Files
clang-p2996/mlir/lib/Transforms/Utils/DialectConversion.cpp
Matthias Springer 6008cd40b7 [mlir][Transforms] Dialect conversion: Assert when accessing erased ops (#83132)
The dialect conversion maintains sets of "ignored" and "replaced" ops.
This change simplifies the two sets, such that all nested ops are
included. (This was previously not the case and sometimes only the
parent op was included.)

This change allows for more aggressive assertions to prevent incorrect
rewriter API usage. E.g., accessing ops/blocks/regions within an erased
op.

A concrete example: I have seen conversion patterns in downstream
projects where an op is replaced with a new op, and the region of the
old op is afterwards inlined into the newly created op. This is invalid
rewriter API usage: ops that were replaced/erased should not be
accessed. Nested ops will be considered "ignored", even if they are
moved to a different region after the region's parent op was erased
(which is illegal API usage). Instead, create a new op, inline the
regions, then replace the old op with the new op.
2024-02-28 10:22:45 +01:00

3561 lines
136 KiB
C++

//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Config/mlir-config.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Iterators.h"
#include "mlir/Interfaces/FunctionInterfaces.h"
#include "mlir/Rewrite/PatternApplicator.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/ScopedPrinter.h"
#include <optional>
using namespace mlir;
using namespace mlir::detail;
#define DEBUG_TYPE "dialect-conversion"
/// A utility function to log a successful result for the given reason.
template <typename... Args>
static void logSuccess(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> SUCCESS";
if (!fmt.empty())
os.getOStream() << " : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...);
os.getOStream() << "\n";
});
}
/// A utility function to log a failure result for the given reason.
template <typename... Args>
static void logFailure(llvm::ScopedPrinter &os, StringRef fmt, Args &&...args) {
LLVM_DEBUG({
os.unindent();
os.startLine() << "} -> FAILURE : "
<< llvm::formatv(fmt.data(), std::forward<Args>(args)...)
<< "\n";
});
}
//===----------------------------------------------------------------------===//
// ConversionValueMapping
//===----------------------------------------------------------------------===//
namespace {
/// This class wraps a IRMapping to provide recursive lookup
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
struct ConversionValueMapping {
/// Lookup a mapped value within the map. If a mapping for the provided value
/// does not exist then return the provided value. If `desiredType` is
/// non-null, returns the most recently mapped value with that type. If an
/// operand of that type does not exist, defaults to normal behavior.
Value lookupOrDefault(Value from, Type desiredType = nullptr) const;
/// Lookup a mapped value within the map, or return null if a mapping does not
/// exist. If a mapping exists, this follows the same behavior of
/// `lookupOrDefault`.
Value lookupOrNull(Value from, Type desiredType = nullptr) const;
/// Map a value to the one provided.
void map(Value oldVal, Value newVal) {
LLVM_DEBUG({
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
assert(it != oldVal && "inserting cyclic mapping");
});
mapping.map(oldVal, newVal);
}
/// Try to map a value to the one provided. Returns false if a transitive
/// mapping from the new value to the old value already exists, true if the
/// map was updated.
bool tryMap(Value oldVal, Value newVal);
/// Drop the last mapping for the given value.
void erase(Value value) { mapping.erase(value); }
/// Returns the inverse raw value mapping (without recursive query support).
DenseMap<Value, SmallVector<Value>> getInverse() const {
DenseMap<Value, SmallVector<Value>> inverse;
for (auto &it : mapping.getValueMap())
inverse[it.second].push_back(it.first);
return inverse;
}
private:
/// Current value mappings.
IRMapping mapping;
};
} // namespace
Value ConversionValueMapping::lookupOrDefault(Value from,
Type desiredType) const {
// If there was no desired type, simply find the leaf value.
if (!desiredType) {
// If this value had a valid mapping, unmap that value as well in the case
// that it was also replaced.
while (auto mappedValue = mapping.lookupOrNull(from))
from = mappedValue;
return from;
}
// Otherwise, try to find the deepest value that has the desired type.
Value desiredValue;
do {
if (from.getType() == desiredType)
desiredValue = from;
Value mappedValue = mapping.lookupOrNull(from);
if (!mappedValue)
break;
from = mappedValue;
} while (true);
// If the desired value was found use it, otherwise default to the leaf value.
return desiredValue ? desiredValue : from;
}
Value ConversionValueMapping::lookupOrNull(Value from, Type desiredType) const {
Value result = lookupOrDefault(from, desiredType);
if (result == from || (desiredType && result.getType() != desiredType))
return nullptr;
return result;
}
bool ConversionValueMapping::tryMap(Value oldVal, Value newVal) {
for (Value it = newVal; it; it = mapping.lookupOrNull(it))
if (it == oldVal)
return false;
map(oldVal, newVal);
return true;
}
//===----------------------------------------------------------------------===//
// Rewriter and Translation State
//===----------------------------------------------------------------------===//
namespace {
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
RewriterState(unsigned numRewrites, unsigned numIgnoredOperations,
unsigned numErased, unsigned numReplacedOps)
: numRewrites(numRewrites), numIgnoredOperations(numIgnoredOperations),
numErased(numErased), numReplacedOps(numReplacedOps) {}
/// The current number of rewrites performed.
unsigned numRewrites;
/// The current number of ignored operations.
unsigned numIgnoredOperations;
/// The current number of erased operations/blocks.
unsigned numErased;
/// The current number of replaced ops that are scheduled for erasure.
unsigned numReplacedOps;
};
//===----------------------------------------------------------------------===//
// IR rewrites
//===----------------------------------------------------------------------===//
/// An IR rewrite that can be committed (upon success) or rolled back (upon
/// failure).
///
/// The dialect conversion keeps track of IR modifications (requested by the
/// user through the rewriter API) in `IRRewrite` objects. Some kind of rewrites
/// are directly applied to the IR as the rewriter API is used, some are applied
/// partially, and some are delayed until the `IRRewrite` objects are committed.
class IRRewrite {
public:
/// The kind of the rewrite. Rewrites can be undone if the conversion fails.
/// Enum values are ordered, so that they can be used in `classof`: first all
/// block rewrites, then all operation rewrites.
enum class Kind {
// Block rewrites
CreateBlock,
EraseBlock,
InlineBlock,
MoveBlock,
SplitBlock,
BlockTypeConversion,
ReplaceBlockArg,
// Operation rewrites
MoveOperation,
ModifyOperation,
ReplaceOperation,
CreateOperation,
UnresolvedMaterialization
};
virtual ~IRRewrite() = default;
/// Roll back the rewrite. Operations may be erased during rollback.
virtual void rollback() = 0;
/// Commit the rewrite. Operations may be unlinked from their blocks during
/// the commit phase, but they must not be erased yet. This is because
/// internal dialect conversion state (such as `mapping`) may still be using
/// them. Operations must be erased during cleanup.
virtual void commit() {}
/// Cleanup operations. Cleanup is called after commit.
virtual void cleanup() {}
Kind getKind() const { return kind; }
static bool classof(const IRRewrite *rewrite) { return true; }
protected:
IRRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl)
: kind(kind), rewriterImpl(rewriterImpl) {}
/// Erase the given op (unless it was already erased).
void eraseOp(Operation *op);
/// Erase the given block (unless it was already erased).
void eraseBlock(Block *block);
const ConversionConfig &getConfig() const;
const Kind kind;
ConversionPatternRewriterImpl &rewriterImpl;
};
/// A block rewrite.
class BlockRewrite : public IRRewrite {
public:
/// Return the block that this rewrite operates on.
Block *getBlock() const { return block; }
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() >= Kind::CreateBlock &&
rewrite->getKind() <= Kind::ReplaceBlockArg;
}
protected:
BlockRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
Block *block)
: IRRewrite(kind, rewriterImpl), block(block) {}
// The block that this rewrite operates on.
Block *block;
};
/// Creation of a block. Block creations are immediately reflected in the IR.
/// There is no extra work to commit the rewrite. During rollback, the newly
/// created block is erased.
class CreateBlockRewrite : public BlockRewrite {
public:
CreateBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block)
: BlockRewrite(Kind::CreateBlock, rewriterImpl, block) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::CreateBlock;
}
void rollback() override {
// Unlink all of the operations within this block, they will be deleted
// separately.
auto &blockOps = block->getOperations();
while (!blockOps.empty())
blockOps.remove(blockOps.begin());
if (block->getParent())
eraseBlock(block);
else
delete block;
}
};
/// Erasure of a block. Block erasures are partially reflected in the IR. Erased
/// blocks are immediately unlinked, but only erased when the rewrite is
/// committed. This makes it easier to rollback a block erasure: the block is
/// simply inserted into its original location.
class EraseBlockRewrite : public BlockRewrite {
public:
EraseBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
Region *region, Block *insertBeforeBlock)
: BlockRewrite(Kind::EraseBlock, rewriterImpl, block), region(region),
insertBeforeBlock(insertBeforeBlock) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::EraseBlock;
}
~EraseBlockRewrite() override {
assert(!block && "rewrite was neither rolled back nor committed");
}
void rollback() override {
// The block (owned by this rewrite) was not actually erased yet. It was
// just unlinked. Put it back into its original position.
assert(block && "expected block");
auto &blockList = region->getBlocks();
Region::iterator before = insertBeforeBlock
? Region::iterator(insertBeforeBlock)
: blockList.end();
blockList.insert(before, block);
block = nullptr;
}
void commit() override {
// Erase the block.
assert(block && "expected block");
assert(block->empty() && "expected empty block");
block->dropAllDefinedValueUses();
delete block;
block = nullptr;
}
private:
// The region in which this block was previously contained.
Region *region;
// The original successor of this block before it was unlinked. "nullptr" if
// this block was the only block in the region.
Block *insertBeforeBlock;
};
/// Inlining of a block. This rewrite is immediately reflected in the IR.
/// Note: This rewrite represents only the inlining of the operations. The
/// erasure of the inlined block is a separate rewrite.
class InlineBlockRewrite : public BlockRewrite {
public:
InlineBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
Block *sourceBlock, Block::iterator before)
: BlockRewrite(Kind::InlineBlock, rewriterImpl, block),
sourceBlock(sourceBlock),
firstInlinedInst(sourceBlock->empty() ? nullptr
: &sourceBlock->front()),
lastInlinedInst(sourceBlock->empty() ? nullptr : &sourceBlock->back()) {
}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::InlineBlock;
}
void rollback() override {
// Put the operations from the destination block (owned by the rewrite)
// back into the source block.
if (firstInlinedInst) {
assert(lastInlinedInst && "expected operation");
sourceBlock->getOperations().splice(sourceBlock->begin(),
block->getOperations(),
Block::iterator(firstInlinedInst),
++Block::iterator(lastInlinedInst));
}
}
private:
// The block that originally contained the operations.
Block *sourceBlock;
// The first inlined operation.
Operation *firstInlinedInst;
// The last inlined operation.
Operation *lastInlinedInst;
};
/// Moving of a block. This rewrite is immediately reflected in the IR.
class MoveBlockRewrite : public BlockRewrite {
public:
MoveBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
Region *region, Block *insertBeforeBlock)
: BlockRewrite(Kind::MoveBlock, rewriterImpl, block), region(region),
insertBeforeBlock(insertBeforeBlock) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::MoveBlock;
}
void rollback() override {
// Move the block back to its original position.
Region::iterator before =
insertBeforeBlock ? Region::iterator(insertBeforeBlock) : region->end();
region->getBlocks().splice(before, block->getParent()->getBlocks(), block);
}
private:
// The region in which this block was previously contained.
Region *region;
// The original successor of this block before it was moved. "nullptr" if
// this block was the only block in the region.
Block *insertBeforeBlock;
};
/// Splitting of a block. This rewrite is immediately reflected in the IR.
class SplitBlockRewrite : public BlockRewrite {
public:
SplitBlockRewrite(ConversionPatternRewriterImpl &rewriterImpl, Block *block,
Block *originalBlock)
: BlockRewrite(Kind::SplitBlock, rewriterImpl, block),
originalBlock(originalBlock) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::SplitBlock;
}
void rollback() override {
// Merge back the block that was split out.
originalBlock->getOperations().splice(originalBlock->end(),
block->getOperations());
eraseBlock(block);
}
private:
// The original block from which this block was split.
Block *originalBlock;
};
/// This structure contains the information pertaining to an argument that has
/// been converted.
struct ConvertedArgInfo {
ConvertedArgInfo(unsigned newArgIdx, unsigned newArgSize,
Value castValue = nullptr)
: newArgIdx(newArgIdx), newArgSize(newArgSize), castValue(castValue) {}
/// The start index of in the new argument list that contains arguments that
/// replace the original.
unsigned newArgIdx;
/// The number of arguments that replaced the original argument.
unsigned newArgSize;
/// The cast value that was created to cast from the new arguments to the
/// old. This only used if 'newArgSize' > 1.
Value castValue;
};
/// Block type conversion. This rewrite is partially reflected in the IR.
class BlockTypeConversionRewrite : public BlockRewrite {
public:
BlockTypeConversionRewrite(
ConversionPatternRewriterImpl &rewriterImpl, Block *block,
Block *origBlock, SmallVector<std::optional<ConvertedArgInfo>, 1> argInfo,
const TypeConverter *converter)
: BlockRewrite(Kind::BlockTypeConversion, rewriterImpl, block),
origBlock(origBlock), argInfo(argInfo), converter(converter) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::BlockTypeConversion;
}
/// Materialize any necessary conversions for converted arguments that have
/// live users, using the provided `findLiveUser` to search for a user that
/// survives the conversion process.
LogicalResult
materializeLiveConversions(function_ref<Operation *(Value)> findLiveUser);
void commit() override;
void rollback() override;
private:
/// The original block that was requested to have its signature converted.
Block *origBlock;
/// The conversion information for each of the arguments. The information is
/// std::nullopt if the argument was dropped during conversion.
