The existing conversion inlined private alloc regions and firstprivate copy regions in mlir, then undoing the modification of the mlir module before completing the conversion. To make this work, LLVM IR had to be generated using the wrong mapping for privatised values and then later fixed inside of OpenMPIRBuilder. This approach violated an assumption in OpenMPIRBuilder that private variables would be values not constants. Flang sometimes generates code where private variables are promoted to globals, the address of which is treated as a constant in LLVM IR. This caused the incorrect values for the private variable from being replaced by OpenMPIRBuilder: ultimately resulting in programs producing incorrect results. This patch rewrites delayed privatisation for omp.parallel to work more similarly to reductions: translating directly into LLVMIR with correct mappings for private variables. RFC: https://discourse.llvm.org/t/rfc-openmp-fix-issue-in-mlir-to-llvmir-translation-for-delayed-privatisation/81225 Tested against the gfortran testsuite and our internal test suite. Linaro's post-commit bots will check against the fujitsu test suite. I decided to add the new tests as flang integration tests rather than in mlir/test/Target/LLVMIR: - The regression test is for an issue filed against flang. i wanted to keep the reproducer similar to the code in the ticket. - I found the "worst case" CFG test difficult to reason about in abstract it helped me to think about what was going on in terms of a Fortran program. Fixes #106297
3909 lines
167 KiB
C++
3909 lines
167 KiB
C++
//===- OpenMPToLLVMIRTranslation.cpp - Translate OpenMP dialect to LLVM IR-===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements a translation between the MLIR OpenMP dialect and LLVM
|
||
// IR.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
#include "mlir/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.h"
|
||
#include "mlir/Analysis/TopologicalSortUtils.h"
|
||
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
||
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
|
||
#include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
|
||
#include "mlir/IR/IRMapping.h"
|
||
#include "mlir/IR/Operation.h"
|
||
#include "mlir/Support/LLVM.h"
|
||
#include "mlir/Target/LLVMIR/Dialect/OpenMPCommon.h"
|
||
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
|
||
#include "mlir/Transforms/RegionUtils.h"
|
||
|
||
#include "llvm/ADT/ArrayRef.h"
|
||
#include "llvm/ADT/SetVector.h"
|
||
#include "llvm/ADT/TypeSwitch.h"
|
||
#include "llvm/Frontend/OpenMP/OMPConstants.h"
|
||
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
|
||
#include "llvm/IR/DebugInfoMetadata.h"
|
||
#include "llvm/IR/IRBuilder.h"
|
||
#include "llvm/IR/ReplaceConstant.h"
|
||
#include "llvm/Support/FileSystem.h"
|
||
#include "llvm/TargetParser/Triple.h"
|
||
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
||
|
||
#include <any>
|
||
#include <cstdint>
|
||
#include <iterator>
|
||
#include <numeric>
|
||
#include <optional>
|
||
#include <utility>
|
||
|
||
using namespace mlir;
|
||
|
||
namespace {
|
||
static llvm::omp::ScheduleKind
|
||
convertToScheduleKind(std::optional<omp::ClauseScheduleKind> schedKind) {
|
||
if (!schedKind.has_value())
|
||
return llvm::omp::OMP_SCHEDULE_Default;
|
||
switch (schedKind.value()) {
|
||
case omp::ClauseScheduleKind::Static:
|
||
return llvm::omp::OMP_SCHEDULE_Static;
|
||
case omp::ClauseScheduleKind::Dynamic:
|
||
return llvm::omp::OMP_SCHEDULE_Dynamic;
|
||
case omp::ClauseScheduleKind::Guided:
|
||
return llvm::omp::OMP_SCHEDULE_Guided;
|
||
case omp::ClauseScheduleKind::Auto:
|
||
return llvm::omp::OMP_SCHEDULE_Auto;
|
||
case omp::ClauseScheduleKind::Runtime:
|
||
return llvm::omp::OMP_SCHEDULE_Runtime;
|
||
}
|
||
llvm_unreachable("unhandled schedule clause argument");
|
||
}
|
||
|
||
/// ModuleTranslation stack frame for OpenMP operations. This keeps track of the
|
||
/// insertion points for allocas.
|
||
class OpenMPAllocaStackFrame
|
||
: public LLVM::ModuleTranslation::StackFrameBase<OpenMPAllocaStackFrame> {
|
||
public:
|
||
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPAllocaStackFrame)
|
||
|
||
explicit OpenMPAllocaStackFrame(llvm::OpenMPIRBuilder::InsertPointTy allocaIP)
|
||
: allocaInsertPoint(allocaIP) {}
|
||
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
|
||
};
|
||
|
||
/// ModuleTranslation stack frame containing the partial mapping between MLIR
|
||
/// values and their LLVM IR equivalents.
|
||
class OpenMPVarMappingStackFrame
|
||
: public LLVM::ModuleTranslation::StackFrameBase<
|
||
OpenMPVarMappingStackFrame> {
|
||
public:
|
||
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPVarMappingStackFrame)
|
||
|
||
explicit OpenMPVarMappingStackFrame(
|
||
const DenseMap<Value, llvm::Value *> &mapping)
|
||
: mapping(mapping) {}
|
||
|
||
DenseMap<Value, llvm::Value *> mapping;
|
||
};
|
||
} // namespace
|
||
|
||
/// Find the insertion point for allocas given the current insertion point for
|
||
/// normal operations in the builder.
|
||
static llvm::OpenMPIRBuilder::InsertPointTy
|
||
findAllocaInsertPoint(llvm::IRBuilderBase &builder,
|
||
const LLVM::ModuleTranslation &moduleTranslation) {
|
||
// If there is an alloca insertion point on stack, i.e. we are in a nested
|
||
// operation and a specific point was provided by some surrounding operation,
|
||
// use it.
|
||
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
|
||
WalkResult walkResult = moduleTranslation.stackWalk<OpenMPAllocaStackFrame>(
|
||
[&](const OpenMPAllocaStackFrame &frame) {
|
||
allocaInsertPoint = frame.allocaInsertPoint;
|
||
return WalkResult::interrupt();
|
||
});
|
||
if (walkResult.wasInterrupted())
|
||
return allocaInsertPoint;
|
||
|
||
// Otherwise, insert to the entry block of the surrounding function.
|
||
// If the current IRBuilder InsertPoint is the function's entry, it cannot
|
||
// also be used for alloca insertion which would result in insertion order
|
||
// confusion. Create a new BasicBlock for the Builder and use the entry block
|
||
// for the allocs.
|
||
// TODO: Create a dedicated alloca BasicBlock at function creation such that
|
||
// we do not need to move the current InertPoint here.
|
||
if (builder.GetInsertBlock() ==
|
||
&builder.GetInsertBlock()->getParent()->getEntryBlock()) {
|
||
assert(builder.GetInsertPoint() == builder.GetInsertBlock()->end() &&
|
||
"Assuming end of basic block");
|
||
llvm::BasicBlock *entryBB = llvm::BasicBlock::Create(
|
||
builder.getContext(), "entry", builder.GetInsertBlock()->getParent(),
|
||
builder.GetInsertBlock()->getNextNode());
|
||
builder.CreateBr(entryBB);
|
||
builder.SetInsertPoint(entryBB);
|
||
}
|
||
|
||
llvm::BasicBlock &funcEntryBlock =
|
||
builder.GetInsertBlock()->getParent()->getEntryBlock();
|
||
return llvm::OpenMPIRBuilder::InsertPointTy(
|
||
&funcEntryBlock, funcEntryBlock.getFirstInsertionPt());
|
||
}
|
||
|
||
/// Converts the given region that appears within an OpenMP dialect operation to
|
||
/// LLVM IR, creating a branch from the `sourceBlock` to the entry block of the
|
||
/// region, and a branch from any block with an successor-less OpenMP terminator
|
||
/// to `continuationBlock`. Populates `continuationBlockPHIs` with the PHI nodes
|
||
/// of the continuation block if provided.
