Files
clang-p2996/mlir/lib/Dialect/Arith/Transforms/BufferizableOpInterfaceImpl.cpp
Michele Scuttari 61d5fdf50c [MLIR] Add bufferization state class to OneShotBufferization pass (#141019)
Follow-up on #138143, which was reverted due to a missing update a method signature (more specifically, the bufferization interface for `tensor::ConcatOp`) that was not catched before merging. The old PR description is reported in the next lines.

This PR is a follow-up on https://github.com/llvm/llvm-project/pull/138125, and adds a bufferization state class providing information about the IR. The information currently consists of a cached list of symbol tables, which aims to solve the quadratic scaling of the bufferization task with respect to the number of symbols. The PR breaks API compatibility: the bufferize method of the BufferizableOpInterface has been enriched with a reference to a BufferizationState object.

The bufferization state must be kept in a valid state by the interface implementations. For example, if an operation with the Symbol trait is inserted or replaced, its parent SymbolTable must be updated accordingly (see, for example, the bufferization of arith::ConstantOp, where the symbol table of the module gets the new global symbol inserted). Similarly, the invalidation of a symbol table must be performed if an operation with the SymbolTable trait is removed (this can be performed using the invalidateSymbolTable method, introduced in https://github.com/llvm/llvm-project/pull/138014).
2025-05-23 09:21:35 +02:00