SmallVector<std::optional<ConvertedArgInfo>, 1> argInfo;
/// The type converter used to convert the arguments.
const TypeConverter *converter;
};
/// Replacing a block argument. This rewrite is not immediately reflected in the
/// IR. An internal IR mapping is updated, but the actual replacement is delayed
/// until the rewrite is committed.
class ReplaceBlockArgRewrite : public BlockRewrite {
public:
ReplaceBlockArgRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Block *block, BlockArgument arg)
: BlockRewrite(Kind::ReplaceBlockArg, rewriterImpl, block), arg(arg) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::ReplaceBlockArg;
}
void commit() override;
void rollback() override;
private:
BlockArgument arg;
};
/// An operation rewrite.
class OperationRewrite : public IRRewrite {
public:
/// Return the operation that this rewrite operates on.
Operation *getOperation() const { return op; }
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() >= Kind::MoveOperation &&
rewrite->getKind() <= Kind::UnresolvedMaterialization;
}
protected:
OperationRewrite(Kind kind, ConversionPatternRewriterImpl &rewriterImpl,
Operation *op)
: IRRewrite(kind, rewriterImpl), op(op) {}
// The operation that this rewrite operates on.
Operation *op;
};
/// Moving of an operation. This rewrite is immediately reflected in the IR.
class MoveOperationRewrite : public OperationRewrite {
public:
MoveOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Operation *op, Block *block, Operation *insertBeforeOp)
: OperationRewrite(Kind::MoveOperation, rewriterImpl, op), block(block),
insertBeforeOp(insertBeforeOp) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::MoveOperation;
}
void rollback() override {
// Move the operation back to its original position.
Block::iterator before =
insertBeforeOp ? Block::iterator(insertBeforeOp) : block->end();
block->getOperations().splice(before, op->getBlock()->getOperations(), op);
}
private:
// The block in which this operation was previously contained.
Block *block;
// The original successor of this operation before it was moved. "nullptr"
// if this operation was the only operation in the region.
Operation *insertBeforeOp;
};
/// In-place modification of an op. This rewrite is immediately reflected in
/// the IR. The previous state of the operation is stored in this object.
class ModifyOperationRewrite : public OperationRewrite {
public:
ModifyOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Operation *op)
: OperationRewrite(Kind::ModifyOperation, rewriterImpl, op),
name(op->getName()), loc(op->getLoc()), attrs(op->getAttrDictionary()),
operands(op->operand_begin(), op->operand_end()),
successors(op->successor_begin(), op->successor_end()) {
if (OpaqueProperties prop = op->getPropertiesStorage()) {
// Make a copy of the properties.
propertiesStorage = operator new(op->getPropertiesStorageSize());
OpaqueProperties propCopy(propertiesStorage);
name.initOpProperties(propCopy, /*init=*/prop);
}
}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::ModifyOperation;
}
~ModifyOperationRewrite() override {
assert(!propertiesStorage &&
"rewrite was neither committed nor rolled back");
}
void commit() override {
if (propertiesStorage) {
OpaqueProperties propCopy(propertiesStorage);
// Note: The operation may have been erased in the mean time, so
// OperationName must be stored in this object.
name.destroyOpProperties(propCopy);
operator delete(propertiesStorage);
propertiesStorage = nullptr;
}
}
void rollback() override {
op->setLoc(loc);
op->setAttrs(attrs);
op->setOperands(operands);
for (const auto &it : llvm::enumerate(successors))
op->setSuccessor(it.value(), it.index());
if (propertiesStorage) {
OpaqueProperties propCopy(propertiesStorage);
op->copyProperties(propCopy);
name.destroyOpProperties(propCopy);
operator delete(propertiesStorage);
propertiesStorage = nullptr;
}
}
private:
OperationName name;
LocationAttr loc;
DictionaryAttr attrs;
SmallVector<Value, 8> operands;
SmallVector<Block *, 2> successors;
void *propertiesStorage = nullptr;
};
/// Replacing an operation. Erasing an operation is treated as a special case
/// with "null" replacements. This rewrite is not immediately reflected in the
/// IR. An internal IR mapping is updated, but values are not replaced and the
/// original op is not erased until the rewrite is committed.
class ReplaceOperationRewrite : public OperationRewrite {
public:
ReplaceOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Operation *op, const TypeConverter *converter,
bool changedResults)
: OperationRewrite(Kind::ReplaceOperation, rewriterImpl, op),
converter(converter), changedResults(changedResults) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::ReplaceOperation;
}
void commit() override;
void rollback() override;
void cleanup() override;
const TypeConverter *getConverter() const { return converter; }
bool hasChangedResults() const { return changedResults; }
private:
/// An optional type converter that can be used to materialize conversions
/// between the new and old values if necessary.
const TypeConverter *converter;
/// A boolean flag that indicates whether result types have changed or not.
bool changedResults;
};
class CreateOperationRewrite : public OperationRewrite {
public:
CreateOperationRewrite(ConversionPatternRewriterImpl &rewriterImpl,
Operation *op)
: OperationRewrite(Kind::CreateOperation, rewriterImpl, op) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::CreateOperation;
}
void rollback() override;
};
/// The type of materialization.
enum MaterializationKind {
/// This materialization materializes a conversion for an illegal block
/// argument type, to a legal one.
Argument,
/// This materialization materializes a conversion from an illegal type to a
/// legal one.
Target
};
/// An unresolved materialization, i.e., a "builtin.unrealized_conversion_cast"
/// op. Unresolved materializations are erased at the end of the dialect
/// conversion.
class UnresolvedMaterializationRewrite : public OperationRewrite {
public:
UnresolvedMaterializationRewrite(
ConversionPatternRewriterImpl &rewriterImpl,
UnrealizedConversionCastOp op, const TypeConverter *converter = nullptr,
MaterializationKind kind = MaterializationKind::Target,
Type origOutputType = nullptr)
: OperationRewrite(Kind::UnresolvedMaterialization, rewriterImpl, op),
converterAndKind(converter, kind), origOutputType(origOutputType) {}
static bool classof(const IRRewrite *rewrite) {
return rewrite->getKind() == Kind::UnresolvedMaterialization;
}
UnrealizedConversionCastOp getOperation() const {
return cast<UnrealizedConversionCastOp>(op);
}
void rollback() override;
void cleanup() override;
/// Return the type converter of this materialization (which may be null).
const TypeConverter *getConverter() const {
return converterAndKind.getPointer();
}
/// Return the kind of this materialization.
MaterializationKind getMaterializationKind() const {
return converterAndKind.getInt();
}
/// Set the kind of this materialization.
void setMaterializationKind(MaterializationKind kind) {
converterAndKind.setInt(kind);
}
/// Return the original illegal output type of the input values.
Type getOrigOutputType() const { return origOutputType; }
private:
/// The corresponding type converter to use when resolving this
/// materialization, and the kind of this materialization.
llvm::PointerIntPair<const TypeConverter *, 1, MaterializationKind>
converterAndKind;
/// The original output type. This is only used for argument conversions.
Type origOutputType;
};
} // namespace
/// Return "true" if there is an operation rewrite that matches the specified
/// rewrite type and operation among the given rewrites.
template <typename RewriteTy, typename R>
static bool hasRewrite(R &&rewrites, Operation *op) {
return any_of(std::move(rewrites), [&](auto &rewrite) {
auto *rewriteTy = dyn_cast<RewriteTy>(rewrite.get());
return rewriteTy && rewriteTy->getOperation() == op;
});
}
/// Find the single rewrite object of the specified type and block among the
/// given rewrites. In debug mode, asserts that there is mo more than one such
/// object. Return "nullptr" if no object was found.
template <typename RewriteTy, typename R>
static RewriteTy *findSingleRewrite(R &&rewrites, Block *block) {
RewriteTy *result = nullptr;
for (auto &rewrite : rewrites) {
auto *rewriteTy = dyn_cast<RewriteTy>(rewrite.get());
if (rewriteTy && rewriteTy->getBlock() == block) {
#ifndef NDEBUG
assert(!result && "expected single matching rewrite");
result = rewriteTy;
#else
return rewriteTy;
#endif // NDEBUG
}
}
return result;
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriterImpl
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
struct ConversionPatternRewriterImpl : public RewriterBase::Listener {
explicit ConversionPatternRewriterImpl(MLIRContext *ctx,
const ConversionConfig &config)
: eraseRewriter(ctx), config(config) {}
//===--------------------------------------------------------------------===//
// State Management
//===--------------------------------------------------------------------===//
/// Return the current state of the rewriter.
RewriterState getCurrentState();
/// Apply all requested operation rewrites. This method is invoked when the
/// conversion process succeeds.
void applyRewrites();
/// Reset the state of the rewriter to a previously saved point.
void resetState(RewriterState state);
/// Append a rewrite. Rewrites are committed upon success and rolled back upon
/// failure.
template <typename RewriteTy, typename... Args>
void appendRewrite(Args &&...args) {
rewrites.push_back(
std::make_unique<RewriteTy>(*this, std::forward<Args>(args)...));
}
/// Undo the rewrites (motions, splits) one by one in reverse order until
/// "numRewritesToKeep" rewrites remains.
void undoRewrites(unsigned numRewritesToKeep = 0);
/// Remap the given values to those with potentially different types. Returns
/// success if the values could be remapped, failure otherwise. `valueDiagTag`
/// is the tag used when describing a value within a diagnostic, e.g.
/// "operand".
LogicalResult remapValues(StringRef valueDiagTag,
std::optional<Location> inputLoc,
PatternRewriter &rewriter, ValueRange values,
SmallVectorImpl<Value> &remapped);
/// Return "true" if the given operation is ignored, and does not need to be
/// converted.
bool isOpIgnored(Operation *op) const;
/// Return "true" if the given operation was replaced or erased.
bool wasOpReplaced(Operation *op) const;
//===--------------------------------------------------------------------===//
// Type Conversion
//===--------------------------------------------------------------------===//
/// Attempt to convert the signature of the given block, if successful a new
/// block is returned containing the new arguments. Returns `block` if it did
/// not require conversion.
FailureOr<Block *> convertBlockSignature(
Block *block, const TypeConverter *converter,
TypeConverter::SignatureConversion *conversion = nullptr);
/// Convert the types of non-entry block arguments within the given region.
LogicalResult convertNonEntryRegionTypes(
Region *region, const TypeConverter &converter,
ArrayRef<TypeConverter::SignatureConversion> blockConversions = {});
/// Apply a signature conversion on the given region, using `converter` for
/// materializations if not null.
Block *
applySignatureConversion(Region *region,
TypeConverter::SignatureConversion &conversion,
const TypeConverter *converter);
/// Convert the types of block arguments within the given region.
FailureOr<Block *>
convertRegionTypes(Region *region, const TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion);
/// Apply the given signature conversion on the given block. The new block
/// containing the updated signature is returned. If no conversions were
/// necessary, e.g. if the block has no arguments, `block` is returned.
/// `converter` is used to generate any necessary cast operations that
/// translate between the origin argument types and those specified in the
/// signature conversion.
Block *applySignatureConversion(
Block *block, const TypeConverter *converter,
TypeConverter::SignatureConversion &signatureConversion);
//===--------------------------------------------------------------------===//
// Materializations
//===--------------------------------------------------------------------===//
/// Build an unresolved materialization operation given an output type and set
/// of input operands.
Value buildUnresolvedMaterialization(MaterializationKind kind,
Block *insertBlock,
Block::iterator insertPt, Location loc,
ValueRange inputs, Type outputType,
Type origOutputType,
const TypeConverter *converter);
Value buildUnresolvedArgumentMaterialization(Block *block, Location loc,
ValueRange inputs,
Type origOutputType,
Type outputType,
const TypeConverter *converter);
Value buildUnresolvedTargetMaterialization(Location loc, Value input,
Type outputType,
const TypeConverter *converter);
//===--------------------------------------------------------------------===//
// Rewriter Notification Hooks
//===--------------------------------------------------------------------===//
//// Notifies that an op was inserted.
void notifyOperationInserted(Operation *op,
OpBuilder::InsertPoint previous) override;
/// Notifies that an op is about to be replaced with the given values.
void notifyOpReplaced(Operation *op, ValueRange newValues);
/// Notifies that a block is about to be erased.
void notifyBlockIsBeingErased(Block *block);
/// Notifies that a block was inserted.
void notifyBlockInserted(Block *block, Region *previous,
Region::iterator previousIt) override;
/// Notifies that a block was split.
void notifySplitBlock(Block *block, Block *continuation);
/// Notifies that a block is being inlined into another block.
void notifyBlockBeingInlined(Block *block, Block *srcBlock,
Block::iterator before);
/// Notifies that a pattern match failed for the given reason.
void
notifyMatchFailure(Location loc,
function_ref<void(Diagnostic &)> reasonCallback) override;
//===--------------------------------------------------------------------===//
// IR Erasure
//===--------------------------------------------------------------------===//
/// A rewriter that keeps track of erased ops and blocks. It ensures that no
/// operation or block is erased multiple times. This rewriter assumes that
/// no new IR is created between calls to `eraseOp`/`eraseBlock`.
struct SingleEraseRewriter : public RewriterBase, RewriterBase::Listener {
public:
SingleEraseRewriter(MLIRContext *context)
: RewriterBase(context, /*listener=*/this) {}
/// Erase the given op (unless it was already erased).
void eraseOp(Operation *op) override {
if (erased.contains(op))
return;
op->dropAllUses();
RewriterBase::eraseOp(op);
}
/// Erase the given block (unless it was already erased).
void eraseBlock(Block *block) override {
if (erased.contains(block))
return;
assert(block->empty() && "expected empty block");
block->dropAllDefinedValueUses();
RewriterBase::eraseBlock(block);
}
void notifyOperationErased(Operation *op) override { erased.insert(op); }
void notifyBlockErased(Block *block) override { erased.insert(block); }
/// Pointers to all erased operations and blocks.
SetVector<void *> erased;
};
//===--------------------------------------------------------------------===//
// State
//===--------------------------------------------------------------------===//
/// This rewriter must be used for erasing ops/blocks.
SingleEraseRewriter eraseRewriter;
// Mapping between replaced values that differ in type. This happens when
// replacing a value with one of a different type.
ConversionValueMapping mapping;
/// Ordered list of block operations (creations, splits, motions).
SmallVector<std::unique_ptr<IRRewrite>> rewrites;
/// A set of operations that should no longer be considered for legalization.
/// E.g., ops that are recursively legal. Ops that were replaced/erased are
/// tracked separately.
