Files
clang-p2996/clang/CodeGen/CodeGenTypes.cpp
Steve Naroff 5c13180a27 Fix the following redefinition errors submitted by Keith Bauer...
[dylan:~/llvm/tools/clang] admin% cat tentative_decls.c 
// incorrectly generates redefinition error
extern int array[3];
int array[3];

// incorrectly generates a redefinition error
extern void nup(int a[3]);
void nup(int a[3]) {}

It turns out that this exposed a fairly major flaw in the type system,
array types were never getting uniqued! This is because all array types
contained an expression, which aren't unique.

To solve this, we now have 2 array types, ConstantArrayType and
VariableArrayType. ConstantArrayType's are unique, VAT's aren't.

This is a fairly extensive set of fundamental changes. Fortunately,
all the tests pass. Nevertheless, there may be some collateral damage:-)
If so, let me know!

llvm-svn: 41592
2007-08-30 01:06:46 +00:00

207 lines
7.2 KiB
C++

//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTypes.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/AST.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
using namespace clang;
using namespace CodeGen;
CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M)
: Context(Ctx), Target(Ctx.Target), TheModule(M) {
}
/// ConvertType - Convert the specified type to its LLVM form.
const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
// FIXME: Cache these, move the CodeGenModule, expand, etc.
const clang::Type &Ty = *T.getCanonicalType();
switch (Ty.getTypeClass()) {
case Type::TypeName: // typedef isn't canonical.
case Type::TypeOfExp: // typeof isn't canonical.
case Type::TypeOfTyp: // typeof isn't canonical.
assert(0 && "Non-canonical type, shouldn't happen");
case Type::Builtin: {
switch (cast<BuiltinType>(Ty).getKind()) {
case BuiltinType::Void:
// LLVM void type can only be used as the result of a function call. Just
// map to the same as char.
return llvm::IntegerType::get(8);
case BuiltinType::Bool:
// FIXME: This is very strange. We want scalars to be i1, but in memory
// they can be i1 or i32. Should the codegen handle this issue?
return llvm::Type::Int1Ty;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
case BuiltinType::Short:
case BuiltinType::UShort:
case BuiltinType::Int:
case BuiltinType::UInt:
case BuiltinType::Long:
case BuiltinType::ULong:
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return llvm::IntegerType::get(Context.getTypeSize(T, SourceLocation()));
case BuiltinType::Float: return llvm::Type::FloatTy;
case BuiltinType::Double: return llvm::Type::DoubleTy;
case BuiltinType::LongDouble:
// FIXME: mapping long double onto double.
return llvm::Type::DoubleTy;
}
break;
}
case Type::Complex: {
std::vector<const llvm::Type*> Elts;
Elts.push_back(ConvertType(cast<ComplexType>(Ty).getElementType()));
Elts.push_back(Elts[0]);
return llvm::StructType::get(Elts);
}
case Type::Pointer: {
const PointerType &P = cast<PointerType>(Ty);
return llvm::PointerType::get(ConvertType(P.getPointeeType()));
}
case Type::Reference: {
const ReferenceType &R = cast<ReferenceType>(Ty);
return llvm::PointerType::get(ConvertType(R.getReferenceeType()));
}
case Type::VariableArray: {
const VariableArrayType &A = cast<VariableArrayType>(Ty);
assert(A.getSizeModifier() == ArrayType::Normal &&
A.getIndexTypeQualifier() == 0 &&
"FIXME: We only handle trivial array types so far!");
if (A.getSizeExpr() == 0) {
