The MVE architecture has the idea of "beats", where a vector instruction can be executed over several ticks of the architecture. This adds a similar system into the Arm backend cost model, multiplying the cost of all vector instructions by a factor. This factor essentially becomes the expected difference between scalar code and vector code, on average. MVE Vector instructions can also overlap so the a true cost of them is often lower. But equally scalar instructions can in some situations be dual issued, or have other optimisations such as unrolling or make use of dsp instructions. The default is chosen as 2. This should not prevent vectorisation is a most cases (as the vector instructions will still be doing at least 4 times the work), but it will help prevent over vectorising in cases where the benefits are less likely. This adds things so far to the obvious places in ARMTargetTransformInfo, and updates a few related costs like not treating float instructions as cost 2 just because they are floats. Differential Revision: https://reviews.llvm.org/D66005 llvm-svn: 368733
464 lines
16 KiB
C++
464 lines
16 KiB
C++
//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ARM specific subclass of TargetSubtargetInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
|
|
#include "ARMCallLowering.h"
|
|
#include "ARMLegalizerInfo.h"
|
|
#include "ARMRegisterBankInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMFrameLowering.h"
|
|
#include "ARMInstrInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "MCTargetDesc/ARMMCTargetDesc.h"
|
|
#include "Thumb1FrameLowering.h"
|
|
#include "Thumb1InstrInfo.h"
|
|
#include "Thumb2InstrInfo.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/TargetParser.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "arm-subtarget"
|
|
|
|
#define GET_SUBTARGETINFO_TARGET_DESC
|
|
#define GET_SUBTARGETINFO_CTOR
|
|
#include "ARMGenSubtargetInfo.inc"
|
|
|
|
static cl::opt<bool>
|
|
UseFusedMulOps("arm-use-mulops",
|
|
cl::init(true), cl::Hidden);
|
|
|
|
enum ITMode {
|
|
DefaultIT,
|
|
RestrictedIT,
|
|
NoRestrictedIT
|
|
};
|
|
|
|
static cl::opt<ITMode>
|
|
IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
|
|
cl::ZeroOrMore,
|
|
cl::values(clEnumValN(DefaultIT, "arm-default-it",
|
|
"Generate IT block based on arch"),
|
|
clEnumValN(RestrictedIT, "arm-restrict-it",
|
|
"Disallow deprecated IT based on ARMv8"),
|
|
clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
|
|
"Allow IT blocks based on ARMv7")));
|
|
|
|
/// ForceFastISel - Use the fast-isel, even for subtargets where it is not
|
|
/// currently supported (for testing only).
|
|
static cl::opt<bool>
|
|
ForceFastISel("arm-force-fast-isel",
|
|
cl::init(false), cl::Hidden);
|
|
|
|
/// initializeSubtargetDependencies - Initializes using a CPU and feature string
|
|
/// so that we can use initializer lists for subtarget initialization.
|
|
ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
|
|
StringRef FS) {
|
|
initializeEnvironment();
|
|
initSubtargetFeatures(CPU, FS);
|
|
return *this;
|
|
}
|
|
|
|
ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
|
|
StringRef FS) {
|
|
ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
|
|
if (STI.isThumb1Only())
|
|
return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
|
|
|
|
return new ARMFrameLowering(STI);
|
|
}
|
|
|
|
ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
|
|
const std::string &FS,
|
|
const ARMBaseTargetMachine &TM, bool IsLittle,
|
|
bool MinSize)
|
|
: ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps),
|
|
CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle),
|
|
TargetTriple(TT), Options(TM.Options), TM(TM),
|
|
FrameLowering(initializeFrameLowering(CPU, FS)),
|
|
// At this point initializeSubtargetDependencies has been called so
|
|
// we can query directly.
|
|
InstrInfo(isThumb1Only()
|
|
? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
|
|
: !isThumb()
|
|
? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
|
|
: (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
|
|
TLInfo(TM, *this) {
|
|
|
|
CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
|
|
Legalizer.reset(new ARMLegalizerInfo(*this));
|
|
|
|
auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
|
|
|
|
// FIXME: At this point, we can't rely on Subtarget having RBI.
|
|
// It's awkward to mix passing RBI and the Subtarget; should we pass
|
|
// TII/TRI as well?