SetVector<Operation *> ignoredOps;
/// A set of operations that were replaced/erased. Such ops are not erased
/// immediately but only when the dialect conversion succeeds. In the mean
/// time, they should no longer be considered for legalization and any attempt
/// to modify/access them is invalid rewriter API usage.
SetVector<Operation *> replacedOps;
/// The current type converter, or nullptr if no type converter is currently
/// active.
const TypeConverter *currentTypeConverter = nullptr;
/// A mapping of regions to type converters that should be used when
/// converting the arguments of blocks within that region.
DenseMap<Region *, const TypeConverter *> regionToConverter;
/// Dialect conversion configuration.
const ConversionConfig &config;
#ifndef NDEBUG
/// A set of operations that have pending updates. This tracking isn't
/// strictly necessary, and is thus only active during debug builds for extra
/// verification.
SmallPtrSet<Operation *, 1> pendingRootUpdates;
/// A logger used to emit diagnostics during the conversion process.
llvm::ScopedPrinter logger{llvm::dbgs()};
#endif
};
} // namespace detail
} // namespace mlir
void IRRewrite::eraseOp(Operation *op) {
rewriterImpl.eraseRewriter.eraseOp(op);
}
void IRRewrite::eraseBlock(Block *block) {
rewriterImpl.eraseRewriter.eraseBlock(block);
}
const ConversionConfig &IRRewrite::getConfig() const {
return rewriterImpl.config;
}
void BlockTypeConversionRewrite::commit() {
// Process the remapping for each of the original arguments.
for (auto [origArg, info] :
llvm::zip_equal(origBlock->getArguments(), argInfo)) {
// Handle the case of a 1->0 value mapping.
if (!info) {
if (Value newArg =
rewriterImpl.mapping.lookupOrNull(origArg, origArg.getType()))
origArg.replaceAllUsesWith(newArg);
continue;
}
// Otherwise this is a 1->1+ value mapping.
Value castValue = info->castValue;
assert(info->newArgSize >= 1 && castValue && "expected 1->1+ mapping");
// If the argument is still used, replace it with the generated cast.
if (!origArg.use_empty()) {
origArg.replaceAllUsesWith(
rewriterImpl.mapping.lookupOrDefault(castValue, origArg.getType()));
}
}
assert(origBlock->empty() && "expected empty block");
origBlock->dropAllDefinedValueUses();
delete origBlock;
origBlock = nullptr;
}
void BlockTypeConversionRewrite::rollback() {
// Drop all uses of the new block arguments and replace uses of the new block.
for (int i = block->getNumArguments() - 1; i >= 0; --i)
block->getArgument(i).dropAllUses();
block->replaceAllUsesWith(origBlock);
// Move the operations back the original block, move the original block back
// into its original location and the delete the new block.
origBlock->getOperations().splice(origBlock->end(), block->getOperations());
block->getParent()->getBlocks().insert(Region::iterator(block), origBlock);
eraseBlock(block);
}
LogicalResult BlockTypeConversionRewrite::materializeLiveConversions(
function_ref<Operation *(Value)> findLiveUser) {
// Process the remapping for each of the original arguments.
for (auto it : llvm::enumerate(origBlock->getArguments())) {
BlockArgument origArg = it.value();
// Note: `block` may be detached, so OpBuilder::atBlockBegin cannot be used.
OpBuilder builder(it.value().getContext(), /*listener=*/&rewriterImpl);
builder.setInsertionPointToStart(block);
// If the type of this argument changed and the argument is still live, we
// need to materialize a conversion.
if (rewriterImpl.mapping.lookupOrNull(origArg, origArg.getType()))
continue;
Operation *liveUser = findLiveUser(origArg);
if (!liveUser)
continue;
Value replacementValue = rewriterImpl.mapping.lookupOrDefault(origArg);
bool isDroppedArg = replacementValue == origArg;
if (!isDroppedArg)
builder.setInsertionPointAfterValue(replacementValue);
Value newArg;
if (converter) {
newArg = converter->materializeSourceConversion(
builder, origArg.getLoc(), origArg.getType(),
isDroppedArg ? ValueRange() : ValueRange(replacementValue));
assert((!newArg || newArg.getType() == origArg.getType()) &&
"materialization hook did not provide a value of the expected "
"type");
}
if (!newArg) {
InFlightDiagnostic diag =
emitError(origArg.getLoc())
<< "failed to materialize conversion for block argument #"
<< it.index() << " that remained live after conversion, type was "
<< origArg.getType();
if (!isDroppedArg)
diag << ", with target type " << replacementValue.getType();
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
return failure();
}
rewriterImpl.mapping.map(origArg, newArg);
}
return success();
}
void ReplaceBlockArgRewrite::commit() {
Value repl = rewriterImpl.mapping.lookupOrNull(arg, arg.getType());
if (!repl)
return;
if (isa<BlockArgument>(repl)) {
arg.replaceAllUsesWith(repl);
return;
}
// If the replacement value is an operation, we check to make sure that we
// don't replace uses that are within the parent operation of the
// replacement value.
Operation *replOp = cast<OpResult>(repl).getOwner();
Block *replBlock = replOp->getBlock();
arg.replaceUsesWithIf(repl, [&](OpOperand &operand) {
Operation *user = operand.getOwner();
return user->getBlock() != replBlock || replOp->isBeforeInBlock(user);
});
}
void ReplaceBlockArgRewrite::rollback() { rewriterImpl.mapping.erase(arg); }
void ReplaceOperationRewrite::commit() {
for (OpResult result : op->getResults())
if (Value newValue =
rewriterImpl.mapping.lookupOrNull(result, result.getType()))
result.replaceAllUsesWith(newValue);
if (getConfig().unlegalizedOps)
getConfig().unlegalizedOps->erase(op);
// Do not erase the operation yet. It may still be referenced in `mapping`.
op->getBlock()->getOperations().remove(op);
}
void ReplaceOperationRewrite::rollback() {
for (auto result : op->getResults())
rewriterImpl.mapping.erase(result);
}
void ReplaceOperationRewrite::cleanup() { eraseOp(op); }
void CreateOperationRewrite::rollback() {
for (Region &region : op->getRegions()) {
while (!region.getBlocks().empty())
region.getBlocks().remove(region.getBlocks().begin());
}
op->dropAllUses();
eraseOp(op);
}
void UnresolvedMaterializationRewrite::rollback() {
if (getMaterializationKind() == MaterializationKind::Target) {
for (Value input : op->getOperands())
rewriterImpl.mapping.erase(input);
}
eraseOp(op);
}
void UnresolvedMaterializationRewrite::cleanup() { eraseOp(op); }
void ConversionPatternRewriterImpl::applyRewrites() {
// Commit all rewrites.
for (auto &rewrite : rewrites)
rewrite->commit();
for (auto &rewrite : rewrites)
rewrite->cleanup();
}
//===----------------------------------------------------------------------===//
// State Management
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
return RewriterState(rewrites.size(), ignoredOps.size(),
eraseRewriter.erased.size(), replacedOps.size());
}
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
// Undo any rewrites.
undoRewrites(state.numRewrites);
// Pop all of the recorded ignored operations that are no longer valid.
while (ignoredOps.size() != state.numIgnoredOperations)
ignoredOps.pop_back();
while (eraseRewriter.erased.size() != state.numErased)
eraseRewriter.erased.pop_back();
while (replacedOps.size() != state.numReplacedOps)
replacedOps.pop_back();
}
void ConversionPatternRewriterImpl::undoRewrites(unsigned numRewritesToKeep) {
for (auto &rewrite :
llvm::reverse(llvm::drop_begin(rewrites, numRewritesToKeep)))
rewrite->rollback();
rewrites.resize(numRewritesToKeep);
}
LogicalResult ConversionPatternRewriterImpl::remapValues(
StringRef valueDiagTag, std::optional<Location> inputLoc,
PatternRewriter &rewriter, ValueRange values,
SmallVectorImpl<Value> &remapped) {
remapped.reserve(llvm::size(values));
SmallVector<Type, 1> legalTypes;
for (const auto &it : llvm::enumerate(values)) {
Value operand = it.value();
Type origType = operand.getType();
// If a converter was provided, get the desired legal types for this
// operand.
Type desiredType;
if (currentTypeConverter) {
// If there is no legal conversion, fail to match this pattern.
legalTypes.clear();
if (failed(currentTypeConverter->convertType(origType, legalTypes))) {
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
notifyMatchFailure(operandLoc, [=](Diagnostic &diag) {
diag << "unable to convert type for " << valueDiagTag << " #"
<< it.index() << ", type was " << origType;
});
return failure();
}
// TODO: There currently isn't any mechanism to do 1->N type conversion
// via the PatternRewriter replacement API, so for now we just ignore it.
if (legalTypes.size() == 1)
desiredType = legalTypes.front();
} else {
// TODO: What we should do here is just set `desiredType` to `origType`
// and then handle the necessary type conversions after the conversion
// process has finished. Unfortunately a lot of patterns currently rely on
// receiving the new operands even if the types change, so we keep the
// original behavior here for now until all of the patterns relying on
// this get updated.
}
Value newOperand = mapping.lookupOrDefault(operand, desiredType);
// Handle the case where the conversion was 1->1 and the new operand type
// isn't legal.
Type newOperandType = newOperand.getType();
if (currentTypeConverter && desiredType && newOperandType != desiredType) {
Location operandLoc = inputLoc ? *inputLoc : operand.getLoc();
Value castValue = buildUnresolvedTargetMaterialization(
operandLoc, newOperand, desiredType, currentTypeConverter);
mapping.map(mapping.lookupOrDefault(newOperand), castValue);
newOperand = castValue;
}
remapped.push_back(newOperand);
}
return success();
}
bool ConversionPatternRewriterImpl::isOpIgnored(Operation *op) const {
// Check to see if this operation is ignored or was replaced.
return replacedOps.count(op) || ignoredOps.count(op);
}
bool ConversionPatternRewriterImpl::wasOpReplaced(Operation *op) const {
// Check to see if this operation was replaced.
return replacedOps.count(op);
}
//===----------------------------------------------------------------------===//
// Type Conversion
FailureOr<Block *> ConversionPatternRewriterImpl::convertBlockSignature(
Block *block, const TypeConverter *converter,
TypeConverter::SignatureConversion *conversion) {
if (conversion)
return applySignatureConversion(block, converter, *conversion);
// If a converter wasn't provided, and the block wasn't already converted,
// there is nothing we can do.
if (!converter)
return failure();
// Try to convert the signature for the block with the provided converter.
if (auto conversion = converter->convertBlockSignature(block))
return applySignatureConversion(block, converter, *conversion);
return failure();
}
Block *ConversionPatternRewriterImpl::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion,
const TypeConverter *converter) {
if (!region->empty())
return *convertBlockSignature(&region->front(), converter, &conversion);
return nullptr;
}
FailureOr<Block *> ConversionPatternRewriterImpl::convertRegionTypes(
Region *region, const TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
regionToConverter[region] = &converter;
if (region->empty())
return nullptr;
if (failed(convertNonEntryRegionTypes(region, converter)))
return failure();
FailureOr<Block *> newEntry =
convertBlockSignature(&region->front(), &converter, entryConversion);
return newEntry;
}
LogicalResult ConversionPatternRewriterImpl::convertNonEntryRegionTypes(
Region *region, const TypeConverter &converter,
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
regionToConverter[region] = &converter;
if (region->empty())
return success();
// Convert the arguments of each block within the region.
int blockIdx = 0;
assert((blockConversions.empty() ||
blockConversions.size() == region->getBlocks().size() - 1) &&
"expected either to provide no SignatureConversions at all or to "
"provide a SignatureConversion for each non-entry block");
for (Block &block :
llvm::make_early_inc_range(llvm::drop_begin(*region, 1))) {
TypeConverter::SignatureConversion *blockConversion =
blockConversions.empty()
? nullptr
: const_cast<TypeConverter::SignatureConversion *>(
&blockConversions[blockIdx++]);
if (failed(convertBlockSignature(&block, &converter, blockConversion)))
return failure();
}
return success();
}
Block *ConversionPatternRewriterImpl::applySignatureConversion(
Block *block, const TypeConverter *converter,
TypeConverter::SignatureConversion &signatureConversion) {
MLIRContext *ctx = eraseRewriter.getContext();
// If no arguments are being changed or added, there is nothing to do.
unsigned origArgCount = block->getNumArguments();
auto convertedTypes = signatureConversion.getConvertedTypes();
if (llvm::equal(block->getArgumentTypes(), convertedTypes))
return block;
// Split the block at the beginning to get a new block to use for the updated
// signature.
Block *newBlock = block->splitBlock(block->begin());
block->replaceAllUsesWith(newBlock);
// Unlink the block, but do not erase it yet, so that the change can be rolled
// back.
block->getParent()->getBlocks().remove(block);
// Map all new arguments to the location of the argument they originate from.
SmallVector<Location> newLocs(convertedTypes.size(),
Builder(ctx).getUnknownLoc());
for (unsigned i = 0; i < origArgCount; ++i) {
auto inputMap = signatureConversion.getInputMapping(i);
if (!inputMap || inputMap->replacementValue)
continue;
Location origLoc = block->getArgument(i).getLoc();
for (unsigned j = 0; j < inputMap->size; ++j)
newLocs[inputMap->inputNo + j] = origLoc;
}
SmallVector<Value, 4> newArgRange(
newBlock->addArguments(convertedTypes, newLocs));
ArrayRef<Value> newArgs(newArgRange);
// Remap each of the original arguments as determined by the signature
// conversion.
SmallVector<std::optional<ConvertedArgInfo>, 1> argInfo;
argInfo.resize(origArgCount);
for (unsigned i = 0; i != origArgCount; ++i) {
auto inputMap = signatureConversion.getInputMapping(i);
if (!inputMap)
continue;
BlockArgument origArg = block->getArgument(i);
// If inputMap->replacementValue is not nullptr, then the argument is
// dropped and a replacement value is provided to be the remappedValue.
if (inputMap->replacementValue) {
assert(inputMap->size == 0 &&
"invalid to provide a replacement value when the argument isn't "
"dropped");
mapping.map(origArg, inputMap->replacementValue);
appendRewrite<ReplaceBlockArgRewrite>(block, origArg);
continue;
}
// Otherwise, this is a 1->1+ mapping.
auto replArgs = newArgs.slice(inputMap->inputNo, inputMap->size);
Value newArg;
// If this is a 1->1 mapping and the types of new and replacement arguments
// match (i.e. it's an identity map), then the argument is mapped to its
// original type.
