Files
clang-p2996/clang/lib/Analysis/FlowSensitive/DataflowAnalysisContext.cpp
Sam McCall 5e4ad816bf [dataflow] Replace most BoolValue subclasses with references to Formula (and AtomicBoolValue => Atom and BoolValue => Formula where appropriate)
This properly frees the Value hierarchy from managing boolean formulas.

We still distinguish AtomicBoolValue; this type is used in client code.
However we expect to convert such uses to BoolValue (where the
distinction is not needed) or Atom (where atomic identity is intended),
and then fold AtomicBoolValue into FormulaBoolValue.

We also distinguish TopBoolValue; this has distinct rules for
widen/join/equivalence, and top-ness is not represented in Formula.
It'd be nice to find a cleaner representation (e.g. the absence of a
formula), but no immediate plans.

For now, BoolValues with the same Formula are deduplicated. This doesn't
seem desirable, as Values are mutable by their creators (properties).
We can probably drop this for FormulaBoolValue immediately (not in this
patch, to isolate changes). For AtomicBoolValue we first need to update
clients to stop using value pointers for atom identity.

The data structures around flow conditions are updated:
- flow condition tokens are Atom, rather than AtomicBoolValue*
- conditions are Formula, rather than BoolValue
Most APIs were changed directly, some with many clients had a
new version added and the existing one deprecated.

The factories for BoolValues in Environment keep their existing
signatures for now (e.g. makeOr(BoolValue, BoolValue) => BoolValue)
and are not deprecated. These have very many clients and finding the
most ergonomic API & migration path still needs some thought.

Differential Revision: https://reviews.llvm.org/D153469
2023-07-05 13:54:32 +02:00