|
||
static llvm::BasicBlock *convertOmpOpRegions(
|
||
Region ®ion, StringRef blockName, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation, LogicalResult &bodyGenStatus,
|
||
SmallVectorImpl<llvm::PHINode *> *continuationBlockPHIs = nullptr) {
|
||
llvm::BasicBlock *continuationBlock =
|
||
splitBB(builder, true, "omp.region.cont");
|
||
llvm::BasicBlock *sourceBlock = builder.GetInsertBlock();
|
||
|
||
llvm::LLVMContext &llvmContext = builder.getContext();
|
||
for (Block &bb : region) {
|
||
llvm::BasicBlock *llvmBB = llvm::BasicBlock::Create(
|
||
llvmContext, blockName, builder.GetInsertBlock()->getParent(),
|
||
builder.GetInsertBlock()->getNextNode());
|
||
moduleTranslation.mapBlock(&bb, llvmBB);
|
||
}
|
||
|
||
llvm::Instruction *sourceTerminator = sourceBlock->getTerminator();
|
||
|
||
// Terminators (namely YieldOp) may be forwarding values to the region that
|
||
// need to be available in the continuation block. Collect the types of these
|
||
// operands in preparation of creating PHI nodes.
|
||
SmallVector<llvm::Type *> continuationBlockPHITypes;
|
||
bool operandsProcessed = false;
|
||
unsigned numYields = 0;
|
||
for (Block &bb : region.getBlocks()) {
|
||
if (omp::YieldOp yield = dyn_cast<omp::YieldOp>(bb.getTerminator())) {
|
||
if (!operandsProcessed) {
|
||
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
|
||
continuationBlockPHITypes.push_back(
|
||
moduleTranslation.convertType(yield->getOperand(i).getType()));
|
||
}
|
||
operandsProcessed = true;
|
||
} else {
|
||
assert(continuationBlockPHITypes.size() == yield->getNumOperands() &&
|
||
"mismatching number of values yielded from the region");
|
||
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
|
||
llvm::Type *operandType =
|
||
moduleTranslation.convertType(yield->getOperand(i).getType());
|
||
(void)operandType;
|
||
assert(continuationBlockPHITypes[i] == operandType &&
|
||
"values of mismatching types yielded from the region");
|
||
}
|
||
}
|
||
numYields++;
|
||
}
|
||
}
|
||
|
||
// Insert PHI nodes in the continuation block for any values forwarded by the
|
||
// terminators in this region.
|
||
if (!continuationBlockPHITypes.empty())
|
||
assert(
|
||
continuationBlockPHIs &&
|
||
"expected continuation block PHIs if converted regions yield values");
|
||
if (continuationBlockPHIs) {
|
||
llvm::IRBuilderBase::InsertPointGuard guard(builder);
|
||
continuationBlockPHIs->reserve(continuationBlockPHITypes.size());
|
||
builder.SetInsertPoint(continuationBlock, continuationBlock->begin());
|
||
for (llvm::Type *ty : continuationBlockPHITypes)
|
||
continuationBlockPHIs->push_back(builder.CreatePHI(ty, numYields));
|
||
}
|
||
|
||
// Convert blocks one by one in topological order to ensure
|
||
// defs are converted before uses.
|
||
SetVector<Block *> blocks = getBlocksSortedByDominance(region);
|
||
for (Block *bb : blocks) {
|
||
llvm::BasicBlock *llvmBB = moduleTranslation.lookupBlock(bb);
|
||
// Retarget the branch of the entry block to the entry block of the
|
||
// converted region (regions are single-entry).
|
||
if (bb->isEntryBlock()) {
|
||
assert(sourceTerminator->getNumSuccessors() == 1 &&
|
||
"provided entry block has multiple successors");
|
||
assert(sourceTerminator->getSuccessor(0) == continuationBlock &&
|
||
"ContinuationBlock is not the successor of the entry block");
|
||
sourceTerminator->setSuccessor(0, llvmBB);
|
||
}
|
||
|
||
llvm::IRBuilderBase::InsertPointGuard guard(builder);
|
||
if (failed(
|
||
moduleTranslation.convertBlock(*bb, bb->isEntryBlock(), builder))) {
|
||
bodyGenStatus = failure();
|
||
return continuationBlock;
|
||
}
|
||
|
||
// Special handling for `omp.yield` and `omp.terminator` (we may have more
|
||
// than one): they return the control to the parent OpenMP dialect operation
|
||
// so replace them with the branch to the continuation block. We handle this
|
||
// here to avoid relying inter-function communication through the
|
||
// ModuleTranslation class to set up the correct insertion point. This is
|
||
// also consistent with MLIR's idiom of handling special region terminators
|
||
// in the same code that handles the region-owning operation.
|
||
Operation *terminator = bb->getTerminator();
|
||
if (isa<omp::TerminatorOp, omp::YieldOp>(terminator)) {
|
||
builder.CreateBr(continuationBlock);
|
||
|
||
for (unsigned i = 0, e = terminator->getNumOperands(); i < e; ++i)
|
||
(*continuationBlockPHIs)[i]->addIncoming(
|
||
moduleTranslation.lookupValue(terminator->getOperand(i)), llvmBB);
|
||
}
|
||
}
|
||
// After all blocks have been traversed and values mapped, connect the PHI
|
||
// nodes to the results of preceding blocks.
|
||
LLVM::detail::connectPHINodes(region, moduleTranslation);
|
||
|
||
// Remove the blocks and values defined in this region from the mapping since
|
||
// they are not visible outside of this region. This allows the same region to
|
||
// be converted several times, that is cloned, without clashes, and slightly
|
||
// speeds up the lookups.
|
||
moduleTranslation.forgetMapping(region);
|
||
|
||
return continuationBlock;
|
||
}
|
||
|
||
/// Convert ProcBindKind from MLIR-generated enum to LLVM enum.
|
||
static llvm::omp::ProcBindKind getProcBindKind(omp::ClauseProcBindKind kind) {
|
||
switch (kind) {
|
||
case omp::ClauseProcBindKind::Close:
|
||
return llvm::omp::ProcBindKind::OMP_PROC_BIND_close;
|
||
case omp::ClauseProcBindKind::Master:
|
||
return llvm::omp::ProcBindKind::OMP_PROC_BIND_master;
|
||
case omp::ClauseProcBindKind::Primary:
|
||
return llvm::omp::ProcBindKind::OMP_PROC_BIND_primary;
|
||
case omp::ClauseProcBindKind::Spread:
|
||
return llvm::omp::ProcBindKind::OMP_PROC_BIND_spread;
|
||
}
|
||
llvm_unreachable("Unknown ClauseProcBindKind kind");
|
||
}
|
||
|
||
/// Converts an OpenMP 'masked' operation into LLVM IR using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpMasked(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
auto maskedOp = cast<omp::MaskedOp>(opInst);
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
|
||
// relying on captured variables.
|
||
LogicalResult bodyGenStatus = success();
|
||
|
||
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
|
||
// MaskedOp has only one region associated with it.
|
||
auto ®ion = maskedOp.getRegion();
|
||
builder.restoreIP(codeGenIP);
|
||
convertOmpOpRegions(region, "omp.masked.region", builder, moduleTranslation,
|
||
bodyGenStatus);
|
||
};
|
||
|
||
// TODO: Perform finalization actions for variables. This has to be
|
||
// called for variables which have destructors/finalizers.
|
||
auto finiCB = [&](InsertPointTy codeGenIP) {};
|
||
|
||
llvm::Value *filterVal = nullptr;
|
||
if (auto filterVar = maskedOp.getFilteredThreadId()) {
|
||
filterVal = moduleTranslation.lookupValue(filterVar);
|
||
} else {
|
||
llvm::LLVMContext &llvmContext = builder.getContext();
|
||
filterVal =
|
||
llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvmContext), /*V=*/0);
|
||
}
|
||
assert(filterVal != nullptr);
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createMasked(
|
||
ompLoc, bodyGenCB, finiCB, filterVal));
|
||
return success();
|
||
}
|
||
|
||
/// Converts an OpenMP 'master' operation into LLVM IR using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpMaster(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
|
||
// relying on captured variables.
|
||
LogicalResult bodyGenStatus = success();
|
||
|
||
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
|
||
// MasterOp has only one region associated with it.