// FIXME: We simply pass through the replacement argument if there wasn't a
// converter, which isn't great as it allows implicit type conversions to
// appear. We should properly restructure this code to handle cases where a
// converter isn't provided and also to properly handle the case where an
// argument materialization is actually a temporary source materialization
// (e.g. in the case of 1->N).
if (replArgs.size() == 1 &&
(!converter || replArgs[0].getType() == origArg.getType())) {
newArg = replArgs.front();
} else {
Type origOutputType = origArg.getType();
// Legalize the argument output type.
Type outputType = origOutputType;
if (Type legalOutputType = converter->convertType(outputType))
outputType = legalOutputType;
newArg = buildUnresolvedArgumentMaterialization(
newBlock, origArg.getLoc(), replArgs, origOutputType, outputType,
converter);
}
mapping.map(origArg, newArg);
appendRewrite<ReplaceBlockArgRewrite>(block, origArg);
argInfo[i] = ConvertedArgInfo(inputMap->inputNo, inputMap->size, newArg);
}
appendRewrite<BlockTypeConversionRewrite>(newBlock, block, argInfo,
converter);
return newBlock;
}
//===----------------------------------------------------------------------===//
// Materializations
//===----------------------------------------------------------------------===//
/// Build an unresolved materialization operation given an output type and set
/// of input operands.
Value ConversionPatternRewriterImpl::buildUnresolvedMaterialization(
MaterializationKind kind, Block *insertBlock, Block::iterator insertPt,
Location loc, ValueRange inputs, Type outputType, Type origOutputType,
const TypeConverter *converter) {
// Avoid materializing an unnecessary cast.
if (inputs.size() == 1 && inputs.front().getType() == outputType)
return inputs.front();
// Create an unresolved materialization. We use a new OpBuilder to avoid
// tracking the materialization like we do for other operations.
OpBuilder builder(insertBlock, insertPt);
auto convertOp =
builder.create<UnrealizedConversionCastOp>(loc, outputType, inputs);
appendRewrite<UnresolvedMaterializationRewrite>(convertOp, converter, kind,
origOutputType);
return convertOp.getResult(0);
}
Value ConversionPatternRewriterImpl::buildUnresolvedArgumentMaterialization(
Block *block, Location loc, ValueRange inputs, Type origOutputType,
Type outputType, const TypeConverter *converter) {
return buildUnresolvedMaterialization(MaterializationKind::Argument, block,
block->begin(), loc, inputs, outputType,
origOutputType, converter);
}
Value ConversionPatternRewriterImpl::buildUnresolvedTargetMaterialization(
Location loc, Value input, Type outputType,
const TypeConverter *converter) {
Block *insertBlock = input.getParentBlock();
Block::iterator insertPt = insertBlock->begin();
if (OpResult inputRes = dyn_cast<OpResult>(input))
insertPt = ++inputRes.getOwner()->getIterator();
return buildUnresolvedMaterialization(MaterializationKind::Target,
insertBlock, insertPt, loc, input,
outputType, outputType, converter);
}
//===----------------------------------------------------------------------===//
// Rewriter Notification Hooks
void ConversionPatternRewriterImpl::notifyOperationInserted(
Operation *op, OpBuilder::InsertPoint previous) {
LLVM_DEBUG({
logger.startLine() << "** Insert : '" << op->getName() << "'(" << op
<< ")\n";
});
assert(!wasOpReplaced(op->getParentOp()) &&
"attempting to insert into a block within a replaced/erased op");
if (!previous.isSet()) {
// This is a newly created op.
appendRewrite<CreateOperationRewrite>(op);
return;
}
Operation *prevOp = previous.getPoint() == previous.getBlock()->end()
? nullptr
: &*previous.getPoint();
appendRewrite<MoveOperationRewrite>(op, previous.getBlock(), prevOp);
}
void ConversionPatternRewriterImpl::notifyOpReplaced(Operation *op,
ValueRange newValues) {
assert(newValues.size() == op->getNumResults());
assert(!ignoredOps.contains(op) && "operation was already replaced");
// Track if any of the results changed, e.g. erased and replaced with null.
bool resultChanged = false;
// Create mappings for each of the new result values.
for (auto [newValue, result] : llvm::zip(newValues, op->getResults())) {
if (!newValue) {
resultChanged = true;
continue;
}
// Remap, and check for any result type changes.
mapping.map(result, newValue);
resultChanged |= (newValue.getType() != result.getType());
}
appendRewrite<ReplaceOperationRewrite>(op, currentTypeConverter,
resultChanged);
// Mark this operation and all nested ops as replaced.
op->walk([&](Operation *op) { replacedOps.insert(op); });
}
void ConversionPatternRewriterImpl::notifyBlockIsBeingErased(Block *block) {
Region *region = block->getParent();
Block *origNextBlock = block->getNextNode();
appendRewrite<EraseBlockRewrite>(block, region, origNextBlock);
}
void ConversionPatternRewriterImpl::notifyBlockInserted(
Block *block, Region *previous, Region::iterator previousIt) {
assert(!wasOpReplaced(block->getParentOp()) &&
"attempting to insert into a region within a replaced/erased op");
if (!previous) {
// This is a newly created block.
appendRewrite<CreateBlockRewrite>(block);
return;
}
Block *prevBlock = previousIt == previous->end() ? nullptr : &*previousIt;
appendRewrite<MoveBlockRewrite>(block, previous, prevBlock);
}
void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
Block *continuation) {
appendRewrite<SplitBlockRewrite>(continuation, block);
}
void ConversionPatternRewriterImpl::notifyBlockBeingInlined(
Block *block, Block *srcBlock, Block::iterator before) {
appendRewrite<InlineBlockRewrite>(block, srcBlock, before);
}
void ConversionPatternRewriterImpl::notifyMatchFailure(
Location loc, function_ref<void(Diagnostic &)> reasonCallback) {
LLVM_DEBUG({
Diagnostic diag(loc, DiagnosticSeverity::Remark);
reasonCallback(diag);
logger.startLine() << "** Failure : " << diag.str() << "\n";
if (config.notifyCallback)
config.notifyCallback(diag);
});
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter
//===----------------------------------------------------------------------===//
ConversionPatternRewriter::ConversionPatternRewriter(
MLIRContext *ctx, const ConversionConfig &config)
: PatternRewriter(ctx),
impl(new detail::ConversionPatternRewriterImpl(ctx, config)) {
setListener(impl.get());
}
ConversionPatternRewriter::~ConversionPatternRewriter() = default;
void ConversionPatternRewriter::replaceOpWithIf(
Operation *op, ValueRange newValues, bool *allUsesReplaced,
llvm::unique_function<bool(OpOperand &) const> functor) {
// TODO: To support this we will need to rework a bit of how replacements are
// tracked, given that this isn't guranteed to replace all of the uses of an
// operation. The main change is that now an operation can be replaced
// multiple times, in parts. The current "set" based tracking is mainly useful
// for tracking if a replaced operation should be ignored, i.e. if all of the
// uses will be replaced.
llvm_unreachable(
"replaceOpWithIf is currently not supported by DialectConversion");
}
void ConversionPatternRewriter::replaceOp(Operation *op, Operation *newOp) {
assert(op && newOp && "expected non-null op");
replaceOp(op, newOp->getResults());
}
void ConversionPatternRewriter::replaceOp(Operation *op, ValueRange newValues) {
assert(op->getNumResults() == newValues.size() &&
"incorrect # of replacement values");
LLVM_DEBUG({
impl->logger.startLine()
<< "** Replace : '" << op->getName() << "'(" << op << ")\n";
});
impl->notifyOpReplaced(op, newValues);
}
void ConversionPatternRewriter::eraseOp(Operation *op) {
LLVM_DEBUG({
impl->logger.startLine()
<< "** Erase : '" << op->getName() << "'(" << op << ")\n";
});
SmallVector<Value, 1> nullRepls(op->getNumResults(), nullptr);
impl->notifyOpReplaced(op, nullRepls);
}
void ConversionPatternRewriter::eraseBlock(Block *block) {
assert(!impl->wasOpReplaced(block->getParentOp()) &&
"attempting to erase a block within a replaced/erased op");
// Mark all ops for erasure.
for (Operation &op : *block)
eraseOp(&op);
// Unlink the block from its parent region. The block is kept in the rewrite
// object and will be actually destroyed when rewrites are applied. This
// allows us to keep the operations in the block live and undo the removal by
// re-inserting the block.
impl->notifyBlockIsBeingErased(block);
block->getParent()->getBlocks().remove(block);
}
Block *ConversionPatternRewriter::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion,
const TypeConverter *converter) {
assert(!impl->wasOpReplaced(region->getParentOp()) &&
"attempting to apply a signature conversion to a block within a "
"replaced/erased op");
return impl->applySignatureConversion(region, conversion, converter);
}
FailureOr<Block *> ConversionPatternRewriter::convertRegionTypes(
Region *region, const TypeConverter &converter,
TypeConverter::SignatureConversion *entryConversion) {
assert(!impl->wasOpReplaced(region->getParentOp()) &&
"attempting to apply a signature conversion to a block within a "
"replaced/erased op");
return impl->convertRegionTypes(region, converter, entryConversion);
}
LogicalResult ConversionPatternRewriter::convertNonEntryRegionTypes(
Region *region, const TypeConverter &converter,
ArrayRef<TypeConverter::SignatureConversion> blockConversions) {
assert(!impl->wasOpReplaced(region->getParentOp()) &&
"attempting to apply a signature conversion to a block within a "
"replaced/erased op");
return impl->convertNonEntryRegionTypes(region, converter, blockConversions);
}
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument from,
Value to) {
LLVM_DEBUG({
Operation *parentOp = from.getOwner()->getParentOp();
impl->logger.startLine() << "** Replace Argument : '" << from
<< "'(in region of '" << parentOp->getName()
<< "'(" << from.getOwner()->getParentOp() << ")\n";
});
impl->appendRewrite<ReplaceBlockArgRewrite>(from.getOwner(), from);
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
}
Value ConversionPatternRewriter::getRemappedValue(Value key) {
SmallVector<Value> remappedValues;
if (failed(impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, key,
remappedValues)))
return nullptr;
return remappedValues.front();
}
LogicalResult
ConversionPatternRewriter::getRemappedValues(ValueRange keys,
SmallVectorImpl<Value> &results) {
if (keys.empty())
return success();
return impl->remapValues("value", /*inputLoc=*/std::nullopt, *this, keys,
results);
}
Block *ConversionPatternRewriter::splitBlock(Block *block,
Block::iterator before) {
assert(!impl->wasOpReplaced(block->getParentOp()) &&
"attempting to split a block within a replaced/erased op");
auto *continuation = block->splitBlock(before);
impl->notifySplitBlock(block, continuation);
return continuation;
}
void ConversionPatternRewriter::inlineBlockBefore(Block *source, Block *dest,
Block::iterator before,
ValueRange argValues) {
#ifndef NDEBUG
assert(argValues.size() == source->getNumArguments() &&
"incorrect # of argument replacement values");
assert(!impl->wasOpReplaced(source->getParentOp()) &&
"attempting to inline a block from a replaced/erased op");
assert(!impl->wasOpReplaced(dest->getParentOp()) &&
"attempting to inline a block into a replaced/erased op");
auto opIgnored = [&](Operation *op) { return impl->isOpIgnored(op); };
// The source block will be deleted, so it should not have any users (i.e.,
// there should be no predecessors).
assert(llvm::all_of(source->getUsers(), opIgnored) &&
"expected 'source' to have no predecessors");
#endif // NDEBUG
impl->notifyBlockBeingInlined(dest, source, before);
for (auto it : llvm::zip(source->getArguments(), argValues))
replaceUsesOfBlockArgument(std::get<0>(it), std::get<1>(it));
dest->getOperations().splice(before, source->getOperations());
eraseBlock(source);
}
void ConversionPatternRewriter::startOpModification(Operation *op) {
assert(!impl->wasOpReplaced(op) &&
"attempting to modify a replaced/erased op");
#ifndef NDEBUG
impl->pendingRootUpdates.insert(op);
#endif
impl->appendRewrite<ModifyOperationRewrite>(op);
}
void ConversionPatternRewriter::finalizeOpModification(Operation *op) {
assert(!impl->wasOpReplaced(op) &&
"attempting to modify a replaced/erased op");
PatternRewriter::finalizeOpModification(op);
// There is nothing to do here, we only need to track the operation at the
// start of the update.
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
}
void ConversionPatternRewriter::cancelOpModification(Operation *op) {
#ifndef NDEBUG
assert(impl->pendingRootUpdates.erase(op) &&
"operation did not have a pending in-place update");
#endif
// Erase the last update for this operation.
auto it = llvm::find_if(
llvm::reverse(impl->rewrites), [&](std::unique_ptr<IRRewrite> &rewrite) {
auto *modifyRewrite = dyn_cast<ModifyOperationRewrite>(rewrite.get());
return modifyRewrite && modifyRewrite->getOperation() == op;
});
assert(it != impl->rewrites.rend() && "no root update started on op");
(*it)->rollback();
int updateIdx = std::prev(impl->rewrites.rend()) - it;
impl->rewrites.erase(impl->rewrites.begin() + updateIdx);
}
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
return *impl;
}
//===----------------------------------------------------------------------===//
// ConversionPattern
//===----------------------------------------------------------------------===//
LogicalResult
ConversionPattern::matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const {
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
auto &rewriterImpl = dialectRewriter.getImpl();
// Track the current conversion pattern type converter in the rewriter.
llvm::SaveAndRestore currentConverterGuard(rewriterImpl.currentTypeConverter,
getTypeConverter());
// Remap the operands of the operation.
SmallVector<Value, 4> operands;
if (failed(rewriterImpl.remapValues("operand", op->getLoc(), rewriter,
op->getOperands(), operands))) {
return failure();
}
return matchAndRewrite(op, operands, dialectRewriter);
}
//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//
namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<const Pattern *, 1>;
/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
using LegalizationAction = ConversionTarget::LegalizationAction;
OperationLegalizer(const ConversionTarget &targetInfo,
const FrozenRewritePatternSet &patterns);
/// Returns true if the given operation is known to be illegal on the target.
bool isIllegal(Operation *op) const;
/// Attempt to legalize the given operation. Returns success if the operation
/// was legalized, failure otherwise.