329 lines
12 KiB
C++

//===-- DataflowAnalysisContext.cpp -----------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a DataflowAnalysisContext class that owns objects that
// encompass the state of a program and stores context that is used during
// dataflow analysis.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Analysis/FlowSensitive/DebugSupport.h"
#include "clang/Analysis/FlowSensitive/Formula.h"
#include "clang/Analysis/FlowSensitive/Logger.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <memory>
#include <string>
#include <utility>
#include <vector>
static llvm::cl::opt<std::string> DataflowLog(
"dataflow-log", llvm::cl::Hidden, llvm::cl::ValueOptional,
llvm::cl::desc("Emit log of dataflow analysis. With no arg, writes textual "
"log to stderr. With an arg, writes HTML logs under the "
"specified directory (one per analyzed function)."));
namespace clang {
namespace dataflow {
void DataflowAnalysisContext::addModeledFields(
const llvm::DenseSet<const FieldDecl *> &Fields) {
llvm::set_union(ModeledFields, Fields);
}
llvm::DenseSet<const FieldDecl *>
DataflowAnalysisContext::getReferencedFields(QualType Type) {
llvm::DenseSet<const FieldDecl *> Fields = getObjectFields(Type);
llvm::set_intersect(Fields, ModeledFields);
return Fields;
}
StorageLocation &DataflowAnalysisContext::createStorageLocation(QualType Type) {
if (!Type.isNull() && Type->isRecordType()) {
llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
// During context-sensitive analysis, a struct may be allocated in one
// function, but its field accessed in a function lower in the stack than
// the allocation. Since we only collect fields used in the function where
// the allocation occurs, we can't apply that filter when performing
// context-sensitive analysis. But, this only applies to storage locations,
// since field access it not allowed to fail. In contrast, field *values*
// don't need this allowance, since the API allows for uninitialized fields.
auto Fields = Opts.ContextSensitiveOpts ? getObjectFields(Type)
: getReferencedFields(Type);
for (const FieldDecl *Field : Fields)
FieldLocs.insert({Field, &createStorageLocation(Field->getType())});
return arena().create<AggregateStorageLocation>(Type, std::move(FieldLocs));
}
return arena().create<ScalarStorageLocation>(Type);
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const VarDecl &D) {
if (auto *Loc = getStorageLocation(D))
return *Loc;
auto &Loc = createStorageLocation(D.getType());
setStorageLocation(D, Loc);
return Loc;
}
StorageLocation &
DataflowAnalysisContext::getStableStorageLocation(const Expr &E) {
if (auto *Loc = getStorageLocation(E))
return *Loc;
auto &Loc = createStorageLocation(E.getType());
setStorageLocation(E, Loc);
return Loc;
}
PointerValue &
DataflowAnalysisContext::getOrCreateNullPointerValue(QualType PointeeType) {
auto CanonicalPointeeType =
PointeeType.isNull() ? PointeeType : PointeeType.getCanonicalType();
auto Res = NullPointerVals.try_emplace(CanonicalPointeeType, nullptr);
if (Res.second) {
auto &PointeeLoc = createStorageLocation(CanonicalPointeeType);
Res.first->second = &arena().create<PointerValue>(PointeeLoc);
}
return *Res.first->second;
}
void DataflowAnalysisContext::addFlowConditionConstraint(
Atom Token, const Formula &Constraint) {
auto Res = FlowConditionConstraints.try_emplace(Token, &Constraint);
if (!Res.second) {
Res.first->second =
&arena().makeAnd(*Res.first->second, Constraint);
}
}
Atom DataflowAnalysisContext::forkFlowCondition(Atom Token) {
Atom ForkToken = arena().makeFlowConditionToken();
FlowConditionDeps[ForkToken].insert(Token);
addFlowConditionConstraint(ForkToken, arena().makeAtomRef(Token));
return ForkToken;
}
Atom
DataflowAnalysisContext::joinFlowConditions(Atom FirstToken,
Atom SecondToken) {
Atom Token = arena().makeFlowConditionToken();
FlowConditionDeps[Token].insert(FirstToken);
FlowConditionDeps[Token].insert(SecondToken);
addFlowConditionConstraint(Token,
arena().makeOr(arena().makeAtomRef(FirstToken),
arena().makeAtomRef(SecondToken)));
return Token;
}
Solver::Result DataflowAnalysisContext::querySolver(
llvm::SetVector<const Formula *> Constraints) {
Constraints.insert(&arena().makeLiteral(true));
Constraints.insert(&arena().makeNot(arena().makeLiteral(false)));
return S->solve(Constraints.getArrayRef());
}
bool DataflowAnalysisContext::flowConditionImplies(Atom Token,
const Formula &Val) {
// Returns true if and only if truth assignment of the flow condition implies
// that `Val` is also true. We prove whether or not this property holds by
// reducing the problem to satisfiability checking. In other words, we attempt
// to show that assuming `Val` is false makes the constraints induced by the
// flow condition unsatisfiable.
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
Constraints.insert(&arena().makeNot(Val));
llvm::DenseSet<Atom> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
return isUnsatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::flowConditionIsTautology(Atom Token) {
// Returns true if and only if we cannot prove that the flow condition can
// ever be false.
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeNot(arena().makeAtomRef(Token)));
llvm::DenseSet<Atom> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