|
||
auto ®ion = cast<omp::MasterOp>(opInst).getRegion();
|
||
builder.restoreIP(codeGenIP);
|
||
convertOmpOpRegions(region, "omp.master.region", builder, moduleTranslation,
|
||
bodyGenStatus);
|
||
};
|
||
|
||
// TODO: Perform finalization actions for variables. This has to be
|
||
// called for variables which have destructors/finalizers.
|
||
auto finiCB = [&](InsertPointTy codeGenIP) {};
|
||
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createMaster(
|
||
ompLoc, bodyGenCB, finiCB));
|
||
return success();
|
||
}
|
||
|
||
/// Converts an OpenMP 'critical' operation into LLVM IR using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpCritical(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
auto criticalOp = cast<omp::CriticalOp>(opInst);
|
||
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
|
||
// relying on captured variables.
|
||
LogicalResult bodyGenStatus = success();
|
||
|
||
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
|
||
// CriticalOp has only one region associated with it.
|
||
auto ®ion = cast<omp::CriticalOp>(opInst).getRegion();
|
||
builder.restoreIP(codeGenIP);
|
||
convertOmpOpRegions(region, "omp.critical.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
};
|
||
|
||
// TODO: Perform finalization actions for variables. This has to be
|
||
// called for variables which have destructors/finalizers.
|
||
auto finiCB = [&](InsertPointTy codeGenIP) {};
|
||
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
llvm::LLVMContext &llvmContext = moduleTranslation.getLLVMContext();
|
||
llvm::Constant *hint = nullptr;
|
||
|
||
// If it has a name, it probably has a hint too.
|
||
if (criticalOp.getNameAttr()) {
|
||
// The verifiers in OpenMP Dialect guarentee that all the pointers are
|
||
// non-null
|
||
auto symbolRef = cast<SymbolRefAttr>(criticalOp.getNameAttr());
|
||
auto criticalDeclareOp =
|
||
SymbolTable::lookupNearestSymbolFrom<omp::CriticalDeclareOp>(criticalOp,
|
||
symbolRef);
|
||
hint =
|
||
llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvmContext),
|
||
static_cast<int>(criticalDeclareOp.getHint()));
|
||
}
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createCritical(
|
||
ompLoc, bodyGenCB, finiCB, criticalOp.getName().value_or(""), hint));
|
||
return success();
|
||
}
|
||
|
||
/// Looks up from the operation from and returns the PrivateClauseOp with
|
||
/// name symbolName
|
||
static omp::PrivateClauseOp findPrivatizer(Operation *from,
|
||
SymbolRefAttr symbolName) {
|
||
omp::PrivateClauseOp privatizer =
|
||
SymbolTable::lookupNearestSymbolFrom<omp::PrivateClauseOp>(from,
|
||
symbolName);
|
||
assert(privatizer && "privatizer not found in the symbol table");
|
||
return privatizer;
|
||
}
|
||
|
||
/// Populates `privatizations` with privatization declarations used for the
|
||
/// given op.
|
||
/// TODO: generalise beyond ParallelOp
|
||
static void collectPrivatizationDecls(
|
||
omp::ParallelOp op, SmallVectorImpl<omp::PrivateClauseOp> &privatizations) {
|
||
std::optional<ArrayAttr> attr = op.getPrivateSyms();
|
||
if (!attr)
|
||
return;
|
||
|
||
privatizations.reserve(privatizations.size() + attr->size());
|
||
for (auto symbolRef : attr->getAsRange<SymbolRefAttr>()) {
|
||
privatizations.push_back(findPrivatizer(op, symbolRef));
|
||
}
|
||
}
|
||
|
||
/// Populates `reductions` with reduction declarations used in the given op.
|
||
template <typename T>
|
||
static void
|
||
collectReductionDecls(T op,
|
||
SmallVectorImpl<omp::DeclareReductionOp> &reductions) {
|
||
std::optional<ArrayAttr> attr = op.getReductionSyms();
|
||
if (!attr)
|
||
return;
|
||
|
||
reductions.reserve(reductions.size() + op.getNumReductionVars());
|
||
for (auto symbolRef : attr->getAsRange<SymbolRefAttr>()) {
|
||
reductions.push_back(
|
||
SymbolTable::lookupNearestSymbolFrom<omp::DeclareReductionOp>(
|
||
op, symbolRef));
|
||
}
|
||
}
|
||
|
||
/// Translates the blocks contained in the given region and appends them to at
|
||
/// the current insertion point of `builder`. The operations of the entry block
|
||
/// are appended to the current insertion block. If set, `continuationBlockArgs`
|
||
/// is populated with translated values that correspond to the values
|
||
/// omp.yield'ed from the region.
|
||
static LogicalResult inlineConvertOmpRegions(
|
||
Region ®ion, StringRef blockName, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
SmallVectorImpl<llvm::Value *> *continuationBlockArgs = nullptr) {
|
||
if (region.empty())
|
||
return success();
|
||
|
||
// Special case for single-block regions that don't create additional blocks:
|
||
// insert operations without creating additional blocks.
|
||
if (llvm::hasSingleElement(region)) {
|
||
llvm::Instruction *potentialTerminator =
|
||
builder.GetInsertBlock()->empty() ? nullptr
|
||
: &builder.GetInsertBlock()->back();
|
||
|
||
if (potentialTerminator && potentialTerminator->isTerminator())
|
||
potentialTerminator->removeFromParent();
|
||
moduleTranslation.mapBlock(®ion.front(), builder.GetInsertBlock());
|
||
|
||
if (failed(moduleTranslation.convertBlock(
|
||
region.front(), /*ignoreArguments=*/true, builder)))
|
||
return failure();
|
||
|
||
// The continuation arguments are simply the translated terminator operands.
|
||
if (continuationBlockArgs)
|
||
llvm::append_range(
|
||
*continuationBlockArgs,
|
||
moduleTranslation.lookupValues(region.front().back().getOperands()));
|
||
|
||
// Drop the mapping that is no longer necessary so that the same region can
|
||
// be processed multiple times.
|
||
moduleTranslation.forgetMapping(region);
|
||
|
||
if (potentialTerminator && potentialTerminator->isTerminator()) {
|
||
llvm::BasicBlock *block = builder.GetInsertBlock();
|
||
if (block->empty()) {
|
||
// this can happen for really simple reduction init regions e.g.
|
||
// %0 = llvm.mlir.constant(0 : i32) : i32
|
||
// omp.yield(%0 : i32)
|
||
// because the llvm.mlir.constant (MLIR op) isn't converted into any
|
||
// llvm op
|
||
potentialTerminator->insertInto(block, block->begin());
|
||
} else {
|
||
potentialTerminator->insertAfter(&block->back());
|
||
}
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
LogicalResult bodyGenStatus = success();
|
||
SmallVector<llvm::PHINode *> phis;
|
||
llvm::BasicBlock *continuationBlock = convertOmpOpRegions(
|
||
region, blockName, builder, moduleTranslation, bodyGenStatus, &phis);
|
||
if (failed(bodyGenStatus))
|
||
return failure();
|
||
if (continuationBlockArgs)
|
||
llvm::append_range(*continuationBlockArgs, phis);
|
||
builder.SetInsertPoint(continuationBlock,
|
||
continuationBlock->getFirstInsertionPt());
|
||
return success();
|
||
}
|
||
|
||
namespace {
|
||
/// Owning equivalents of OpenMPIRBuilder::(Atomic)ReductionGen that are used to
|
||
/// store lambdas with capture.
|
||
using OwningReductionGen = std::function<llvm::OpenMPIRBuilder::InsertPointTy(
|
||
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Value *, llvm::Value *,
|
||
llvm::Value *&)>;
|
||
using OwningAtomicReductionGen =
|
||
std::function<llvm::OpenMPIRBuilder::InsertPointTy(
|
||
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Type *, llvm::Value *,
|
||
llvm::Value *)>;
|
||
} // namespace
|
||
|
||
/// Create an OpenMPIRBuilder-compatible reduction generator for the given
|
||
/// reduction declaration. The generator uses `builder` but ignores its
|
||
/// insertion point.
|
||
static OwningReductionGen
|
||
makeReductionGen(omp::DeclareReductionOp decl, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
// The lambda is mutable because we need access to non-const methods of decl
|
||
// (which aren't actually mutating it), and we must capture decl by-value to
|
||
// avoid the dangling reference after the parent function returns.