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
/// Returns the conversion target in use by the legalizer.
const ConversionTarget &getTarget() { return target; }
private:
/// Attempt to legalize the given operation by folding it.
LogicalResult legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter);
/// Attempt to legalize the given operation by applying a pattern. Returns
/// success if the operation was legalized, failure otherwise.
LogicalResult legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter);
/// Return true if the given pattern may be applied to the given operation,
/// false otherwise.
bool canApplyPattern(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter);
/// Legalize the resultant IR after successfully applying the given pattern.
LogicalResult legalizePatternResult(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter,
RewriterState &curState);
/// Legalizes the actions registered during the execution of a pattern.
LogicalResult
legalizePatternBlockRewrites(Operation *op,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState);
LogicalResult legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState);
LogicalResult legalizePatternRootUpdates(ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl,
RewriterState &state,
RewriterState &newState);
//===--------------------------------------------------------------------===//
// Cost Model
//===--------------------------------------------------------------------===//
/// Build an optimistic legalization graph given the provided patterns. This
/// function populates 'anyOpLegalizerPatterns' and 'legalizerPatterns' with
/// patterns for operations that are not directly legal, but may be
/// transitively legal for the current target given the provided patterns.
void buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the benefit of each node within the computed legalization graph.
/// This orders the patterns within 'legalizerPatterns' based upon two
/// criteria:
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
/// represent the more direct mapping to the target.
/// 2) When comparing patterns with the same legalization depth, prefer the
/// pattern with the highest PatternBenefit. This allows for users to
/// prefer specific legalizations over others.
void computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Compute the legalization depth when legalizing an operation of the given
/// type.
unsigned computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// Apply the conversion cost model to the given set of patterns, and return
/// the smallest legalization depth of any of the patterns. See
/// `computeLegalizationGraphBenefit` for the breakdown of the cost model.
unsigned applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns);
/// The current set of patterns that have been applied.
SmallPtrSet<const Pattern *, 8> appliedPatterns;
/// The legalization information provided by the target.
const ConversionTarget &target;
/// The pattern applicator to use for conversions.
PatternApplicator applicator;
};
} // namespace
OperationLegalizer::OperationLegalizer(const ConversionTarget &targetInfo,
const FrozenRewritePatternSet &patterns)
: target(targetInfo), applicator(patterns) {
// The set of patterns that can be applied to illegal operations to transform
// them into legal ones.
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
LegalizationPatterns anyOpLegalizerPatterns;
buildLegalizationGraph(anyOpLegalizerPatterns, legalizerPatterns);
computeLegalizationGraphBenefit(anyOpLegalizerPatterns, legalizerPatterns);
}
bool OperationLegalizer::isIllegal(Operation *op) const {
return target.isIllegal(op);
}
LogicalResult
OperationLegalizer::legalize(Operation *op,
ConversionPatternRewriter &rewriter) {
#ifndef NDEBUG
const char *logLineComment =
"//===-------------------------------------------===//\n";
auto &logger = rewriter.getImpl().logger;
#endif
LLVM_DEBUG({
logger.getOStream() << "\n";
logger.startLine() << logLineComment;
logger.startLine() << "Legalizing operation : '" << op->getName() << "'("
<< op << ") {\n";
logger.indent();
// If the operation has no regions, just print it here.
if (op->getNumRegions() == 0) {
op->print(logger.startLine(), OpPrintingFlags().printGenericOpForm());
logger.getOStream() << "\n\n";
}
});
// Check if this operation is legal on the target.
if (auto legalityInfo = target.isLegal(op)) {
LLVM_DEBUG({
logSuccess(
logger, "operation marked legal by the target{0}",
legalityInfo->isRecursivelyLegal
? "; NOTE: operation is recursively legal; skipping internals"
: "");
logger.startLine() << logLineComment;
});
// If this operation is recursively legal, mark its children as ignored so
// that we don't consider them for legalization.
if (legalityInfo->isRecursivelyLegal) {
op->walk([&](Operation *nested) {
if (op != nested)
rewriter.getImpl().ignoredOps.insert(nested);
});
}
return success();
}
// Check to see if the operation is ignored and doesn't need to be converted.
if (rewriter.getImpl().isOpIgnored(op)) {
LLVM_DEBUG({
logSuccess(logger, "operation marked 'ignored' during conversion");
logger.startLine() << logLineComment;
});
return success();
}
// If the operation isn't legal, try to fold it in-place.
// TODO: Should we always try to do this, even if the op is
// already legal?
if (succeeded(legalizeWithFold(op, rewriter))) {
LLVM_DEBUG({
logSuccess(logger, "operation was folded");
logger.startLine() << logLineComment;
});
return success();
}
// Otherwise, we need to apply a legalization pattern to this operation.
if (succeeded(legalizeWithPattern(op, rewriter))) {
LLVM_DEBUG({
logSuccess(logger, "");
logger.startLine() << logLineComment;
});
return success();
}
LLVM_DEBUG({
logFailure(logger, "no matched legalization pattern");
logger.startLine() << logLineComment;
});
return failure();
}
LogicalResult
OperationLegalizer::legalizeWithFold(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
RewriterState curState = rewriterImpl.getCurrentState();
LLVM_DEBUG({
rewriterImpl.logger.startLine() << "* Fold {\n";
rewriterImpl.logger.indent();
});
// Try to fold the operation.
SmallVector<Value, 2> replacementValues;
rewriter.setInsertionPoint(op);
if (failed(rewriter.tryFold(op, replacementValues))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger, "unable to fold"));
return failure();
}
// Insert a replacement for 'op' with the folded replacement values.
rewriter.replaceOp(op, replacementValues);
// Recursively legalize any new constant operations.
for (unsigned i = curState.numRewrites, e = rewriterImpl.rewrites.size();
i != e; ++i) {
auto *createOp =
dyn_cast<CreateOperationRewrite>(rewriterImpl.rewrites[i].get());
if (!createOp)
continue;
if (failed(legalize(createOp->getOperation(), rewriter))) {
LLVM_DEBUG(logFailure(rewriterImpl.logger,
"failed to legalize generated constant '{0}'",
createOp->getOperation()->getName()));
rewriterImpl.resetState(curState);
return failure();
}
}
LLVM_DEBUG(logSuccess(rewriterImpl.logger, ""));
return success();
}
LogicalResult
OperationLegalizer::legalizeWithPattern(Operation *op,
ConversionPatternRewriter &rewriter) {
auto &rewriterImpl = rewriter.getImpl();
// Functor that returns if the given pattern may be applied.
auto canApply = [&](const Pattern &pattern) {
return canApplyPattern(op, pattern, rewriter);
};
// Functor that cleans up the rewriter state after a pattern failed to match.
RewriterState curState = rewriterImpl.getCurrentState();
auto onFailure = [&](const Pattern &pattern) {
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
LLVM_DEBUG({
logFailure(rewriterImpl.logger, "pattern failed to match");
if (rewriterImpl.config.notifyCallback) {
Diagnostic diag(op->getLoc(), DiagnosticSeverity::Remark);
diag << "Failed to apply pattern \"" << pattern.getDebugName()
<< "\" on op:\n"
<< *op;
rewriterImpl.config.notifyCallback(diag);
}
});
rewriterImpl.resetState(curState);
appliedPatterns.erase(&pattern);
};
// Functor that performs additional legalization when a pattern is
// successfully applied.
auto onSuccess = [&](const Pattern &pattern) {
assert(rewriterImpl.pendingRootUpdates.empty() && "dangling root updates");
auto result = legalizePatternResult(op, pattern, rewriter, curState);
appliedPatterns.erase(&pattern);
if (failed(result))
rewriterImpl.resetState(curState);
return result;
};
// Try to match and rewrite a pattern on this operation.
return applicator.matchAndRewrite(op, rewriter, canApply, onFailure,
onSuccess);
}
bool OperationLegalizer::canApplyPattern(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter) {
LLVM_DEBUG({
auto &os = rewriter.getImpl().logger;
os.getOStream() << "\n";
os.startLine() << "* Pattern : '" << op->getName() << " -> (";
llvm::interleaveComma(pattern.getGeneratedOps(), os.getOStream());
os.getOStream() << ")' {\n";
os.indent();
});
// Ensure that we don't cycle by not allowing the same pattern to be
// applied twice in the same recursion stack if it is not known to be safe.
if (!pattern.hasBoundedRewriteRecursion() &&
!appliedPatterns.insert(&pattern).second) {
LLVM_DEBUG(
logFailure(rewriter.getImpl().logger, "pattern was already applied"));
return false;
}
return true;
}
LogicalResult
OperationLegalizer::legalizePatternResult(Operation *op, const Pattern &pattern,
ConversionPatternRewriter &rewriter,
RewriterState &curState) {
auto &impl = rewriter.getImpl();
#ifndef NDEBUG
assert(impl.pendingRootUpdates.empty() && "dangling root updates");
// Check that the root was either replaced or updated in place.
auto newRewrites = llvm::drop_begin(impl.rewrites, curState.numRewrites);
auto replacedRoot = [&] {
return hasRewrite<ReplaceOperationRewrite>(newRewrites, op);
};
auto updatedRootInPlace = [&] {
return hasRewrite<ModifyOperationRewrite>(newRewrites, op);
};
assert((replacedRoot() || updatedRootInPlace()) &&
"expected pattern to replace the root operation");
#endif // NDEBUG
// Legalize each of the actions registered during application.
RewriterState newState = impl.getCurrentState();
if (failed(legalizePatternBlockRewrites(op, rewriter, impl, curState,
newState)) ||
failed(legalizePatternRootUpdates(rewriter, impl, curState, newState)) ||
failed(legalizePatternCreatedOperations(rewriter, impl, curState,
newState))) {
return failure();
}
LLVM_DEBUG(logSuccess(impl.logger, "pattern applied successfully"));
return success();
}
LogicalResult OperationLegalizer::legalizePatternBlockRewrites(
Operation *op, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &impl, RewriterState &state,
RewriterState &newState) {
SmallPtrSet<Operation *, 16> operationsToIgnore;
// If the pattern moved or created any blocks, make sure the types of block
// arguments get legalized.
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
BlockRewrite *rewrite = dyn_cast<BlockRewrite>(impl.rewrites[i].get());
if (!rewrite)
continue;
Block *block = rewrite->getBlock();
if (isa<BlockTypeConversionRewrite, EraseBlockRewrite,
ReplaceBlockArgRewrite>(rewrite))
continue;
// Only check blocks outside of the current operation.
Operation *parentOp = block->getParentOp();
if (!parentOp || parentOp == op || block->getNumArguments() == 0)
continue;
// If the region of the block has a type converter, try to convert the block
// directly.
if (auto *converter = impl.regionToConverter.lookup(block->getParent())) {
if (failed(impl.convertBlockSignature(block, converter))) {
LLVM_DEBUG(logFailure(impl.logger, "failed to convert types of moved "
"block"));
return failure();
}
continue;
}
// Otherwise, check that this operation isn't one generated by this pattern.
// This is because we will attempt to legalize the parent operation, and
// blocks in regions created by this pattern will already be legalized later
// on. If we haven't built the set yet, build it now.
if (operationsToIgnore.empty()) {
for (unsigned i = state.numRewrites, e = impl.rewrites.size(); i != e;
++i) {
auto *createOp =
dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
if (!createOp)
continue;
operationsToIgnore.insert(createOp->getOperation());
}
}
// If this operation should be considered for re-legalization, try it.
if (operationsToIgnore.insert(parentOp).second &&
failed(legalize(parentOp, rewriter))) {
LLVM_DEBUG(logFailure(impl.logger,
"operation '{0}'({1}) became illegal after rewrite",
parentOp->getName(), parentOp));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternCreatedOperations(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
auto *createOp = dyn_cast<CreateOperationRewrite>(impl.rewrites[i].get());
if (!createOp)
continue;
Operation *op = createOp->getOperation();
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(impl.logger,
"failed to legalize generated operation '{0}'({1})",
op->getName(), op));
return failure();
}
}
return success();
}
LogicalResult OperationLegalizer::legalizePatternRootUpdates(
ConversionPatternRewriter &rewriter, ConversionPatternRewriterImpl &impl,
RewriterState &state, RewriterState &newState) {
for (int i = state.numRewrites, e = newState.numRewrites; i != e; ++i) {
auto *rewrite = dyn_cast<ModifyOperationRewrite>(impl.rewrites[i].get());
if (!rewrite)
continue;
Operation *op = rewrite->getOperation();
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(logFailure(
impl.logger, "failed to legalize operation updated in-place '{0}'",
op->getName()));
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// Cost Model
void OperationLegalizer::buildLegalizationGraph(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// A mapping between an operation and a set of operations that can be used to
// generate it.
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
// A mapping between an operation and any currently invalid patterns it has.
DenseMap<OperationName, SmallPtrSet<const Pattern *, 2>> invalidPatterns;
// A worklist of patterns to consider for legality.
SetVector<const Pattern *> patternWorklist;
// Build the mapping from operations to the parent ops that may generate them.
applicator.walkAllPatterns([&](const Pattern &pattern) {
std::optional<OperationName> root = pattern.getRootKind();
// If the pattern has no specific root, we can't analyze the relationship
// between the root op and generated operations. Given that, add all such
// patterns to the legalization set.
if (!root) {
anyOpLegalizerPatterns.push_back(&pattern);
return;
}
// Skip operations that are always known to be legal.
if (target.getOpAction(*root) == LegalizationAction::Legal)
return;
// Add this pattern to the invalid set for the root op and record this root
// as a parent for any generated operations.
invalidPatterns[*root].insert(&pattern);
for (auto op : pattern.getGeneratedOps())
parentOps[op].insert(*root);
// Add this pattern to the worklist.
patternWorklist.insert(&pattern);
});
// If there are any patterns that don't have a specific root kind, we can't
// make direct assumptions about what operations will never be legalized.
