op;
auto pattern = Op(customOpWithAffineMapAttribute);
auto matches = pattern.match(f);
SmallVector<AffineMap, 4> maps;
maps.reserve(matches.size());
std::reverse(matches.begin(), matches.end());
for (auto m : matches) {
auto *opInst = cast<OperationInst>(m.first);
auto map = opInst->getAttr(VectorizerTestPass::kTestAffineMapAttrName)
.cast<AffineMapAttr>()
.getValue();
maps.push_back(map);
}
AffineMap res;
for (auto m : maps) {
res = res ? composeUnboundedMaps(res, m) : m;
}
res.print(outs() << "\nComposed map: ");
}
PassResult VectorizerTestPass::runOnFunction(Function *f) {
// Only support single block functions at this point.
if (f->getBlocks().size() != 1)
return success();
if (!clTestVectorShapeRatio.empty()) {
testVectorShapeRatio(f);
}
if (clTestForwardSlicingAnalysis) {
testForwardSlicing(f);
}
if (clTestBackwardSlicingAnalysis) {
testBackwardSlicing(f);
}
if (clTestSlicingAnalysis) {
testSlicing(f);
}
if (clTestComposeMaps) {
testComposeMaps(f);
}
return PassResult::Success;
}
FunctionPass *mlir::createVectorizerTestPass() {
return new VectorizerTestPass();
}
static PassRegistration<VectorizerTestPass>
pass("vectorizer-test", "Tests vectorizer standalone functionality.");
#undef DEBUG_TYPE