return isUnsatisfiable(std::move(Constraints));
}
bool DataflowAnalysisContext::equivalentFormulas(const Formula &Val1,
const Formula &Val2) {
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeNot(arena().makeEquals(Val1, Val2)));
return isUnsatisfiable(std::move(Constraints));
}
void DataflowAnalysisContext::addTransitiveFlowConditionConstraints(
Atom Token, llvm::SetVector<const Formula *> &Constraints,
llvm::DenseSet<Atom> &VisitedTokens) {
auto Res = VisitedTokens.insert(Token);
if (!Res.second)
return;
auto ConstraintsIt = FlowConditionConstraints.find(Token);
if (ConstraintsIt == FlowConditionConstraints.end()) {
Constraints.insert(&arena().makeAtomRef(Token));
} else {
// Bind flow condition token via `iff` to its set of constraints:
// FC <=> (C1 ^ C2 ^ ...), where Ci are constraints
Constraints.insert(&arena().makeEquals(arena().makeAtomRef(Token),
*ConstraintsIt->second));
}
auto DepsIt = FlowConditionDeps.find(Token);
if (DepsIt != FlowConditionDeps.end()) {
for (Atom DepToken : DepsIt->second) {
addTransitiveFlowConditionConstraints(DepToken, Constraints,
VisitedTokens);
}
}
}
void DataflowAnalysisContext::dumpFlowCondition(Atom Token,
llvm::raw_ostream &OS) {
llvm::SetVector<const Formula *> Constraints;
Constraints.insert(&arena().makeAtomRef(Token));
llvm::DenseSet<Atom> VisitedTokens;
addTransitiveFlowConditionConstraints(Token, Constraints, VisitedTokens);
// TODO: have formulas know about true/false directly instead
Atom True = arena().makeLiteral(true).getAtom();
Atom False = arena().makeLiteral(false).getAtom();
Formula::AtomNames Names = {{False, "false"}, {True, "true"}};
for (const auto *Constraint : Constraints) {
Constraint->print(OS, &Names);
OS << "\n";
}
}
const ControlFlowContext *
DataflowAnalysisContext::getControlFlowContext(const FunctionDecl *F) {
// Canonicalize the key:
F = F->getDefinition();
if (F == nullptr)
return nullptr;
auto It = FunctionContexts.find(F);
if (It != FunctionContexts.end())
return &It->second;
if (F->hasBody()) {
auto CFCtx = ControlFlowContext::build(*F);
// FIXME: Handle errors.
assert(CFCtx);
auto Result = FunctionContexts.insert({F, std::move(*CFCtx)});
return &Result.first->second;
}
return nullptr;
}
static std::unique_ptr<Logger> makeLoggerFromCommandLine() {
if (DataflowLog.empty())
return Logger::textual(llvm::errs());
llvm::StringRef Dir = DataflowLog;
if (auto EC = llvm::sys::fs::create_directories(Dir))
llvm::errs() << "Failed to create log dir: " << EC.message() << "\n";
// All analysis runs within a process will log to the same directory.
// Share a counter so they don't all overwrite each other's 0.html.
// (Don't share a logger, it's not threadsafe).
static std::atomic<unsigned> Counter = {0};
auto StreamFactory =
[Dir(Dir.str())]() mutable -> std::unique_ptr<llvm::raw_ostream> {
llvm::SmallString<256> File(Dir);
llvm::sys::path::append(File,
std::to_string(Counter.fetch_add(1)) + ".html");
std::error_code EC;
auto OS = std::make_unique<llvm::raw_fd_ostream>(File, EC);
if (EC) {
llvm::errs() << "Failed to create log " << File << ": " << EC.message()
<< "\n";
return std::make_unique<llvm::raw_null_ostream>();
}
return OS;
};
return Logger::html(std::move(StreamFactory));
}
DataflowAnalysisContext::DataflowAnalysisContext(std::unique_ptr<Solver> S,
Options Opts)
: S(std::move(S)), A(std::make_unique<Arena>()), Opts(Opts) {
assert(this->S != nullptr);
// If the -dataflow-log command-line flag was set, synthesize a logger.
// This is ugly but provides a uniform method for ad-hoc debugging dataflow-
// based tools.
if (Opts.Log == nullptr) {
if (DataflowLog.getNumOccurrences() > 0) {
LogOwner = makeLoggerFromCommandLine();
this->Opts.Log = LogOwner.get();
// FIXME: if the flag is given a value, write an HTML log to a file.
} else {
this->Opts.Log = &Logger::null();
}
}
}
DataflowAnalysisContext::~DataflowAnalysisContext() = default;
} // namespace dataflow
} // namespace clang
using namespace clang;
const Expr &clang::dataflow::ignoreCFGOmittedNodes(const Expr &E) {
const Expr *Current = &E;
if (auto *EWC = dyn_cast<ExprWithCleanups>(Current)) {
Current = EWC->getSubExpr();
assert(Current != nullptr);
}
Current = Current->IgnoreParens();
assert(Current != nullptr);
return *Current;
}
const Stmt &clang::dataflow::ignoreCFGOmittedNodes(const Stmt &S) {
if (auto *E = dyn_cast<Expr>(&S))
return ignoreCFGOmittedNodes(*E);
return S;
}
// FIXME: Does not precisely handle non-virtual diamond inheritance. A single
// field decl will be modeled for all instances of the inherited field.
static void
getFieldsFromClassHierarchy(QualType Type,
llvm::DenseSet<const FieldDecl *> &Fields) {
if (Type->isIncompleteType() || Type->isDependentType() ||
!Type->isRecordType())
return;
for (const FieldDecl *Field : Type->getAsRecordDecl()->fields())
Fields.insert(Field);
if (auto *CXXRecord = Type->getAsCXXRecordDecl())
for (const CXXBaseSpecifier &Base : CXXRecord->bases())
getFieldsFromClassHierarchy(Base.getType(), Fields);
}
/// Gets the set of all fields in the type.
llvm::DenseSet<const FieldDecl *>
clang::dataflow::getObjectFields(QualType Type) {
llvm::DenseSet<const FieldDecl *> Fields;
getFieldsFromClassHierarchy(Type, Fields);
return Fields;
}