// Note: Technically we could, but it would require an analysis that may
// recurse into itself. It would be better to perform this kind of filtering
// at a higher level than here anyways.
if (!anyOpLegalizerPatterns.empty()) {
for (const Pattern *pattern : patternWorklist)
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
return;
}
while (!patternWorklist.empty()) {
auto *pattern = patternWorklist.pop_back_val();
// Check to see if any of the generated operations are invalid.
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
std::optional<LegalizationAction> action = target.getOpAction(op);
return !legalizerPatterns.count(op) &&
(!action || action == LegalizationAction::Illegal);
}))
continue;
// Otherwise, if all of the generated operation are valid, this op is now
// legal so add all of the child patterns to the worklist.
legalizerPatterns[*pattern->getRootKind()].push_back(pattern);
invalidPatterns[*pattern->getRootKind()].erase(pattern);
// Add any invalid patterns of the parent operations to see if they have now
// become legal.
for (auto op : parentOps[*pattern->getRootKind()])
patternWorklist.set_union(invalidPatterns[op]);
}
}
void OperationLegalizer::computeLegalizationGraphBenefit(
LegalizationPatterns &anyOpLegalizerPatterns,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// The smallest pattern depth, when legalizing an operation.
DenseMap<OperationName, unsigned> minOpPatternDepth;
// For each operation that is transitively legal, compute a cost for it.
for (auto &opIt : legalizerPatterns)
if (!minOpPatternDepth.count(opIt.first))
computeOpLegalizationDepth(opIt.first, minOpPatternDepth,
legalizerPatterns);
// Apply the cost model to the patterns that can match any operation. Those
// with a specific operation type are already resolved when computing the op
// legalization depth.
if (!anyOpLegalizerPatterns.empty())
applyCostModelToPatterns(anyOpLegalizerPatterns, minOpPatternDepth,
legalizerPatterns);
// Apply a cost model to the pattern applicator. We order patterns first by
// depth then benefit. `legalizerPatterns` contains per-op patterns by
// decreasing benefit.
applicator.applyCostModel([&](const Pattern &pattern) {
ArrayRef<const Pattern *> orderedPatternList;
if (std::optional<OperationName> rootName = pattern.getRootKind())
orderedPatternList = legalizerPatterns[*rootName];
else
orderedPatternList = anyOpLegalizerPatterns;
// If the pattern is not found, then it was removed and cannot be matched.
auto *it = llvm::find(orderedPatternList, &pattern);
if (it == orderedPatternList.end())
return PatternBenefit::impossibleToMatch();
// Patterns found earlier in the list have higher benefit.
return PatternBenefit(std::distance(it, orderedPatternList.end()));
});
}
unsigned OperationLegalizer::computeOpLegalizationDepth(
OperationName op, DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
// Check for existing depth.
auto depthIt = minOpPatternDepth.find(op);
if (depthIt != minOpPatternDepth.end())
return depthIt->second;
// If a mapping for this operation does not exist, then this operation
// is always legal. Return 0 as the depth for a directly legal operation.
auto opPatternsIt = legalizerPatterns.find(op);
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
return 0u;
// Record this initial depth in case we encounter this op again when
// recursively computing the depth.
minOpPatternDepth.try_emplace(op, std::numeric_limits<unsigned>::max());
// Apply the cost model to the operation patterns, and update the minimum
// depth.
unsigned minDepth = applyCostModelToPatterns(
opPatternsIt->second, minOpPatternDepth, legalizerPatterns);
minOpPatternDepth[op] = minDepth;
return minDepth;
}
unsigned OperationLegalizer::applyCostModelToPatterns(
LegalizationPatterns &patterns,
DenseMap<OperationName, unsigned> &minOpPatternDepth,
DenseMap<OperationName, LegalizationPatterns> &legalizerPatterns) {
unsigned minDepth = std::numeric_limits<unsigned>::max();
// Compute the depth for each pattern within the set.
SmallVector<std::pair<const Pattern *, unsigned>, 4> patternsByDepth;
patternsByDepth.reserve(patterns.size());
for (const Pattern *pattern : patterns) {
unsigned depth = 1;
for (auto generatedOp : pattern->getGeneratedOps()) {
unsigned generatedOpDepth = computeOpLegalizationDepth(
generatedOp, minOpPatternDepth, legalizerPatterns);
depth = std::max(depth, generatedOpDepth + 1);
}
patternsByDepth.emplace_back(pattern, depth);
// Update the minimum depth of the pattern list.
minDepth = std::min(minDepth, depth);
}
// If the operation only has one legalization pattern, there is no need to
// sort them.
if (patternsByDepth.size() == 1)
return minDepth;
// Sort the patterns by those likely to be the most beneficial.
std::stable_sort(patternsByDepth.begin(), patternsByDepth.end(),
[](const std::pair<const Pattern *, unsigned> &lhs,
const std::pair<const Pattern *, unsigned> &rhs) {
// First sort by the smaller pattern legalization
// depth.
if (lhs.second != rhs.second)
return lhs.second < rhs.second;
// Then sort by the larger pattern benefit.
auto lhsBenefit = lhs.first->getBenefit();
auto rhsBenefit = rhs.first->getBenefit();
return lhsBenefit > rhsBenefit;
});
// Update the legalization pattern to use the new sorted list.
patterns.clear();
for (auto &patternIt : patternsByDepth)
patterns.push_back(patternIt.first);
return minDepth;
}
//===----------------------------------------------------------------------===//
// OperationConverter
//===----------------------------------------------------------------------===//
namespace {
enum OpConversionMode {
/// In this mode, the conversion will ignore failed conversions to allow
/// illegal operations to co-exist in the IR.
Partial,
/// In this mode, all operations must be legal for the given target for the
/// conversion to succeed.
Full,
/// In this mode, operations are analyzed for legality. No actual rewrites are
/// applied to the operations on success.
Analysis,
};
} // namespace
namespace mlir {
// This class converts operations to a given conversion target via a set of
// rewrite patterns. The conversion behaves differently depending on the
// conversion mode.
struct OperationConverter {
explicit OperationConverter(const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
const ConversionConfig &config,
OpConversionMode mode)
: opLegalizer(target, patterns), config(config), mode(mode) {}
/// Converts the given operations to the conversion target.
LogicalResult convertOperations(ArrayRef<Operation *> ops);
private:
/// Converts an operation with the given rewriter.
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
/// This method is called after the conversion process to legalize any
/// remaining artifacts and complete the conversion.
LogicalResult finalize(ConversionPatternRewriter &rewriter);
/// Legalize the types of converted block arguments.
LogicalResult
legalizeConvertedArgumentTypes(ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl);
/// Legalize any unresolved type materializations.
LogicalResult legalizeUnresolvedMaterializations(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
std::optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping);
/// Legalize an operation result that was marked as "erased".
LogicalResult
legalizeErasedResult(Operation *op, OpResult result,
ConversionPatternRewriterImpl &rewriterImpl);
/// Legalize an operation result that was replaced with a value of a different
/// type.
LogicalResult legalizeChangedResultType(
Operation *op, OpResult result, Value newValue,
const TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping);
/// The legalizer to use when converting operations.
OperationLegalizer opLegalizer;
/// Dialect conversion configuration.
ConversionConfig config;
/// The conversion mode to use when legalizing operations.
OpConversionMode mode;
};
} // namespace mlir
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
Operation *op) {
// Legalize the given operation.
if (failed(opLegalizer.legalize(op, rewriter))) {
// Handle the case of a failed conversion for each of the different modes.
// Full conversions expect all operations to be converted.
if (mode == OpConversionMode::Full)
return op->emitError()
<< "failed to legalize operation '" << op->getName() << "'";
// Partial conversions allow conversions to fail iff the operation was not
// explicitly marked as illegal. If the user provided a `unlegalizedOps`
// set, non-legalizable ops are added to that set.
if (mode == OpConversionMode::Partial) {
if (opLegalizer.isIllegal(op))
return op->emitError()
<< "failed to legalize operation '" << op->getName()
<< "' that was explicitly marked illegal";
if (config.unlegalizedOps)
config.unlegalizedOps->insert(op);
}
} else if (mode == OpConversionMode::Analysis) {
// Analysis conversions don't fail if any operations fail to legalize,
// they are only interested in the operations that were successfully
// legalized.
if (config.legalizableOps)
config.legalizableOps->insert(op);
}
return success();
}
LogicalResult OperationConverter::convertOperations(ArrayRef<Operation *> ops) {
if (ops.empty())
return success();
const ConversionTarget &target = opLegalizer.getTarget();
// Compute the set of operations and blocks to convert.
SmallVector<Operation *> toConvert;
for (auto *op : ops) {
op->walk<WalkOrder::PreOrder, ForwardDominanceIterator<>>(
[&](Operation *op) {
toConvert.push_back(op);
// Don't check this operation's children for conversion if the
// operation is recursively legal.
auto legalityInfo = target.isLegal(op);
if (legalityInfo && legalityInfo->isRecursivelyLegal)
return WalkResult::skip();
return WalkResult::advance();
});
}
// Convert each operation and discard rewrites on failure.
ConversionPatternRewriter rewriter(ops.front()->getContext(), config);
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
for (auto *op : toConvert)
if (failed(convert(rewriter, op)))
return rewriterImpl.undoRewrites(), failure();
// Now that all of the operations have been converted, finalize the conversion
// process to ensure any lingering conversion artifacts are cleaned up and
// legalized.
if (failed(finalize(rewriter)))
return rewriterImpl.undoRewrites(), failure();
// After a successful conversion, apply rewrites if this is not an analysis
// conversion.
if (mode == OpConversionMode::Analysis) {
rewriterImpl.undoRewrites();
} else {
rewriterImpl.applyRewrites();
}
return success();
}
LogicalResult
OperationConverter::finalize(ConversionPatternRewriter &rewriter) {
std::optional<DenseMap<Value, SmallVector<Value>>> inverseMapping;
ConversionPatternRewriterImpl &rewriterImpl = rewriter.getImpl();
if (failed(legalizeUnresolvedMaterializations(rewriter, rewriterImpl,
inverseMapping)) ||
failed(legalizeConvertedArgumentTypes(rewriter, rewriterImpl)))
return failure();
// Process requested operation replacements.
for (unsigned i = 0; i < rewriterImpl.rewrites.size(); ++i) {
auto *opReplacement =
dyn_cast<ReplaceOperationRewrite>(rewriterImpl.rewrites[i].get());
if (!opReplacement || !opReplacement->hasChangedResults())
continue;
Operation *op = opReplacement->getOperation();
for (OpResult result : op->getResults()) {
Value newValue = rewriterImpl.mapping.lookupOrNull(result);
// If the operation result was replaced with null, all of the uses of this
// value should be replaced.
if (!newValue) {
if (failed(legalizeErasedResult(op, result, rewriterImpl)))
return failure();
continue;
}
// Otherwise, check to see if the type of the result changed.
if (result.getType() == newValue.getType())
continue;
// Compute the inverse mapping only if it is really needed.
if (!inverseMapping)
inverseMapping = rewriterImpl.mapping.getInverse();
// Legalize this result.
rewriter.setInsertionPoint(op);
if (failed(legalizeChangedResultType(
op, result, newValue, opReplacement->getConverter(), rewriter,
rewriterImpl, *inverseMapping)))
return failure();
}
}
return success();
}
LogicalResult OperationConverter::legalizeConvertedArgumentTypes(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl) {
// Functor used to check if all users of a value will be dead after
// conversion.
auto findLiveUser = [&](Value val) {
auto liveUserIt = llvm::find_if_not(val.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
return liveUserIt == val.user_end() ? nullptr : *liveUserIt;
};
// Note: `rewrites` may be reallocated as the loop is running.
for (int64_t i = 0; i < static_cast<int64_t>(rewriterImpl.rewrites.size());
++i) {
auto &rewrite = rewriterImpl.rewrites[i];
if (auto *blockTypeConversionRewrite =
dyn_cast<BlockTypeConversionRewrite>(rewrite.get()))
if (failed(blockTypeConversionRewrite->materializeLiveConversions(
findLiveUser)))
return failure();
}
return success();
}
/// Replace the results of a materialization operation with the given values.
static void
replaceMaterialization(ConversionPatternRewriterImpl &rewriterImpl,
ResultRange matResults, ValueRange values,
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
matResults.replaceAllUsesWith(values);
// For each of the materialization results, update the inverse mappings to
// point to the replacement values.
for (auto [matResult, newValue] : llvm::zip(matResults, values)) {
auto inverseMapIt = inverseMapping.find(matResult);
if (inverseMapIt == inverseMapping.end())
continue;
// Update the reverse mapping, or remove the mapping if we couldn't update
// it. Not being able to update signals that the mapping would have become
// circular (i.e. %foo -> newValue -> %foo), which may occur as values are
// propagated through temporary materializations. We simply drop the
// mapping, and let the post-conversion replacement logic handle updating
// uses.
for (Value inverseMapVal : inverseMapIt->second)
if (!rewriterImpl.mapping.tryMap(inverseMapVal, newValue))
rewriterImpl.mapping.erase(inverseMapVal);
}
}
/// Compute all of the unresolved materializations that will persist beyond the
/// conversion process, and require inserting a proper user materialization for.
static void computeNecessaryMaterializations(
DenseMap<Operation *, UnresolvedMaterializationRewrite *>
&materializationOps,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
DenseMap<Value, SmallVector<Value>> &inverseMapping,
SetVector<UnresolvedMaterializationRewrite *> &necessaryMaterializations) {
auto isLive = [&](Value value) {
auto findFn = [&](Operation *user) {
auto matIt = materializationOps.find(user);
if (matIt != materializationOps.end())
return !necessaryMaterializations.count(matIt->second);
return rewriterImpl.isOpIgnored(user);
};
// This value may be replacing another value that has a live user.
for (Value inv : inverseMapping.lookup(value))
if (llvm::find_if_not(inv.getUsers(), findFn) != inv.user_end())
return true;
// Or have live users itself.
return llvm::find_if_not(value.getUsers(), findFn) != value.user_end();
};
llvm::unique_function<Value(Value, Value, Type)> lookupRemappedValue =
[&](Value invalidRoot, Value value, Type type) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
if (remappedValue.getType() == type && remappedValue != invalidRoot)
return remappedValue;
// Check to see if the input is a materialization operation that
// provides an inverse conversion. We just check blindly for
// UnrealizedConversionCastOp here, but it has no effect on correctness.
auto inputCastOp = value.getDefiningOp<UnrealizedConversionCastOp>();
if (inputCastOp && inputCastOp->getNumOperands() == 1)
return lookupRemappedValue(invalidRoot, inputCastOp->getOperand(0),
type);
return Value();
};
SetVector<UnresolvedMaterializationRewrite *> worklist;
for (auto &rewrite : rewriterImpl.rewrites) {
auto *mat = dyn_cast<UnresolvedMaterializationRewrite>(rewrite.get());
if (!mat)
continue;
materializationOps.try_emplace(mat->getOperation(), mat);
worklist.insert(mat);
}
while (!worklist.empty()) {
UnresolvedMaterializationRewrite *mat = worklist.pop_back_val();
UnrealizedConversionCastOp op = mat->getOperation();
// We currently only handle target materializations here.
assert(op->getNumResults() == 1 && "unexpected materialization type");
OpResult opResult = op->getOpResult(0);
Type outputType = opResult.getType();
Operation::operand_range inputOperands = op.getOperands();
// Try to forward propagate operands for user conversion casts that result
// in the input types of the current cast.
for (Operation *user : llvm::make_early_inc_range(opResult.getUsers())) {
auto castOp = dyn_cast<UnrealizedConversionCastOp>(user);
if (!castOp)
continue;
if (castOp->getResultTypes() == inputOperands.getTypes()) {
replaceMaterialization(rewriterImpl, opResult, inputOperands,
inverseMapping);
necessaryMaterializations.remove(materializationOps.lookup(user));
}
}
// Try to avoid materializing a resolved materialization if possible.