|
||
OwningReductionGen gen =
|
||
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint,
|
||
llvm::Value *lhs, llvm::Value *rhs,
|
||
llvm::Value *&result) mutable {
|
||
moduleTranslation.mapValue(decl.getReductionLhsArg(), lhs);
|
||
moduleTranslation.mapValue(decl.getReductionRhsArg(), rhs);
|
||
builder.restoreIP(insertPoint);
|
||
SmallVector<llvm::Value *> phis;
|
||
if (failed(inlineConvertOmpRegions(decl.getReductionRegion(),
|
||
"omp.reduction.nonatomic.body",
|
||
builder, moduleTranslation, &phis)))
|
||
return llvm::OpenMPIRBuilder::InsertPointTy();
|
||
assert(phis.size() == 1);
|
||
result = phis[0];
|
||
return builder.saveIP();
|
||
};
|
||
return gen;
|
||
}
|
||
|
||
/// Create an OpenMPIRBuilder-compatible atomic reduction generator for the
|
||
/// given reduction declaration. The generator uses `builder` but ignores its
|
||
/// insertion point. Returns null if there is no atomic region available in the
|
||
/// reduction declaration.
|
||
static OwningAtomicReductionGen
|
||
makeAtomicReductionGen(omp::DeclareReductionOp decl,
|
||
llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
if (decl.getAtomicReductionRegion().empty())
|
||
return OwningAtomicReductionGen();
|
||
|
||
// The lambda is mutable because we need access to non-const methods of decl
|
||
// (which aren't actually mutating it), and we must capture decl by-value to
|
||
// avoid the dangling reference after the parent function returns.
|
||
OwningAtomicReductionGen atomicGen =
|
||
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint, llvm::Type *,
|
||
llvm::Value *lhs, llvm::Value *rhs) mutable {
|
||
moduleTranslation.mapValue(decl.getAtomicReductionLhsArg(), lhs);
|
||
moduleTranslation.mapValue(decl.getAtomicReductionRhsArg(), rhs);
|
||
builder.restoreIP(insertPoint);
|
||
SmallVector<llvm::Value *> phis;
|
||
if (failed(inlineConvertOmpRegions(decl.getAtomicReductionRegion(),
|
||
"omp.reduction.atomic.body", builder,
|
||
moduleTranslation, &phis)))
|
||
return llvm::OpenMPIRBuilder::InsertPointTy();
|
||
assert(phis.empty());
|
||
return builder.saveIP();
|
||
};
|
||
return atomicGen;
|
||
}
|
||
|
||
/// Converts an OpenMP 'ordered' operation into LLVM IR using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpOrdered(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
auto orderedOp = cast<omp::OrderedOp>(opInst);
|
||
|
||
omp::ClauseDepend dependType = *orderedOp.getDoacrossDependType();
|
||
bool isDependSource = dependType == omp::ClauseDepend::dependsource;
|
||
unsigned numLoops = *orderedOp.getDoacrossNumLoops();
|
||
SmallVector<llvm::Value *> vecValues =
|
||
moduleTranslation.lookupValues(orderedOp.getDoacrossDependVars());
|
||
|
||
size_t indexVecValues = 0;
|
||
while (indexVecValues < vecValues.size()) {
|
||
SmallVector<llvm::Value *> storeValues;
|
||
storeValues.reserve(numLoops);
|
||
for (unsigned i = 0; i < numLoops; i++) {
|
||
storeValues.push_back(vecValues[indexVecValues]);
|
||
indexVecValues++;
|
||
}
|
||
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
|
||
findAllocaInsertPoint(builder, moduleTranslation);
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createOrderedDepend(
|
||
ompLoc, allocaIP, numLoops, storeValues, ".cnt.addr", isDependSource));
|
||
}
|
||
return success();
|
||
}
|
||
|
||
/// Converts an OpenMP 'ordered_region' operation into LLVM IR using
|
||
/// OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpOrderedRegion(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
auto orderedRegionOp = cast<omp::OrderedRegionOp>(opInst);
|
||
|
||
// TODO: The code generation for ordered simd directive is not supported yet.
|
||
if (orderedRegionOp.getParLevelSimd())
|
||
return failure();
|
||
|
||
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
|
||
// relying on captured variables.
|
||
LogicalResult bodyGenStatus = success();
|
||
|
||
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
|
||
// OrderedOp has only one region associated with it.
|
||
auto ®ion = cast<omp::OrderedRegionOp>(opInst).getRegion();
|
||
builder.restoreIP(codeGenIP);
|
||
convertOmpOpRegions(region, "omp.ordered.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
};
|
||
|
||
// TODO: Perform finalization actions for variables. This has to be
|
||
// called for variables which have destructors/finalizers.
|
||
auto finiCB = [&](InsertPointTy codeGenIP) {};
|
||
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(
|
||
moduleTranslation.getOpenMPBuilder()->createOrderedThreadsSimd(
|
||
ompLoc, bodyGenCB, finiCB, !orderedRegionOp.getParLevelSimd()));
|
||
return bodyGenStatus;
|
||
}
|
||
|
||
namespace {
|
||
/// Contains the arguments for an LLVM store operation
|
||
struct DeferredStore {
|
||
DeferredStore(llvm::Value *value, llvm::Value *address)
|
||
: value(value), address(address) {}
|
||
|
||
llvm::Value *value;
|
||
llvm::Value *address;
|
||
};
|
||
} // namespace
|
||
|
||
/// Allocate space for privatized reduction variables.
|
||
/// `deferredStores` contains information to create store operations which needs
|
||
/// to be inserted after all allocas
|
||
template <typename T>
|
||
static LogicalResult
|
||
allocReductionVars(T loop, ArrayRef<BlockArgument> reductionArgs,
|
||
llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
const llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
|
||
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
|
||
SmallVectorImpl<llvm::Value *> &privateReductionVariables,
|
||
DenseMap<Value, llvm::Value *> &reductionVariableMap,
|
||
SmallVectorImpl<DeferredStore> &deferredStores,
|
||
llvm::ArrayRef<bool> isByRefs) {
|
||
llvm::IRBuilderBase::InsertPointGuard guard(builder);
|
||
builder.SetInsertPoint(allocaIP.getBlock()->getTerminator());
|
||
|
||
// delay creating stores until after all allocas
|
||
deferredStores.reserve(loop.getNumReductionVars());
|
||
|
||
for (std::size_t i = 0; i < loop.getNumReductionVars(); ++i) {
|
||
Region &allocRegion = reductionDecls[i].getAllocRegion();
|
||
if (isByRefs[i]) {
|
||
if (allocRegion.empty())
|
||
continue;
|
||
|
||
SmallVector<llvm::Value *, 1> phis;
|
||
if (failed(inlineConvertOmpRegions(allocRegion, "omp.reduction.alloc",
|
||
builder, moduleTranslation, &phis)))
|
||
return failure();
|
||
assert(phis.size() == 1 && "expected one allocation to be yielded");
|
||
|
||
builder.SetInsertPoint(allocaIP.getBlock()->getTerminator());
|
||
|
||
// Allocate reduction variable (which is a pointer to the real reduction
|
||
// variable allocated in the inlined region)
|
||
llvm::Value *var = builder.CreateAlloca(
|
||
moduleTranslation.convertType(reductionDecls[i].getType()));
|
||
deferredStores.emplace_back(phis[0], var);
|
||
|
||
privateReductionVariables[i] = var;
|
||
moduleTranslation.mapValue(reductionArgs[i], phis[0]);
|
||
reductionVariableMap.try_emplace(loop.getReductionVars()[i], phis[0]);
|
||
} else {
|
||
assert(allocRegion.empty() &&
|
||
"allocaction is implicit for by-val reduction");
|
||
llvm::Value *var = builder.CreateAlloca(
|
||
moduleTranslation.convertType(reductionDecls[i].getType()));
|
||
moduleTranslation.mapValue(reductionArgs[i], var);
|
||
privateReductionVariables[i] = var;
|
||
reductionVariableMap.try_emplace(loop.getReductionVars()[i], var);
|
||
}
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
/// Map input arguments to reduction initialization region
|
||
template <typename T>
|
||
static void
|
||
mapInitializationArgs(T loop, LLVM::ModuleTranslation &moduleTranslation,
|
||
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
|
||
DenseMap<Value, llvm::Value *> &reductionVariableMap,
|
||
unsigned i) {
|
||
// map input argument to the initialization region
|
||
mlir::omp::DeclareReductionOp &reduction = reductionDecls[i];
|
||
Region &initializerRegion = reduction.getInitializerRegion();
|
||
Block &entry = initializerRegion.front();
|
||
|
||
mlir::Value mlirSource = loop.getReductionVars()[i];
|
||
llvm::Value *llvmSource = moduleTranslation.lookupValue(mlirSource);
|
||
assert(llvmSource && "lookup reduction var");
|
||
moduleTranslation.mapValue(reduction.getInitializerMoldArg(), llvmSource);
|
||
|
||
if (entry.getNumArguments() > 1) {
|
||
llvm::Value *allocation =
|
||
reductionVariableMap.lookup(loop.getReductionVars()[i]);
|
||
moduleTranslation.mapValue(reduction.getInitializerAllocArg(), allocation);
|
||
}
|
||
}
|
||
|
||
/// Collect reduction info
|
||
template <typename T>
|
||
static void collectReductionInfo(
|
||
T loop, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
|
||
SmallVectorImpl<OwningReductionGen> &owningReductionGens,
|
||
SmallVectorImpl<OwningAtomicReductionGen> &owningAtomicReductionGens,
|
||
const ArrayRef<llvm::Value *> privateReductionVariables,
|
||
SmallVectorImpl<llvm::OpenMPIRBuilder::ReductionInfo> &reductionInfos) {
|
||
unsigned numReductions = loop.getNumReductionVars();
|
||
|
||
for (unsigned i = 0; i < numReductions; ++i) {
|
||
owningReductionGens.push_back(
|
||
makeReductionGen(reductionDecls[i], builder, moduleTranslation));
|
||
owningAtomicReductionGens.push_back(
|
||
makeAtomicReductionGen(reductionDecls[i], builder, moduleTranslation));
|
||
}
|
||
|
||
// Collect the reduction information.