219 lines
8.9 KiB
C++

//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/Transforms/BufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/Transforms/BufferUtils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace mlir::bufferization;
namespace {
/// Bufferization of arith.constant. Replace with memref.get_global.
struct ConstantOpInterface
: public BufferizableOpInterface::ExternalModel<ConstantOpInterface,
arith::ConstantOp> {
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options,
BufferizationState &state) const {
auto constantOp = cast<arith::ConstantOp>(op);
auto type = dyn_cast<RankedTensorType>(constantOp.getType());
// Only ranked tensors are supported.
if (!type)
return failure();
Attribute memorySpace;
if (auto memSpace = options.defaultMemorySpaceFn(type))
memorySpace = *memSpace;
else
return constantOp->emitError("could not infer memory space");
// Only constants inside a module are supported.
auto moduleOp = constantOp->getParentOfType<ModuleOp>();
if (!moduleOp)
return failure();
// Create global memory segment and replace tensor with memref pointing to
// that memory segment.
FailureOr<memref::GlobalOp> globalOp =
getGlobalFor(constantOp, state.getSymbolTables(),
options.bufferAlignment, memorySpace);
if (failed(globalOp))
return failure();
memref::GlobalOp globalMemref = *globalOp;
replaceOpWithNewBufferizedOp<memref::GetGlobalOp>(
rewriter, op, globalMemref.getType(), globalMemref.getName());
return success();
}
bool isWritable(Operation *op, Value value,
const AnalysisState &state) const {
// Memory locations returned by memref::GetGlobalOp may not be written to.
assert(isa<OpResult>(value));
return false;
}
};
struct IndexCastOpInterface
: public BufferizableOpInterface::ExternalModel<IndexCastOpInterface,
arith::IndexCastOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {{op->getResult(0), BufferRelation::Equivalent}};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options,
BufferizationState &state) const {
auto castOp = cast<arith::IndexCastOp>(op);
auto resultTensorType = cast<TensorType>(castOp.getType());
FailureOr<Value> source = getBuffer(rewriter, castOp.getIn(), options);
if (failed(source))
return failure();
auto sourceType = cast<BaseMemRefType>(source->getType());
// Result type should have same layout and address space as the source type.
BaseMemRefType resultType;
if (auto rankedMemRefType = dyn_cast<MemRefType>(sourceType)) {
resultType = MemRefType::get(
rankedMemRefType.getShape(), resultTensorType.getElementType(),
rankedMemRefType.getLayout(), rankedMemRefType.getMemorySpace());
} else {
auto unrankedMemrefType = cast<UnrankedMemRefType>(sourceType);
resultType = UnrankedMemRefType::get(resultTensorType.getElementType(),
unrankedMemrefType.getMemorySpace());
}
replaceOpWithNewBufferizedOp<arith::IndexCastOp>(rewriter, op, resultType,
*source);
return success();
}
};
/// Bufferization of arith.select. Just replace the operands.
struct SelectOpInterface
: public BufferizableOpInterface::ExternalModel<SelectOpInterface,
arith::SelectOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {{op->getOpResult(0) /*result*/, BufferRelation::Equivalent,
/*isDefinite=*/false}};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options,
BufferizationState &state) const {
auto selectOp = cast<arith::SelectOp>(op);
Location loc = selectOp.getLoc();
// Elementwise conditions are not supported yet. To bufferize such an op,
// it could be lowered to an elementwise "linalg.generic" with a new
// "tensor.empty" out tensor, followed by "empty tensor elimination". Such
// IR will bufferize.
if (!selectOp.getCondition().getType().isInteger(1))
return op->emitOpError("only i1 condition values are supported");
// TODO: It would be more efficient to copy the result of the `select` op
// instead of its OpOperands. In the worst case, 2 copies are inserted at
// the moment (one for each tensor). When copying the op result, only one
// copy would be needed.
FailureOr<Value> maybeTrueBuffer =
getBuffer(rewriter, selectOp.getTrueValue(), options);
FailureOr<Value> maybeFalseBuffer =
getBuffer(rewriter, selectOp.getFalseValue(), options);
if (failed(maybeTrueBuffer) || failed(maybeFalseBuffer))
return failure();
Value trueBuffer = *maybeTrueBuffer;
Value falseBuffer = *maybeFalseBuffer;
// The "true" and the "false" operands must have the same type. If the
// buffers have different types, they differ only in their layout map. Cast
// both of them to the most dynamic MemRef type.
if (trueBuffer.getType() != falseBuffer.getType()) {
auto targetType =
bufferization::getBufferType(selectOp.getResult(), options);
if (failed(targetType))
return failure();
if (trueBuffer.getType() != *targetType)
trueBuffer =
rewriter.create<memref::CastOp>(loc, *targetType, trueBuffer);
if (falseBuffer.getType() != *targetType)
falseBuffer =
rewriter.create<memref::CastOp>(loc, *targetType, falseBuffer);
}
replaceOpWithNewBufferizedOp<arith::SelectOp>(
rewriter, op, selectOp.getCondition(), trueBuffer, falseBuffer);
return success();
}
FailureOr<BaseMemRefType>
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
SmallVector<Value> &invocationStack) const {
auto selectOp = cast<arith::SelectOp>(op);
assert(value == selectOp.getResult() && "invalid value");
auto trueType = bufferization::getBufferType(selectOp.getTrueValue(),
options, invocationStack);
auto falseType = bufferization::getBufferType(selectOp.getFalseValue(),
options, invocationStack);
if (failed(trueType) || failed(falseType))
return failure();
if (*trueType == *falseType)
return *trueType;
if (trueType->getMemorySpace() != falseType->getMemorySpace())
return op->emitError("inconsistent memory space on true/false operands");
// If the buffers have different types, they differ only in their layout
// map.
auto memrefType = llvm::cast<MemRefType>(*trueType);
return getMemRefTypeWithFullyDynamicLayout(
RankedTensorType::get(memrefType.getShape(),
memrefType.getElementType()),
memrefType.getMemorySpace());
}
};
} // namespace
void mlir::arith::registerBufferizableOpInterfaceExternalModels(
DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, ArithDialect *dialect) {
ConstantOp::attachInterface<ConstantOpInterface>(*ctx);
IndexCastOp::attachInterface<IndexCastOpInterface>(*ctx);
SelectOp::attachInterface<SelectOpInterface>(*ctx);
});
}