// Handle the case of a 1-1 materialization.
if (inputOperands.size() == 1) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue =
lookupRemappedValue(opResult, inputOperands[0], outputType);
if (remappedValue && remappedValue != opResult) {
replaceMaterialization(rewriterImpl, opResult, remappedValue,
inverseMapping);
necessaryMaterializations.remove(mat);
continue;
}
} else {
// TODO: Avoid materializing other types of conversions here.
}
// Check to see if this is an argument materialization.
auto isBlockArg = [](Value v) { return isa<BlockArgument>(v); };
if (llvm::any_of(op->getOperands(), isBlockArg) ||
llvm::any_of(inverseMapping[op->getResult(0)], isBlockArg)) {
mat->setMaterializationKind(MaterializationKind::Argument);
}
// If the materialization does not have any live users, we don't need to
// generate a user materialization for it.
// FIXME: For argument materializations, we currently need to check if any
// of the inverse mapped values are used because some patterns expect blind
// value replacement even if the types differ in some cases. When those
// patterns are fixed, we can drop the argument special case here.
bool isMaterializationLive = isLive(opResult);
if (mat->getMaterializationKind() == MaterializationKind::Argument)
isMaterializationLive |= llvm::any_of(inverseMapping[opResult], isLive);
if (!isMaterializationLive)
continue;
if (!necessaryMaterializations.insert(mat))
continue;
// Reprocess input materializations to see if they have an updated status.
for (Value input : inputOperands) {
if (auto parentOp = input.getDefiningOp<UnrealizedConversionCastOp>()) {
if (auto *mat = materializationOps.lookup(parentOp))
worklist.insert(mat);
}
}
}
}
/// Legalize the given unresolved materialization. Returns success if the
/// materialization was legalized, failure otherise.
static LogicalResult legalizeUnresolvedMaterialization(
UnresolvedMaterializationRewrite &mat,
DenseMap<Operation *, UnresolvedMaterializationRewrite *>
&materializationOps,
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
DenseMap<Value, SmallVector<Value>> &inverseMapping) {
auto findLiveUser = [&](auto &&users) {
auto liveUserIt = llvm::find_if_not(
users, [&](Operation *user) { return rewriterImpl.isOpIgnored(user); });
return liveUserIt == users.end() ? nullptr : *liveUserIt;
};
llvm::unique_function<Value(Value, Type)> lookupRemappedValue =
[&](Value value, Type type) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue = rewriterImpl.mapping.lookupOrDefault(value, type);
if (remappedValue.getType() == type)
return remappedValue;
return Value();
};
UnrealizedConversionCastOp op = mat.getOperation();
if (!rewriterImpl.ignoredOps.insert(op))
return success();
// We currently only handle target materializations here.
OpResult opResult = op->getOpResult(0);
Operation::operand_range inputOperands = op.getOperands();
Type outputType = opResult.getType();
// If any input to this materialization is another materialization, resolve
// the input first.
for (Value value : op->getOperands()) {
auto valueCast = value.getDefiningOp<UnrealizedConversionCastOp>();
if (!valueCast)
continue;
auto matIt = materializationOps.find(valueCast);
if (matIt != materializationOps.end())
if (failed(legalizeUnresolvedMaterialization(
*matIt->second, materializationOps, rewriter, rewriterImpl,
inverseMapping)))
return failure();
}
// Perform a last ditch attempt to avoid materializing a resolved
// materialization if possible.
// Handle the case of a 1-1 materialization.
if (inputOperands.size() == 1) {
// Check to see if the input operation was remapped to a variant of the
// output.
Value remappedValue = lookupRemappedValue(inputOperands[0], outputType);
if (remappedValue && remappedValue != opResult) {
replaceMaterialization(rewriterImpl, opResult, remappedValue,
inverseMapping);
return success();
}
} else {
// TODO: Avoid materializing other types of conversions here.
}
// Try to materialize the conversion.
if (const TypeConverter *converter = mat.getConverter()) {
// FIXME: Determine a suitable insertion location when there are multiple
// inputs.
if (inputOperands.size() == 1)
rewriter.setInsertionPointAfterValue(inputOperands.front());
else
rewriter.setInsertionPoint(op);
Value newMaterialization;
switch (mat.getMaterializationKind()) {
case MaterializationKind::Argument:
// Try to materialize an argument conversion.
// FIXME: The current argument materialization hook expects the original
// output type, even though it doesn't use that as the actual output type
// of the generated IR. The output type is just used as an indicator of
// the type of materialization to do. This behavior is really awkward in
// that it diverges from the behavior of the other hooks, and can be
// easily misunderstood. We should clean up the argument hooks to better
// represent the desired invariants we actually care about.
newMaterialization = converter->materializeArgumentConversion(
rewriter, op->getLoc(), mat.getOrigOutputType(), inputOperands);
if (newMaterialization)
break;
// If an argument materialization failed, fallback to trying a target
// materialization.
[[fallthrough]];
case MaterializationKind::Target:
newMaterialization = converter->materializeTargetConversion(
rewriter, op->getLoc(), outputType, inputOperands);
break;
}
if (newMaterialization) {
replaceMaterialization(rewriterImpl, opResult, newMaterialization,
inverseMapping);
return success();
}
}
InFlightDiagnostic diag = op->emitError()
<< "failed to legalize unresolved materialization "
"from "
<< inputOperands.getTypes() << " to " << outputType
<< " that remained live after conversion";
if (Operation *liveUser = findLiveUser(op->getUsers())) {
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
}
return failure();
}
LogicalResult OperationConverter::legalizeUnresolvedMaterializations(
ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
std::optional<DenseMap<Value, SmallVector<Value>>> &inverseMapping) {
inverseMapping = rewriterImpl.mapping.getInverse();
// As an initial step, compute all of the inserted materializations that we
// expect to persist beyond the conversion process.
DenseMap<Operation *, UnresolvedMaterializationRewrite *> materializationOps;
SetVector<UnresolvedMaterializationRewrite *> necessaryMaterializations;
computeNecessaryMaterializations(materializationOps, rewriter, rewriterImpl,
*inverseMapping, necessaryMaterializations);
// Once computed, legalize any necessary materializations.
for (auto *mat : necessaryMaterializations) {
if (failed(legalizeUnresolvedMaterialization(
*mat, materializationOps, rewriter, rewriterImpl, *inverseMapping)))
return failure();
}
return success();
}
LogicalResult OperationConverter::legalizeErasedResult(
Operation *op, OpResult result,
ConversionPatternRewriterImpl &rewriterImpl) {
// If the operation result was replaced with null, all of the uses of this
// value should be replaced.
auto liveUserIt = llvm::find_if_not(result.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
if (liveUserIt != result.user_end()) {
InFlightDiagnostic diag = op->emitError("failed to legalize operation '")
<< op->getName() << "' marked as erased";
diag.attachNote(liveUserIt->getLoc())
<< "found live user of result #" << result.getResultNumber() << ": "
<< *liveUserIt;
return failure();
}
return success();
}
/// Finds a user of the given value, or of any other value that the given value
/// replaced, that was not replaced in the conversion process.
static Operation *findLiveUserOfReplaced(
Value initialValue, ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
SmallVector<Value> worklist(1, initialValue);
while (!worklist.empty()) {
Value value = worklist.pop_back_val();
// Walk the users of this value to see if there are any live users that
// weren't replaced during conversion.
auto liveUserIt = llvm::find_if_not(value.getUsers(), [&](Operation *user) {
return rewriterImpl.isOpIgnored(user);
});
if (liveUserIt != value.user_end())
return *liveUserIt;
auto mapIt = inverseMapping.find(value);
if (mapIt != inverseMapping.end())
worklist.append(mapIt->second);
}
return nullptr;
}
LogicalResult OperationConverter::legalizeChangedResultType(
Operation *op, OpResult result, Value newValue,
const TypeConverter *replConverter, ConversionPatternRewriter &rewriter,
ConversionPatternRewriterImpl &rewriterImpl,
const DenseMap<Value, SmallVector<Value>> &inverseMapping) {
Operation *liveUser =
findLiveUserOfReplaced(result, rewriterImpl, inverseMapping);
if (!liveUser)
return success();
// Functor used to emit a conversion error for a failed materialization.
auto emitConversionError = [&] {
InFlightDiagnostic diag = op->emitError()
<< "failed to materialize conversion for result #"
<< result.getResultNumber() << " of operation '"
<< op->getName()
<< "' that remained live after conversion";
diag.attachNote(liveUser->getLoc())
<< "see existing live user here: " << *liveUser;
return failure();
};
// If the replacement has a type converter, attempt to materialize a
// conversion back to the original type.
if (!replConverter)
return emitConversionError();
// Materialize a conversion for this live result value.
Type resultType = result.getType();
Value convertedValue = replConverter->materializeSourceConversion(
rewriter, op->getLoc(), resultType, newValue);
if (!convertedValue)
return emitConversionError();
rewriterImpl.mapping.map(result, convertedValue);
return success();
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
ArrayRef<Type> types) {
assert(!types.empty() && "expected valid types");
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
addInputs(types);
}
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
assert(!types.empty() &&
"1->0 type remappings don't need to be added explicitly");
argTypes.append(types.begin(), types.end());
}
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
unsigned newInputNo,
unsigned newInputCount) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
assert(newInputCount != 0 && "expected valid input count");
remappedInputs[origInputNo] =
InputMapping{newInputNo, newInputCount, /*replacementValue=*/nullptr};
}
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
Value replacementValue) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
remappedInputs[origInputNo] =
InputMapping{origInputNo, /*size=*/0, replacementValue};
}
LogicalResult TypeConverter::convertType(Type t,
SmallVectorImpl<Type> &results) const {
{
std::shared_lock<decltype(cacheMutex)> cacheReadLock(cacheMutex,
std::defer_lock);
if (t.getContext()->isMultithreadingEnabled())
cacheReadLock.lock();
auto existingIt = cachedDirectConversions.find(t);
if (existingIt != cachedDirectConversions.end()) {
if (existingIt->second)
results.push_back(existingIt->second);
return success(existingIt->second != nullptr);
}
auto multiIt = cachedMultiConversions.find(t);
if (multiIt != cachedMultiConversions.end()) {
results.append(multiIt->second.begin(), multiIt->second.end());
return success();
}
}
// Walk the added converters in reverse order to apply the most recently
// registered first.
size_t currentCount = results.size();
std::unique_lock<decltype(cacheMutex)> cacheWriteLock(cacheMutex,
std::defer_lock);
for (const ConversionCallbackFn &converter : llvm::reverse(conversions)) {
if (std::optional<LogicalResult> result = converter(t, results)) {
if (t.getContext()->isMultithreadingEnabled())
cacheWriteLock.lock();
if (!succeeded(*result)) {
cachedDirectConversions.try_emplace(t, nullptr);
return failure();
}
auto newTypes = ArrayRef<Type>(results).drop_front(currentCount);
if (newTypes.size() == 1)
cachedDirectConversions.try_emplace(t, newTypes.front());
else
cachedMultiConversions.try_emplace(t, llvm::to_vector<2>(newTypes));
return success();
}
}
return failure();
}
Type TypeConverter::convertType(Type t) const {
// Use the multi-type result version to convert the type.
SmallVector<Type, 1> results;
if (failed(convertType(t, results)))
return nullptr;
// Check to ensure that only one type was produced.
return results.size() == 1 ? results.front() : nullptr;
}
LogicalResult
TypeConverter::convertTypes(TypeRange types,
SmallVectorImpl<Type> &results) const {
for (Type type : types)
if (failed(convertType(type, results)))
return failure();
return success();
}
bool TypeConverter::isLegal(Type type) const {
return convertType(type) == type;
}
bool TypeConverter::isLegal(Operation *op) const {
return isLegal(op->getOperandTypes()) && isLegal(op->getResultTypes());
}
bool TypeConverter::isLegal(Region *region) const {
return llvm::all_of(*region, [this](Block &block) {
return isLegal(block.getArgumentTypes());
});
}
bool TypeConverter::isSignatureLegal(FunctionType ty) const {
return isLegal(llvm::concat<const Type>(ty.getInputs(), ty.getResults()));
}
LogicalResult
TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
SignatureConversion &result) const {
// Try to convert the given input type.