|
||
reductionInfos.reserve(numReductions);
|
||
for (unsigned i = 0; i < numReductions; ++i) {
|
||
llvm::OpenMPIRBuilder::ReductionGenAtomicCBTy atomicGen = nullptr;
|
||
if (owningAtomicReductionGens[i])
|
||
atomicGen = owningAtomicReductionGens[i];
|
||
llvm::Value *variable =
|
||
moduleTranslation.lookupValue(loop.getReductionVars()[i]);
|
||
reductionInfos.push_back(
|
||
{moduleTranslation.convertType(reductionDecls[i].getType()), variable,
|
||
privateReductionVariables[i],
|
||
/*EvaluationKind=*/llvm::OpenMPIRBuilder::EvalKind::Scalar,
|
||
owningReductionGens[i],
|
||
/*ReductionGenClang=*/nullptr, atomicGen});
|
||
}
|
||
}
|
||
|
||
/// handling of DeclareReductionOp's cleanup region
|
||
static LogicalResult
|
||
inlineOmpRegionCleanup(llvm::SmallVectorImpl<Region *> &cleanupRegions,
|
||
llvm::ArrayRef<llvm::Value *> privateVariables,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
llvm::IRBuilderBase &builder, StringRef regionName,
|
||
bool shouldLoadCleanupRegionArg = true) {
|
||
for (auto [i, cleanupRegion] : llvm::enumerate(cleanupRegions)) {
|
||
if (cleanupRegion->empty())
|
||
continue;
|
||
|
||
// map the argument to the cleanup region
|
||
Block &entry = cleanupRegion->front();
|
||
|
||
llvm::Instruction *potentialTerminator =
|
||
builder.GetInsertBlock()->empty() ? nullptr
|
||
: &builder.GetInsertBlock()->back();
|
||
if (potentialTerminator && potentialTerminator->isTerminator())
|
||
builder.SetInsertPoint(potentialTerminator);
|
||
llvm::Value *privateVarValue =
|
||
shouldLoadCleanupRegionArg
|
||
? builder.CreateLoad(
|
||
moduleTranslation.convertType(entry.getArgument(0).getType()),
|
||
privateVariables[i])
|
||
: privateVariables[i];
|
||
|
||
moduleTranslation.mapValue(entry.getArgument(0), privateVarValue);
|
||
|
||
if (failed(inlineConvertOmpRegions(*cleanupRegion, regionName, builder,
|
||
moduleTranslation)))
|
||
return failure();
|
||
|
||
// clear block argument mapping in case it needs to be re-created with a
|
||
// different source for another use of the same reduction decl
|
||
moduleTranslation.forgetMapping(*cleanupRegion);
|
||
}
|
||
return success();
|
||
}
|
||
|
||
// TODO: not used by ParallelOp
|
||
template <class OP>
|
||
static LogicalResult createReductionsAndCleanup(
|
||
OP op, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
|
||
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
|
||
ArrayRef<llvm::Value *> privateReductionVariables, ArrayRef<bool> isByRef) {
|
||
// Process the reductions if required.
|
||
if (op.getNumReductionVars() == 0)
|
||
return success();
|
||
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
// Create the reduction generators. We need to own them here because
|
||
// ReductionInfo only accepts references to the generators.
|
||
SmallVector<OwningReductionGen> owningReductionGens;
|
||
SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
|
||
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
|
||
collectReductionInfo(op, builder, moduleTranslation, reductionDecls,
|
||
owningReductionGens, owningAtomicReductionGens,
|
||
privateReductionVariables, reductionInfos);
|
||
|
||
// The call to createReductions below expects the block to have a
|
||
// terminator. Create an unreachable instruction to serve as terminator
|
||
// and remove it later.
|
||
llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
|
||
builder.SetInsertPoint(tempTerminator);
|
||
llvm::OpenMPIRBuilder::InsertPointTy contInsertPoint =
|
||
ompBuilder->createReductions(builder.saveIP(), allocaIP, reductionInfos,
|
||
isByRef, op.getNowait());
|
||
if (!contInsertPoint.getBlock())
|
||
return op->emitOpError() << "failed to convert reductions";
|
||
auto nextInsertionPoint =
|
||
ompBuilder->createBarrier(contInsertPoint, llvm::omp::OMPD_for);
|
||
tempTerminator->eraseFromParent();
|
||
builder.restoreIP(nextInsertionPoint);
|
||
|
||
// after the construct, deallocate private reduction variables
|
||
SmallVector<Region *> reductionRegions;
|
||
llvm::transform(reductionDecls, std::back_inserter(reductionRegions),
|
||
[](omp::DeclareReductionOp reductionDecl) {
|
||
return &reductionDecl.getCleanupRegion();
|
||
});
|
||
return inlineOmpRegionCleanup(reductionRegions, privateReductionVariables,
|
||
moduleTranslation, builder,
|
||
"omp.reduction.cleanup");
|
||
return success();
|
||
}
|
||
|
||
static ArrayRef<bool> getIsByRef(std::optional<ArrayRef<bool>> attr) {
|
||
if (!attr)
|
||
return {};
|
||
return *attr;
|
||
}
|
||
|
||
// TODO: not used by omp.parallel
|
||
template <typename OP>
|
||
static LogicalResult allocAndInitializeReductionVars(
|
||
OP op, ArrayRef<BlockArgument> reductionArgs, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
|
||
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
|
||
SmallVectorImpl<llvm::Value *> &privateReductionVariables,
|
||
DenseMap<Value, llvm::Value *> &reductionVariableMap,
|
||
llvm::ArrayRef<bool> isByRef) {
|
||
if (op.getNumReductionVars() == 0)
|
||
return success();
|
||
|
||
SmallVector<DeferredStore> deferredStores;
|
||
|
||
if (failed(allocReductionVars(op, reductionArgs, builder, moduleTranslation,
|
||
allocaIP, reductionDecls,
|
||
privateReductionVariables, reductionVariableMap,
|
||
deferredStores, isByRef)))
|
||
return failure();
|
||
|
||
// store result of the alloc region to the allocated pointer to the real
|
||
// reduction variable
|
||
for (auto [data, addr] : deferredStores)
|
||
builder.CreateStore(data, addr);
|
||
|
||
// Before the loop, store the initial values of reductions into reduction
|
||
// variables. Although this could be done after allocas, we don't want to mess
|
||
// up with the alloca insertion point.