// int X[] -> [0 x int]
return llvm::ArrayType::get(ConvertType(A.getElementType()), 0);
} else {
assert(0 && "FIXME: VLAs not implemented yet!");
}
}
case Type::ConstantArray: {
const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
const llvm::Type *EltTy = ConvertType(A.getElementType());
return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
}
case Type::OCUVector:
case Type::Vector: {
const VectorType &VT = cast<VectorType>(Ty);
return llvm::VectorType::get(ConvertType(VT.getElementType()),
VT.getNumElements());
}
case Type::FunctionNoProto:
case Type::FunctionProto: {
const FunctionType &FP = cast<FunctionType>(Ty);
const llvm::Type *ResultType;
if (FP.getResultType()->isVoidType())
ResultType = llvm::Type::VoidTy; // Result of function uses llvm void.
else
ResultType = ConvertType(FP.getResultType());
// FIXME: Convert argument types.
bool isVarArg;
std::vector<const llvm::Type*> ArgTys;
// Struct return passes the struct byref.
if (!ResultType->isFirstClassType() && ResultType != llvm::Type::VoidTy) {
ArgTys.push_back(llvm::PointerType::get(ResultType));
ResultType = llvm::Type::VoidTy;
}
if (const FunctionTypeProto *FTP = dyn_cast<FunctionTypeProto>(&FP)) {
DecodeArgumentTypes(*FTP, ArgTys);
isVarArg = FTP->isVariadic();
} else {
isVarArg = true;
}
return llvm::FunctionType::get(ResultType, ArgTys, isVarArg, 0);
}
case Type::Tagged:
const TagType &TT = cast<TagType>(Ty);
const TagDecl *TD = TT.getDecl();
llvm::Type *&ResultType = TagDeclTypes[TD];
if (ResultType)
return ResultType;
if (!TD->isDefinition()) {
ResultType = llvm::OpaqueType::get();
} else if (TD->getKind() == Decl::Enum) {
return ConvertType(cast<EnumDecl>(TD)->getIntegerType());
} else if (TD->getKind() == Decl::Struct) {
const RecordDecl *RD = cast<const RecordDecl>(TD);
std::vector<const llvm::Type*> Fields;
for (unsigned i = 0, e = RD->getNumMembers(); i != e; ++i)
Fields.push_back(ConvertType(RD->getMember(i)->getType()));
ResultType = llvm::StructType::get(Fields);
} else if (TD->getKind() == Decl::Union) {
const RecordDecl *RD = cast<const RecordDecl>(TD);
// Just use the largest element of the union, breaking ties with the
// highest aligned member.
std::vector<const llvm::Type*> Fields;
if (RD->getNumMembers() != 0) {
std::pair<uint64_t, unsigned> MaxElt =
Context.getTypeInfo(RD->getMember(0)->getType(), SourceLocation());
unsigned MaxEltNo = 0;
for (unsigned i = 1, e = RD->getNumMembers(); i != e; ++i) {
std::pair<uint64_t, unsigned> EltInfo =
Context.getTypeInfo(RD->getMember(i)->getType(), SourceLocation());
if (EltInfo.first > MaxElt.first ||
(EltInfo.first == MaxElt.first &&
EltInfo.second > MaxElt.second)) {
MaxElt = EltInfo;
MaxEltNo = i;
}
}
Fields.push_back(ConvertType(RD->getMember(MaxEltNo)->getType()));
}
ResultType = llvm::StructType::get(Fields);
} else {
assert(0 && "FIXME: Implement tag decl kind!");
}
std::string TypeName(TD->getKindName());
TypeName += '.';
TypeName += TD->getName();
TheModule.addTypeName(TypeName, ResultType);
return ResultType;
}
// FIXME: implement.
return llvm::OpaqueType::get();
}
void CodeGenTypes::DecodeArgumentTypes(const FunctionTypeProto &FTP,
std::vector<const llvm::Type*> &ArgTys) {
for (unsigned i = 0, e = FTP.getNumArgs(); i != e; ++i) {
const llvm::Type *Ty = ConvertType(FTP.getArgType(i));
if (Ty->isFirstClassType())
ArgTys.push_back(Ty);
else
ArgTys.push_back(llvm::PointerType::get(Ty));
}
}