SmallVector<Type, 1> convertedTypes;
if (failed(convertType(type, convertedTypes)))
return failure();
// If this argument is being dropped, there is nothing left to do.
if (convertedTypes.empty())
return success();
// Otherwise, add the new inputs.
result.addInputs(inputNo, convertedTypes);
return success();
}
LogicalResult
TypeConverter::convertSignatureArgs(TypeRange types,
SignatureConversion &result,
unsigned origInputOffset) const {
for (unsigned i = 0, e = types.size(); i != e; ++i)
if (failed(convertSignatureArg(origInputOffset + i, types[i], result)))
return failure();
return success();
}
Value TypeConverter::materializeConversion(
ArrayRef<MaterializationCallbackFn> materializations, OpBuilder &builder,
Location loc, Type resultType, ValueRange inputs) const {
for (const MaterializationCallbackFn &fn : llvm::reverse(materializations))
if (std::optional<Value> result = fn(builder, resultType, inputs, loc))
return *result;
return nullptr;
}
std::optional<TypeConverter::SignatureConversion>
TypeConverter::convertBlockSignature(Block *block) const {
SignatureConversion conversion(block->getNumArguments());
if (failed(convertSignatureArgs(block->getArgumentTypes(), conversion)))
return std::nullopt;
return conversion;
}
//===----------------------------------------------------------------------===//
// Type attribute conversion
//===----------------------------------------------------------------------===//
TypeConverter::AttributeConversionResult
TypeConverter::AttributeConversionResult::result(Attribute attr) {
return AttributeConversionResult(attr, resultTag);
}
TypeConverter::AttributeConversionResult
TypeConverter::AttributeConversionResult::na() {
return AttributeConversionResult(nullptr, naTag);
}
TypeConverter::AttributeConversionResult
TypeConverter::AttributeConversionResult::abort() {
return AttributeConversionResult(nullptr, abortTag);
}
bool TypeConverter::AttributeConversionResult::hasResult() const {
return impl.getInt() == resultTag;
}
bool TypeConverter::AttributeConversionResult::isNa() const {
return impl.getInt() == naTag;
}
bool TypeConverter::AttributeConversionResult::isAbort() const {
return impl.getInt() == abortTag;
}
Attribute TypeConverter::AttributeConversionResult::getResult() const {
assert(hasResult() && "Cannot get result from N/A or abort");
return impl.getPointer();
}
std::optional<Attribute>
TypeConverter::convertTypeAttribute(Type type, Attribute attr) const {
for (const TypeAttributeConversionCallbackFn &fn :
llvm::reverse(typeAttributeConversions)) {
AttributeConversionResult res = fn(type, attr);
if (res.hasResult())
return res.getResult();
if (res.isAbort())
return std::nullopt;
}
return std::nullopt;
}
//===----------------------------------------------------------------------===//
// FunctionOpInterfaceSignatureConversion
//===----------------------------------------------------------------------===//
static LogicalResult convertFuncOpTypes(FunctionOpInterface funcOp,
const TypeConverter &typeConverter,
ConversionPatternRewriter &rewriter) {
FunctionType type = dyn_cast<FunctionType>(funcOp.getFunctionType());
if (!type)
return failure();
// Convert the original function types.
TypeConverter::SignatureConversion result(type.getNumInputs());
SmallVector<Type, 1> newResults;
if (failed(typeConverter.convertSignatureArgs(type.getInputs(), result)) ||
failed(typeConverter.convertTypes(type.getResults(), newResults)) ||
failed(rewriter.convertRegionTypes(&funcOp.getFunctionBody(),
typeConverter, &result)))
return failure();
// Update the function signature in-place.
auto newType = FunctionType::get(rewriter.getContext(),
result.getConvertedTypes(), newResults);
rewriter.modifyOpInPlace(funcOp, [&] { funcOp.setType(newType); });
return success();
}
/// Create a default conversion pattern that rewrites the type signature of a
/// FunctionOpInterface op. This only supports ops which use FunctionType to
/// represent their type.
namespace {
struct FunctionOpInterfaceSignatureConversion : public ConversionPattern {
FunctionOpInterfaceSignatureConversion(StringRef functionLikeOpName,
MLIRContext *ctx,
const TypeConverter &converter)
: ConversionPattern(converter, functionLikeOpName, /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> /*operands*/,
ConversionPatternRewriter &rewriter) const override {
FunctionOpInterface funcOp = cast<FunctionOpInterface>(op);
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
}
};
struct AnyFunctionOpInterfaceSignatureConversion
: public OpInterfaceConversionPattern<FunctionOpInterface> {
using OpInterfaceConversionPattern::OpInterfaceConversionPattern;
LogicalResult
matchAndRewrite(FunctionOpInterface funcOp, ArrayRef<Value> /*operands*/,
ConversionPatternRewriter &rewriter) const override {
return convertFuncOpTypes(funcOp, *typeConverter, rewriter);
}
};
} // namespace
FailureOr<Operation *>
mlir::convertOpResultTypes(Operation *op, ValueRange operands,
const TypeConverter &converter,
ConversionPatternRewriter &rewriter) {
assert(op && "Invalid op");
Location loc = op->getLoc();
if (converter.isLegal(op))
return rewriter.notifyMatchFailure(loc, "op already legal");
OperationState newOp(loc, op->getName());
newOp.addOperands(operands);
SmallVector<Type> newResultTypes;
if (failed(converter.convertTypes(op->getResultTypes(), newResultTypes)))
return rewriter.notifyMatchFailure(loc, "couldn't convert return types");
newOp.addTypes(newResultTypes);
newOp.addAttributes(op->getAttrs());
return rewriter.create(newOp);
}
void mlir::populateFunctionOpInterfaceTypeConversionPattern(
StringRef functionLikeOpName, RewritePatternSet &patterns,
const TypeConverter &converter) {
patterns.add<FunctionOpInterfaceSignatureConversion>(
functionLikeOpName, patterns.getContext(), converter);
}
void mlir::populateAnyFunctionOpInterfaceTypeConversionPattern(
RewritePatternSet &patterns, const TypeConverter &converter) {
patterns.add<AnyFunctionOpInterfaceSignatureConversion>(
converter, patterns.getContext());
}
//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//
void ConversionTarget::setOpAction(OperationName op,
LegalizationAction action) {
legalOperations[op].action = action;
}
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
LegalizationAction action) {
for (StringRef dialect : dialectNames)
legalDialects[dialect] = action;
}
auto ConversionTarget::getOpAction(OperationName op) const
-> std::optional<LegalizationAction> {
std::optional<LegalizationInfo> info = getOpInfo(op);
return info ? info->action : std::optional<LegalizationAction>();
}
auto ConversionTarget::isLegal(Operation *op) const
-> std::optional<LegalOpDetails> {
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return std::nullopt;
// Returns true if this operation instance is known to be legal.
auto isOpLegal = [&] {
// Handle dynamic legality either with the provided legality function.
if (info->action == LegalizationAction::Dynamic) {
std::optional<bool> result = info->legalityFn(op);
if (result)
return *result;
}
// Otherwise, the operation is only legal if it was marked 'Legal'.
return info->action == LegalizationAction::Legal;
};
if (!isOpLegal())
return std::nullopt;
// This operation is legal, compute any additional legality information.
LegalOpDetails legalityDetails;
if (info->isRecursivelyLegal) {
auto legalityFnIt = opRecursiveLegalityFns.find(op->getName());
if (legalityFnIt != opRecursiveLegalityFns.end()) {
legalityDetails.isRecursivelyLegal =
legalityFnIt->second(op).value_or(true);
} else {
legalityDetails.isRecursivelyLegal = true;
}
}
return legalityDetails;
}
bool ConversionTarget::isIllegal(Operation *op) const {
std::optional<LegalizationInfo> info = getOpInfo(op->getName());
if (!info)
return false;
if (info->action == LegalizationAction::Dynamic) {
std::optional<bool> result = info->legalityFn(op);
if (!result)
return false;
return !(*result);
}
return info->action == LegalizationAction::Illegal;
}
static ConversionTarget::DynamicLegalityCallbackFn composeLegalityCallbacks(
ConversionTarget::DynamicLegalityCallbackFn oldCallback,
ConversionTarget::DynamicLegalityCallbackFn newCallback) {
if (!oldCallback)
return newCallback;
auto chain = [oldCl = std::move(oldCallback), newCl = std::move(newCallback)](
Operation *op) -> std::optional<bool> {
if (std::optional<bool> result = newCl(op))
return *result;
return oldCl(op);
};
return chain;
}
void ConversionTarget::setLegalityCallback(
OperationName name, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
auto *infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action == LegalizationAction::Dynamic &&
"expected operation to already be marked as dynamically legal");
infoIt->second.legalityFn =
composeLegalityCallbacks(std::move(infoIt->second.legalityFn), callback);
}
void ConversionTarget::markOpRecursivelyLegal(
OperationName name, const DynamicLegalityCallbackFn &callback) {
auto *infoIt = legalOperations.find(name);
assert(infoIt != legalOperations.end() &&
infoIt->second.action != LegalizationAction::Illegal &&
"expected operation to already be marked as legal");
infoIt->second.isRecursivelyLegal = true;
if (callback)
opRecursiveLegalityFns[name] = composeLegalityCallbacks(
std::move(opRecursiveLegalityFns[name]), callback);
else
opRecursiveLegalityFns.erase(name);
}
void ConversionTarget::setLegalityCallback(
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
for (StringRef dialect : dialects)
dialectLegalityFns[dialect] = composeLegalityCallbacks(
std::move(dialectLegalityFns[dialect]), callback);
}
void ConversionTarget::setLegalityCallback(
const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
unknownLegalityFn = composeLegalityCallbacks(unknownLegalityFn, callback);
}
auto ConversionTarget::getOpInfo(OperationName op) const
-> std::optional<LegalizationInfo> {
// Check for info for this specific operation.
const auto *it = legalOperations.find(op);
if (it != legalOperations.end())
return it->second;
// Check for info for the parent dialect.
auto dialectIt = legalDialects.find(op.getDialectNamespace());
if (dialectIt != legalDialects.end()) {
DynamicLegalityCallbackFn callback;
auto dialectFn = dialectLegalityFns.find(op.getDialectNamespace());
if (dialectFn != dialectLegalityFns.end())
callback = dialectFn->second;
return LegalizationInfo{dialectIt->second, /*isRecursivelyLegal=*/false,
callback};
}
// Otherwise, check if we mark unknown operations as dynamic.
if (unknownLegalityFn)
return LegalizationInfo{LegalizationAction::Dynamic,
/*isRecursivelyLegal=*/false, unknownLegalityFn};
return std::nullopt;
}
#if MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// PDL Configuration
//===----------------------------------------------------------------------===//
void PDLConversionConfig::notifyRewriteBegin(PatternRewriter &rewriter) {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
rewriterImpl.currentTypeConverter = getTypeConverter();
}
void PDLConversionConfig::notifyRewriteEnd(PatternRewriter &rewriter) {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
rewriterImpl.currentTypeConverter = nullptr;
}
/// Remap the given value using the rewriter and the type converter in the
/// provided config.
static FailureOr<SmallVector<Value>>
pdllConvertValues(ConversionPatternRewriter &rewriter, ValueRange values) {
SmallVector<Value> mappedValues;
if (failed(rewriter.getRemappedValues(values, mappedValues)))
return failure();
return std::move(mappedValues);
}
void mlir::registerConversionPDLFunctions(RewritePatternSet &patterns) {
patterns.getPDLPatterns().registerRewriteFunction(
"convertValue",
[](PatternRewriter &rewriter, Value value) -> FailureOr<Value> {
auto results = pdllConvertValues(
static_cast<ConversionPatternRewriter &>(rewriter), value);
if (failed(results))
return failure();
return results->front();
});
patterns.getPDLPatterns().registerRewriteFunction(
"convertValues", [](PatternRewriter &rewriter, ValueRange values) {
return pdllConvertValues(
static_cast<ConversionPatternRewriter &>(rewriter), values);
});
patterns.getPDLPatterns().registerRewriteFunction(
"convertType",
[](PatternRewriter &rewriter, Type type) -> FailureOr<Type> {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
if (const TypeConverter *converter =
rewriterImpl.currentTypeConverter) {
if (Type newType = converter->convertType(type))
return newType;
return failure();
}
return type;
});
patterns.getPDLPatterns().registerRewriteFunction(
"convertTypes",
[](PatternRewriter &rewriter,
TypeRange types) -> FailureOr<SmallVector<Type>> {
auto &rewriterImpl =
static_cast<ConversionPatternRewriter &>(rewriter).getImpl();
const TypeConverter *converter = rewriterImpl.currentTypeConverter;
if (!converter)
return SmallVector<Type>(types);
SmallVector<Type> remappedTypes;
if (failed(converter->convertTypes(types, remappedTypes)))
return failure();
return std::move(remappedTypes);
});
}
#endif // MLIR_ENABLE_PDL_IN_PATTERNMATCH
//===----------------------------------------------------------------------===//
// Op Conversion Entry Points
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Partial Conversion
LogicalResult mlir::applyPartialConversion(
ArrayRef<Operation *> ops, const ConversionTarget &target,
const FrozenRewritePatternSet &patterns, ConversionConfig config) {
OperationConverter opConverter(target, patterns, config,
OpConversionMode::Partial);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyPartialConversion(Operation *op, const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
ConversionConfig config) {
return applyPartialConversion(llvm::ArrayRef(op), target, patterns, config);
}
//===----------------------------------------------------------------------===//
// Full Conversion
LogicalResult mlir::applyFullConversion(ArrayRef<Operation *> ops,
const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
ConversionConfig config) {
OperationConverter opConverter(target, patterns, config,
OpConversionMode::Full);
return opConverter.convertOperations(ops);
}
LogicalResult mlir::applyFullConversion(Operation *op,
const ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
ConversionConfig config) {
return applyFullConversion(llvm::ArrayRef(op), target, patterns, config);
}
//===----------------------------------------------------------------------===//
// Analysis Conversion
LogicalResult mlir::applyAnalysisConversion(
ArrayRef<Operation *> ops, ConversionTarget &target,
const FrozenRewritePatternSet &patterns, ConversionConfig config) {
OperationConverter opConverter(target, patterns, config,
OpConversionMode::Analysis);
return opConverter.convertOperations(ops);
}
LogicalResult
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
const FrozenRewritePatternSet &patterns,
ConversionConfig config) {
return applyAnalysisConversion(llvm::ArrayRef(op), target, patterns, config);
}