|
||
for (unsigned i = 0; i < op.getNumReductionVars(); ++i) {
|
||
SmallVector<llvm::Value *, 1> phis;
|
||
|
||
// map block argument to initializer region
|
||
mapInitializationArgs(op, moduleTranslation, reductionDecls,
|
||
reductionVariableMap, i);
|
||
|
||
if (failed(inlineConvertOmpRegions(reductionDecls[i].getInitializerRegion(),
|
||
"omp.reduction.neutral", builder,
|
||
moduleTranslation, &phis)))
|
||
return failure();
|
||
assert(phis.size() == 1 && "expected one value to be yielded from the "
|
||
"reduction neutral element declaration region");
|
||
if (isByRef[i]) {
|
||
if (!reductionDecls[i].getAllocRegion().empty())
|
||
// done in allocReductionVars
|
||
continue;
|
||
|
||
// TODO: this path can be removed once all users of by-ref are updated to
|
||
// use an alloc region
|
||
|
||
// Allocate reduction variable (which is a pointer to the real reduction
|
||
// variable allocated in the inlined region)
|
||
llvm::Value *var = builder.CreateAlloca(
|
||
moduleTranslation.convertType(reductionDecls[i].getType()));
|
||
// Store the result of the inlined region to the allocated reduction var
|
||
// ptr
|
||
builder.CreateStore(phis[0], var);
|
||
|
||
privateReductionVariables[i] = var;
|
||
moduleTranslation.mapValue(reductionArgs[i], phis[0]);
|
||
reductionVariableMap.try_emplace(op.getReductionVars()[i], phis[0]);
|
||
} else {
|
||
// for by-ref case the store is inside of the reduction region
|
||
builder.CreateStore(phis[0], privateReductionVariables[i]);
|
||
// the rest was handled in allocByValReductionVars
|
||
}
|
||
|
||
// forget the mapping for the initializer region because we might need a
|
||
// different mapping if this reduction declaration is re-used for a
|
||
// different variable
|
||
moduleTranslation.forgetMapping(reductionDecls[i].getInitializerRegion());
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
static LogicalResult
|
||
convertOmpSections(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
using StorableBodyGenCallbackTy =
|
||
llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy;
|
||
|
||
auto sectionsOp = cast<omp::SectionsOp>(opInst);
|
||
|
||
// TODO: Support the following clauses: private, firstprivate, lastprivate,
|
||
// allocate
|
||
if (!sectionsOp.getAllocateVars().empty() ||
|
||
!sectionsOp.getAllocatorVars().empty() ||
|
||
!sectionsOp.getPrivateVars().empty() || sectionsOp.getPrivateSyms())
|
||
return opInst.emitError("unhandled clauses for translation to LLVM IR");
|
||
|
||
llvm::ArrayRef<bool> isByRef = getIsByRef(sectionsOp.getReductionByref());
|
||
assert(isByRef.size() == sectionsOp.getNumReductionVars());
|
||
|
||
SmallVector<omp::DeclareReductionOp> reductionDecls;
|
||
collectReductionDecls(sectionsOp, reductionDecls);
|
||
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
|
||
findAllocaInsertPoint(builder, moduleTranslation);
|
||
|
||
SmallVector<llvm::Value *> privateReductionVariables(
|
||
sectionsOp.getNumReductionVars());
|
||
DenseMap<Value, llvm::Value *> reductionVariableMap;
|
||
|
||
MutableArrayRef<BlockArgument> reductionArgs =
|
||
cast<omp::BlockArgOpenMPOpInterface>(opInst).getReductionBlockArgs();
|
||
|
||
if (failed(allocAndInitializeReductionVars(
|
||
sectionsOp, reductionArgs, builder, moduleTranslation, allocaIP,
|
||
reductionDecls, privateReductionVariables, reductionVariableMap,
|
||
isByRef)))
|
||
return failure();
|
||
|
||
// Store the mapping between reduction variables and their private copies on
|
||
// ModuleTranslation stack. It can be then recovered when translating
|
||
// omp.reduce operations in a separate call.
|
||
LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
|
||
moduleTranslation, reductionVariableMap);
|
||
|
||
LogicalResult bodyGenStatus = success();
|
||
SmallVector<StorableBodyGenCallbackTy> sectionCBs;
|
||
|
||
for (Operation &op : *sectionsOp.getRegion().begin()) {
|
||
auto sectionOp = dyn_cast<omp::SectionOp>(op);
|
||
if (!sectionOp) // omp.terminator
|
||
continue;
|
||
|
||
Region ®ion = sectionOp.getRegion();
|
||
auto sectionCB = [§ionsOp, ®ion, &builder, &moduleTranslation,
|
||
&bodyGenStatus](InsertPointTy allocaIP,
|
||
InsertPointTy codeGenIP) {
|
||
builder.restoreIP(codeGenIP);
|
||
|
||
// map the omp.section reduction block argument to the omp.sections block
|
||
// arguments
|
||
// TODO: this assumes that the only block arguments are reduction
|
||
// variables
|
||
assert(region.getNumArguments() ==
|
||
sectionsOp.getRegion().getNumArguments());
|
||
for (auto [sectionsArg, sectionArg] : llvm::zip_equal(
|
||
sectionsOp.getRegion().getArguments(), region.getArguments())) {
|
||
llvm::Value *llvmVal = moduleTranslation.lookupValue(sectionsArg);
|
||
assert(llvmVal);
|
||
moduleTranslation.mapValue(sectionArg, llvmVal);
|
||
}
|
||
|
||
convertOmpOpRegions(region, "omp.section.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
};
|
||
sectionCBs.push_back(sectionCB);
|
||
}
|
||
|
||
// No sections within omp.sections operation - skip generation. This situation
|
||
// is only possible if there is only a terminator operation inside the
|
||
// sections operation
|
||
if (sectionCBs.empty())
|
||
return success();
|
||
|
||
assert(isa<omp::SectionOp>(*sectionsOp.getRegion().op_begin()));
|
||
|
||
// TODO: Perform appropriate actions according to the data-sharing
|
||
// attribute (shared, private, firstprivate, ...) of variables.
|
||
// Currently defaults to shared.
|
||
auto privCB = [&](InsertPointTy, InsertPointTy codeGenIP, llvm::Value &,
|
||
llvm::Value &vPtr,
|
||
llvm::Value *&replacementValue) -> InsertPointTy {
|
||
replacementValue = &vPtr;
|
||
return codeGenIP;
|
||
};
|
||
|
||
// TODO: Perform finalization actions for variables. This has to be
|
||
// called for variables which have destructors/finalizers.
|
||
auto finiCB = [&](InsertPointTy codeGenIP) {};
|
||
|
||
allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSections(
|
||
ompLoc, allocaIP, sectionCBs, privCB, finiCB, false,
|
||
sectionsOp.getNowait()));
|
||
|
||
if (failed(bodyGenStatus))
|
||
return bodyGenStatus;
|
||
|
||
// Process the reductions if required.