|
|
InstSelector.reset(createARMInstructionSelector(
|
|
*static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
|
|
|
|
RegBankInfo.reset(RBI);
|
|
}
|
|
|
|
const CallLowering *ARMSubtarget::getCallLowering() const {
|
|
return CallLoweringInfo.get();
|
|
}
|
|
|
|
InstructionSelector *ARMSubtarget::getInstructionSelector() const {
|
|
return InstSelector.get();
|
|
}
|
|
|
|
const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
|
|
return Legalizer.get();
|
|
}
|
|
|
|
const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
|
|
return RegBankInfo.get();
|
|
}
|
|
|
|
bool ARMSubtarget::isXRaySupported() const {
|
|
// We don't currently suppport Thumb, but Windows requires Thumb.
|
|
return hasV6Ops() && hasARMOps() && !isTargetWindows();
|
|
}
|
|
|
|
void ARMSubtarget::initializeEnvironment() {
|
|
// MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
|
|
// directly from it, but we can try to make sure they're consistent when both
|
|
// available.
|
|
UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
|
|
Options.ExceptionModel == ExceptionHandling::None) ||
|
|
Options.ExceptionModel == ExceptionHandling::SjLj;
|
|
assert((!TM.getMCAsmInfo() ||
|
|
(TM.getMCAsmInfo()->getExceptionHandlingType() ==
|
|
ExceptionHandling::SjLj) == UseSjLjEH) &&
|
|
"inconsistent sjlj choice between CodeGen and MC");
|
|
}
|
|
|
|
void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
|
|
if (CPUString.empty()) {
|
|
CPUString = "generic";
|
|
|
|
if (isTargetDarwin()) {
|
|
StringRef ArchName = TargetTriple.getArchName();
|
|
ARM::ArchKind AK = ARM::parseArch(ArchName);
|
|
if (AK == ARM::ArchKind::ARMV7S)
|
|
// Default to the Swift CPU when targeting armv7s/thumbv7s.
|
|
CPUString = "swift";
|
|
else if (AK == ARM::ArchKind::ARMV7K)
|
|
// Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
|
|
// ARMv7k does not use SjLj exception handling.
|
|
CPUString = "cortex-a7";
|
|
}
|
|
}
|
|
|
|
// Insert the architecture feature derived from the target triple into the
|
|
// feature string. This is important for setting features that are implied
|
|
// based on the architecture version.
|
|
std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
|
|
if (!FS.empty()) {
|
|
if (!ArchFS.empty())
|
|
ArchFS = (Twine(ArchFS) + "," + FS).str();
|
|
else
|
|
ArchFS = FS;
|
|
}
|
|
ParseSubtargetFeatures(CPUString, ArchFS);
|
|
|
|
// FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
|
|
// Assert this for now to make the change obvious.
|
|
assert(hasV6T2Ops() || !hasThumb2());
|
|
|
|
// Execute only support requires movt support
|
|
if (genExecuteOnly()) {
|
|
NoMovt = false;
|
|
assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
|
|
}
|
|
|
|
// Keep a pointer to static instruction cost data for the specified CPU.
|
|
SchedModel = getSchedModelForCPU(CPUString);
|
|
|
|
// Initialize scheduling itinerary for the specified CPU.
|
|
InstrItins = getInstrItineraryForCPU(CPUString);
|
|
|
|
// FIXME: this is invalid for WindowsCE
|
|
if (isTargetWindows())
|
|
NoARM = true;
|
|
|
|
if (isAAPCS_ABI())
|
|
stackAlignment = 8;
|
|
if (isTargetNaCl() || isAAPCS16_ABI())
|
|
stackAlignment = 16;
|
|
|
|
// FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
|
|
// emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
|
|
// the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
|
|
// support in the assembler and linker to be used. This would need to be
|
|
// fixed to fully support tail calls in Thumb1.
|
|
//
|
|
// For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M
|
|
// baseline, since the LDM/POP instruction on Thumb doesn't take LR. This
|
|
// means if we need to reload LR, it takes extra instructions, which outweighs
|
|
// the value of the tail call; but here we don't know yet whether LR is going
|
|
// to be used. We take the optimistic approach of generating the tail call and
|
|
// perhaps taking a hit if we need to restore the LR.
|
|
|
|
// Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
|
|
// but we need to make sure there are enough registers; the only valid
|
|
// registers are the 4 used for parameters. We don't currently do this
|
|
// case.