|
||
return createReductionsAndCleanup(sectionsOp, builder, moduleTranslation,
|
||
allocaIP, reductionDecls,
|
||
privateReductionVariables, isByRef);
|
||
}
|
||
|
||
/// Converts an OpenMP single construct into LLVM IR using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpSingle(omp::SingleOp &singleOp, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
LogicalResult bodyGenStatus = success();
|
||
if (!singleOp.getPrivateVars().empty() || singleOp.getPrivateSyms())
|
||
return singleOp.emitError("unhandled clauses for translation to LLVM IR");
|
||
|
||
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
|
||
builder.restoreIP(codegenIP);
|
||
convertOmpOpRegions(singleOp.getRegion(), "omp.single.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
};
|
||
auto finiCB = [&](InsertPointTy codeGenIP) {};
|
||
|
||
// Handle copyprivate
|
||
Operation::operand_range cpVars = singleOp.getCopyprivateVars();
|
||
std::optional<ArrayAttr> cpFuncs = singleOp.getCopyprivateSyms();
|
||
llvm::SmallVector<llvm::Value *> llvmCPVars;
|
||
llvm::SmallVector<llvm::Function *> llvmCPFuncs;
|
||
for (size_t i = 0, e = cpVars.size(); i < e; ++i) {
|
||
llvmCPVars.push_back(moduleTranslation.lookupValue(cpVars[i]));
|
||
auto llvmFuncOp = SymbolTable::lookupNearestSymbolFrom<LLVM::LLVMFuncOp>(
|
||
singleOp, cast<SymbolRefAttr>((*cpFuncs)[i]));
|
||
llvmCPFuncs.push_back(
|
||
moduleTranslation.lookupFunction(llvmFuncOp.getName()));
|
||
}
|
||
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createSingle(
|
||
ompLoc, bodyCB, finiCB, singleOp.getNowait(), llvmCPVars, llvmCPFuncs));
|
||
return bodyGenStatus;
|
||
}
|
||
|
||
// Convert an OpenMP Teams construct to LLVM IR using OpenMPIRBuilder
|
||
static LogicalResult
|
||
convertOmpTeams(omp::TeamsOp op, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
LogicalResult bodyGenStatus = success();
|
||
if (!op.getAllocatorVars().empty() || op.getReductionSyms() ||
|
||
!op.getPrivateVars().empty() || op.getPrivateSyms())
|
||
return op.emitError("unhandled clauses for translation to LLVM IR");
|
||
|
||
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
|
||
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
|
||
moduleTranslation, allocaIP);
|
||
builder.restoreIP(codegenIP);
|
||
convertOmpOpRegions(op.getRegion(), "omp.teams.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
};
|
||
|
||
llvm::Value *numTeamsLower = nullptr;
|
||
if (Value numTeamsLowerVar = op.getNumTeamsLower())
|
||
numTeamsLower = moduleTranslation.lookupValue(numTeamsLowerVar);
|
||
|
||
llvm::Value *numTeamsUpper = nullptr;
|
||
if (Value numTeamsUpperVar = op.getNumTeamsUpper())
|
||
numTeamsUpper = moduleTranslation.lookupValue(numTeamsUpperVar);
|
||
|
||
llvm::Value *threadLimit = nullptr;
|
||
if (Value threadLimitVar = op.getThreadLimit())
|
||
threadLimit = moduleTranslation.lookupValue(threadLimitVar);
|
||
|
||
llvm::Value *ifExpr = nullptr;
|
||
if (Value ifVar = op.getIfExpr())
|
||
ifExpr = moduleTranslation.lookupValue(ifVar);
|
||
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTeams(
|
||
ompLoc, bodyCB, numTeamsLower, numTeamsUpper, threadLimit, ifExpr));
|
||
return bodyGenStatus;
|
||
}
|
||
|
||
static void
|
||
buildDependData(std::optional<ArrayAttr> dependKinds, OperandRange dependVars,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
SmallVectorImpl<llvm::OpenMPIRBuilder::DependData> &dds) {
|
||
if (dependVars.empty())
|
||
return;
|
||
for (auto dep : llvm::zip(dependVars, dependKinds->getValue())) {
|
||
llvm::omp::RTLDependenceKindTy type;
|
||
switch (
|
||
cast<mlir::omp::ClauseTaskDependAttr>(std::get<1>(dep)).getValue()) {
|
||
case mlir::omp::ClauseTaskDepend::taskdependin:
|
||
type = llvm::omp::RTLDependenceKindTy::DepIn;
|
||
break;
|
||
// The OpenMP runtime requires that the codegen for 'depend' clause for
|
||
// 'out' dependency kind must be the same as codegen for 'depend' clause
|
||
// with 'inout' dependency.
|
||
case mlir::omp::ClauseTaskDepend::taskdependout:
|
||
case mlir::omp::ClauseTaskDepend::taskdependinout:
|
||
type = llvm::omp::RTLDependenceKindTy::DepInOut;
|
||
break;
|
||
};
|
||
llvm::Value *depVal = moduleTranslation.lookupValue(std::get<0>(dep));
|
||
llvm::OpenMPIRBuilder::DependData dd(type, depVal->getType(), depVal);
|
||
dds.emplace_back(dd);
|
||
}
|
||
}
|
||
/// Converts an OpenMP task construct into LLVM IR using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpTaskOp(omp::TaskOp taskOp, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
LogicalResult bodyGenStatus = success();
|
||
if (taskOp.getUntiedAttr() || taskOp.getMergeableAttr() ||
|
||
taskOp.getInReductionSyms() || taskOp.getPriority() ||
|
||
!taskOp.getAllocateVars().empty() || !taskOp.getPrivateVars().empty() ||
|
||
taskOp.getPrivateSyms()) {
|
||
return taskOp.emitError("unhandled clauses for translation to LLVM IR");
|
||
}
|
||
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
|
||
// Save the alloca insertion point on ModuleTranslation stack for use in
|
||
// nested regions.
|
||
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
|
||
moduleTranslation, allocaIP);
|
||
|
||
builder.restoreIP(codegenIP);
|
||
convertOmpOpRegions(taskOp.getRegion(), "omp.task.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
};
|
||
|
||
SmallVector<llvm::OpenMPIRBuilder::DependData> dds;
|
||
buildDependData(taskOp.getDependKinds(), taskOp.getDependVars(),
|
||
moduleTranslation, dds);
|
||
|
||
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
|
||
findAllocaInsertPoint(builder, moduleTranslation);
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTask(
|
||
ompLoc, allocaIP, bodyCB, !taskOp.getUntied(),
|
||
moduleTranslation.lookupValue(taskOp.getFinal()),
|
||
moduleTranslation.lookupValue(taskOp.getIfExpr()), dds));
|
||
return bodyGenStatus;
|
||
}
|
||
|
||
/// Converts an OpenMP taskgroup construct into LLVM IR using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpTaskgroupOp(omp::TaskgroupOp tgOp, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
LogicalResult bodyGenStatus = success();
|
||
if (!tgOp.getTaskReductionVars().empty() || !tgOp.getAllocateVars().empty()) {
|
||
return tgOp.emitError("unhandled clauses for translation to LLVM IR");
|
||
}
|
||
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
|
||
builder.restoreIP(codegenIP);
|
||
convertOmpOpRegions(tgOp.getRegion(), "omp.taskgroup.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
};
|
||
InsertPointTy allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTaskgroup(
|
||
ompLoc, allocaIP, bodyCB));
|
||
return bodyGenStatus;
|
||
}
|
||
|
||
static LogicalResult
|
||
convertOmpTaskwaitOp(omp::TaskwaitOp twOp, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
if (!twOp.getDependVars().empty() || twOp.getDependKinds() ||
|
||
twOp.getNowait())
|
||
return twOp.emitError("unhandled clauses for translation to LLVM IR");
|
||
|
||
moduleTranslation.getOpenMPBuilder()->createTaskwait(builder.saveIP());
|
||
return success();
|
||
}
|
||
|
||
/// Converts an OpenMP workshare loop into LLVM IR using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpWsloop(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
auto wsloopOp = cast<omp::WsloopOp>(opInst);
|
||
if (!wsloopOp.getAllocateVars().empty() ||
|
||
!wsloopOp.getAllocatorVars().empty() ||
|
||
!wsloopOp.getPrivateVars().empty() || wsloopOp.getPrivateSyms())
|
||
return opInst.emitError("unhandled clauses for translation to LLVM IR");
|
||
|
||
// FIXME: Here any other nested wrappers (e.g. omp.simd) are skipped, so
|
||
// codegen for composite constructs like 'DO/FOR SIMD' will be the same as for
|
||
// 'DO/FOR'.
|
||
auto loopOp = cast<omp::LoopNestOp>(wsloopOp.getWrappedLoop());
|
||
|
||
llvm::ArrayRef<bool> isByRef = getIsByRef(wsloopOp.getReductionByref());
|
||
assert(isByRef.size() == wsloopOp.getNumReductionVars());
|
||
|
||
// Static is the default.
|
||
auto schedule =
|
||
wsloopOp.getScheduleKind().value_or(omp::ClauseScheduleKind::Static);
|
||
|
||
// Find the loop configuration.