|
|
|
|
SupportsTailCall = !isThumb() || hasV8MBaselineOps();
|
|
|
|
if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
|
|
SupportsTailCall = false;
|
|
|
|
switch (IT) {
|
|
case DefaultIT:
|
|
RestrictIT = hasV8Ops();
|
|
break;
|
|
case RestrictedIT:
|
|
RestrictIT = true;
|
|
break;
|
|
case NoRestrictedIT:
|
|
RestrictIT = false;
|
|
break;
|
|
}
|
|
|
|
// NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
|
|
const FeatureBitset &Bits = getFeatureBits();
|
|
if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
|
|
(Options.UnsafeFPMath || isTargetDarwin()))
|
|
UseNEONForSinglePrecisionFP = true;
|
|
|
|
if (isRWPI())
|
|
ReserveR9 = true;
|
|
|
|
// If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
|
|
if (MVEVectorCostFactor == 0)
|
|
MVEVectorCostFactor = 2;
|
|
|
|
// FIXME: Teach TableGen to deal with these instead of doing it manually here.
|
|
switch (ARMProcFamily) {
|
|
case Others:
|
|
case CortexA5:
|
|
break;
|
|
case CortexA7:
|
|
LdStMultipleTiming = DoubleIssue;
|
|
break;
|
|
case CortexA8:
|
|
LdStMultipleTiming = DoubleIssue;
|
|
break;
|
|
case CortexA9:
|
|
LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
|
|
PreISelOperandLatencyAdjustment = 1;
|
|
break;
|
|
case CortexA12:
|
|
break;
|
|
case CortexA15:
|
|
MaxInterleaveFactor = 2;
|
|
PreISelOperandLatencyAdjustment = 1;
|
|
PartialUpdateClearance = 12;
|
|
break;
|
|
case CortexA17:
|
|
case CortexA32:
|
|
case CortexA35:
|
|
case CortexA53:
|
|
case CortexA55:
|
|
case CortexA57:
|
|
case CortexA72:
|
|
case CortexA73:
|
|
case CortexA75:
|
|
case CortexA76:
|
|
case CortexR4:
|
|
case CortexR4F:
|
|
case CortexR5:
|
|
case CortexR7:
|
|
case CortexM3:
|
|
case CortexR52:
|
|
break;
|
|
case Exynos:
|
|
LdStMultipleTiming = SingleIssuePlusExtras;
|
|
MaxInterleaveFactor = 4;
|
|
if (!isThumb())
|
|
PrefLoopAlignment = 3;
|
|
break;
|
|
case Kryo:
|
|
break;
|
|
case Krait:
|
|
PreISelOperandLatencyAdjustment = 1;
|
|
break;
|
|
case NeoverseN1:
|
|
break;
|
|
case Swift:
|
|
MaxInterleaveFactor = 2;
|
|
LdStMultipleTiming = SingleIssuePlusExtras;
|
|
PreISelOperandLatencyAdjustment = 1;
|
|
PartialUpdateClearance = 12;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
|
|
|
|
bool ARMSubtarget::isAPCS_ABI() const {
|
|
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
|
|
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
|
|
}
|
|
bool ARMSubtarget::isAAPCS_ABI() const {
|
|
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
|
|
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
|
|
TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
|
|
}
|
|
bool ARMSubtarget::isAAPCS16_ABI() const {
|
|
assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
|
|
return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
|
|
}
|
|
|
|
bool ARMSubtarget::isROPI() const {
|
|
return TM.getRelocationModel() == Reloc::ROPI ||
|
|
TM.getRelocationModel() == Reloc::ROPI_RWPI;
|
|
}
|
|
bool ARMSubtarget::isRWPI() const {
|
|
return TM.getRelocationModel() == Reloc::RWPI ||
|
|
TM.getRelocationModel() == Reloc::ROPI_RWPI;
|
|
}
|
|
|
|
bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
|
|
if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
|
|
return true;
|
|
|
|
// 32 bit macho has no relocation for a-b if a is undefined, even if b is in
|
|
// the section that is being relocated. This means we have to use o load even
|
|
// for GVs that are known to be local to the dso.
|
|
if (isTargetMachO() && TM.isPositionIndependent() &&
|
|
(GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
|
|
return isTargetELF() && TM.isPositionIndependent() &&
|
|
!TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
|
|
}
|
|
|
|
unsigned ARMSubtarget::getMispredictionPenalty() const {
|
|
return SchedModel.MispredictPenalty;
|
|
}
|
|
|
|
bool ARMSubtarget::enableMachineScheduler() const {
|
|
// The MachineScheduler can increase register usage, so we use more high
|
|
// registers and end up with more T2 instructions that cannot be converted to
|
|
// T1 instructions. At least until we do better at converting to thumb1
|
|
// instructions, on cortex-m at Oz where we are size-paranoid, don't use the
|
|
// Machine scheduler, relying on the DAG register pressure scheduler instead.
|
|
if (isMClass() && hasMinSize())
|
|
return false;
|
|
// Enable the MachineScheduler before register allocation for subtargets
|
|
// with the use-misched feature.
|
|
return useMachineScheduler();
|
|
}
|
|
|
|
// This overrides the PostRAScheduler bit in the SchedModel for any CPU.
|
|
bool ARMSubtarget::enablePostRAScheduler() const {
|
|
if (disablePostRAScheduler())
|
|
return false;
|
|
// Don't reschedule potential IT blocks.
|
|
return !isThumb1Only();
|
|
}
|
|
|
|
bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
|
|
|
|
bool ARMSubtarget::useStride4VFPs() const {
|
|
// For general targets, the prologue can grow when VFPs are allocated with
|
|
// stride 4 (more vpush instructions). But WatchOS uses a compact unwind
|
|
// format which it's more important to get right.
|
|
return isTargetWatchABI() ||
|
|
(useWideStrideVFP() && !OptMinSize);
|
|
}
|
|
|
|
bool ARMSubtarget::useMovt() const {
|
|
// NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
|
|
// immediates as it is inherently position independent, and may be out of
|
|
// range otherwise.
|
|
return !NoMovt && hasV8MBaselineOps() &&
|
|
(isTargetWindows() || !OptMinSize || genExecuteOnly());
|
|
}
|
|
|
|
bool ARMSubtarget::useFastISel() const {
|
|
// Enable fast-isel for any target, for testing only.
|
|
if (ForceFastISel)
|
|
return true;
|
|
|
|
// Limit fast-isel to the targets that are or have been tested.
|
|
if (!hasV6Ops())
|
|
return false;
|
|
|
|
// Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
|
|
return TM.Options.EnableFastISel &&
|
|
((isTargetMachO() && !isThumb1Only()) ||
|
|
(isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
|
|
}
|
|
|
|
unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
|
|
// The GPR register class has multiple possible allocation orders, with
|
|
// tradeoffs preferred by different sub-architectures and optimisation goals.
|
|
// The allocation orders are:
|
|
// 0: (the default tablegen order, not used)
|
|
// 1: r14, r0-r13
|
|
// 2: r0-r7
|
|
// 3: r0-r7, r12, lr, r8-r11
|
|
// Note that the register allocator will change this order so that
|
|
// callee-saved registers are used later, as they require extra work in the
|
|
// prologue/epilogue (though we sometimes override that).
|
|
|
|
// For thumb1-only targets, only the low registers are allocatable.
|
|
if (isThumb1Only())
|
|
return 2;
|
|
|
|
// Allocate low registers first, so we can select more 16-bit instructions.
|
|
// We also (in ignoreCSRForAllocationOrder) override the default behaviour
|
|
// with regards to callee-saved registers, because pushing extra registers is
|
|
// much cheaper (in terms of code size) than using high registers. After
|
|
// that, we allocate r12 (doesn't need to be saved), lr (saving it means we
|
|
// can return with the pop, don't need an extra "bx lr") and then the rest of
|
|
// the high registers.
|
|
if (isThumb2() && MF.getFunction().hasMinSize())
|
|
return 3;
|
|
|
|
// Otherwise, allocate in the default order, using LR first because saving it
|
|
// allows a shorter epilogue sequence.
|
|
return 1;
|
|
}
|
|
|
|
bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
|
|
unsigned PhysReg) const {
|
|
// To minimize code size in Thumb2, we prefer the usage of low regs (lower
|
|
// cost per use) so we can use narrow encoding. By default, caller-saved
|
|
// registers (e.g. lr, r12) are always allocated first, regardless of
|
|
// their cost per use. When optForMinSize, we prefer the low regs even if
|
|
// they are CSR because usually push/pop can be folded into existing ones.
|
|
return isThumb2() && MF.getFunction().hasMinSize() &&
|
|
ARM::GPRRegClass.contains(PhysReg);
|
|
}
|