|
||
llvm::Value *step = moduleTranslation.lookupValue(loopOp.getLoopSteps()[0]);
|
||
llvm::Type *ivType = step->getType();
|
||
llvm::Value *chunk = nullptr;
|
||
if (wsloopOp.getScheduleChunk()) {
|
||
llvm::Value *chunkVar =
|
||
moduleTranslation.lookupValue(wsloopOp.getScheduleChunk());
|
||
chunk = builder.CreateSExtOrTrunc(chunkVar, ivType);
|
||
}
|
||
|
||
SmallVector<omp::DeclareReductionOp> reductionDecls;
|
||
collectReductionDecls(wsloopOp, reductionDecls);
|
||
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
|
||
findAllocaInsertPoint(builder, moduleTranslation);
|
||
|
||
SmallVector<llvm::Value *> privateReductionVariables(
|
||
wsloopOp.getNumReductionVars());
|
||
DenseMap<Value, llvm::Value *> reductionVariableMap;
|
||
|
||
MutableArrayRef<BlockArgument> reductionArgs =
|
||
cast<omp::BlockArgOpenMPOpInterface>(opInst).getReductionBlockArgs();
|
||
|
||
if (failed(allocAndInitializeReductionVars(
|
||
wsloopOp, reductionArgs, builder, moduleTranslation, allocaIP,
|
||
reductionDecls, privateReductionVariables, reductionVariableMap,
|
||
isByRef)))
|
||
return failure();
|
||
|
||
// Store the mapping between reduction variables and their private copies on
|
||
// ModuleTranslation stack. It can be then recovered when translating
|
||
// omp.reduce operations in a separate call.
|
||
LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
|
||
moduleTranslation, reductionVariableMap);
|
||
|
||
// Set up the source location value for OpenMP runtime.
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
|
||
// Generator of the canonical loop body.
|
||
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
|
||
// relying on captured variables.
|
||
SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
|
||
SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
|
||
LogicalResult bodyGenStatus = success();
|
||
auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
|
||
// Make sure further conversions know about the induction variable.
|
||
moduleTranslation.mapValue(
|
||
loopOp.getRegion().front().getArgument(loopInfos.size()), iv);
|
||
|
||
// Capture the body insertion point for use in nested loops. BodyIP of the
|
||
// CanonicalLoopInfo always points to the beginning of the entry block of
|
||
// the body.
|
||
bodyInsertPoints.push_back(ip);
|
||
|
||
if (loopInfos.size() != loopOp.getNumLoops() - 1)
|
||
return;
|
||
|
||
// Convert the body of the loop.
|
||
builder.restoreIP(ip);
|
||
convertOmpOpRegions(loopOp.getRegion(), "omp.wsloop.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
};
|
||
|
||
// Delegate actual loop construction to the OpenMP IRBuilder.
|
||
// TODO: this currently assumes omp.loop_nest is semantically similar to SCF
|
||
// loop, i.e. it has a positive step, uses signed integer semantics.
|
||
// Reconsider this code when the nested loop operation clearly supports more
|
||
// cases.
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
for (unsigned i = 0, e = loopOp.getNumLoops(); i < e; ++i) {
|
||
llvm::Value *lowerBound =
|
||
moduleTranslation.lookupValue(loopOp.getLoopLowerBounds()[i]);
|
||
llvm::Value *upperBound =
|
||
moduleTranslation.lookupValue(loopOp.getLoopUpperBounds()[i]);
|
||
llvm::Value *step = moduleTranslation.lookupValue(loopOp.getLoopSteps()[i]);
|
||
|
||
// Make sure loop trip count are emitted in the preheader of the outermost
|
||
// loop at the latest so that they are all available for the new collapsed
|
||
// loop will be created below.
|
||
llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
|
||
llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
|
||
if (i != 0) {
|
||
loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back());
|
||
computeIP = loopInfos.front()->getPreheaderIP();
|
||
}
|
||
loopInfos.push_back(ompBuilder->createCanonicalLoop(
|
||
loc, bodyGen, lowerBound, upperBound, step,
|
||
/*IsSigned=*/true, loopOp.getLoopInclusive(), computeIP));
|
||
|
||
if (failed(bodyGenStatus))
|
||
return failure();
|
||
}
|
||
|
||
// Collapse loops. Store the insertion point because LoopInfos may get
|
||
// invalidated.
|
||
llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
|
||
llvm::CanonicalLoopInfo *loopInfo =
|
||
ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
|
||
|
||
allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
|
||
|
||
// TODO: Handle doacross loops when the ordered clause has a parameter.
|
||
bool isOrdered = wsloopOp.getOrdered().has_value();
|
||
std::optional<omp::ScheduleModifier> scheduleMod = wsloopOp.getScheduleMod();
|
||
bool isSimd = wsloopOp.getScheduleSimd();
|
||
|
||
ompBuilder->applyWorkshareLoop(
|
||
ompLoc.DL, loopInfo, allocaIP, !wsloopOp.getNowait(),
|
||
convertToScheduleKind(schedule), chunk, isSimd,
|
||
scheduleMod == omp::ScheduleModifier::monotonic,
|
||
scheduleMod == omp::ScheduleModifier::nonmonotonic, isOrdered);
|
||
|
||
// Continue building IR after the loop. Note that the LoopInfo returned by
|
||
// `collapseLoops` points inside the outermost loop and is intended for
|
||
// potential further loop transformations. Use the insertion point stored
|
||
// before collapsing loops instead.
|
||
builder.restoreIP(afterIP);
|
||
|
||
// Process the reductions if required.
|
||
return createReductionsAndCleanup(wsloopOp, builder, moduleTranslation,
|
||
allocaIP, reductionDecls,
|
||
privateReductionVariables, isByRef);
|
||
}
|
||
|
||
/// Converts the OpenMP parallel operation to LLVM IR.
|
||
static LogicalResult
|
||
convertOmpParallel(omp::ParallelOp opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
ArrayRef<bool> isByRef = getIsByRef(opInst.getReductionByref());
|
||
assert(isByRef.size() == opInst.getNumReductionVars());
|
||
|
||
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
|
||
// relying on captured variables.
|
||
LogicalResult bodyGenStatus = success();
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
// Collect delayed privatization declarations
|
||
MutableArrayRef<BlockArgument> privateBlockArgs =
|
||
cast<omp::BlockArgOpenMPOpInterface>(*opInst).getPrivateBlockArgs();
|
||
SmallVector<llvm::Value *> llvmPrivateVars;
|
||
SmallVector<omp::PrivateClauseOp> privateDecls;
|
||
llvmPrivateVars.reserve(privateBlockArgs.size());
|
||
privateDecls.reserve(privateBlockArgs.size());
|
||
collectPrivatizationDecls(opInst, privateDecls);
|
||
|
||
// Collect reduction declarations
|
||
SmallVector<omp::DeclareReductionOp> reductionDecls;
|
||
collectReductionDecls(opInst, reductionDecls);
|
||
SmallVector<llvm::Value *> privateReductionVariables(
|
||
opInst.getNumReductionVars());
|
||
SmallVector<DeferredStore> deferredStores;
|
||
|
||
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
|
||
// Allocate private vars
|
||
llvm::BranchInst *allocaTerminator =
|
||
llvm::cast<llvm::BranchInst>(allocaIP.getBlock()->getTerminator());
|
||
builder.SetInsertPoint(allocaTerminator);
|
||
assert(allocaTerminator->getNumSuccessors() == 1 &&
|
||
"This is an unconditional branch created by OpenMPIRBuilder");
|
||
llvm::BasicBlock *afterAllocas = allocaTerminator->getSuccessor(0);
|
||
|
||
// FIXME: Some of the allocation regions do more than just allocating.
|
||
// They read from their block argument (amongst other non-alloca things).
|
||
// When OpenMPIRBuilder outlines the parallel region into a different
|
||
// function it places the loads for live in-values (such as these block
|
||
// arguments) at the end of the entry block (because the entry block is
|
||
// assumed to contain only allocas). Therefore, if we put these complicated
|
||
// alloc blocks in the entry block, these will not dominate the availability
|
||
// of the live-in values they are using. Fix this by adding a latealloc
|
||
// block after the entry block to put these in (this also helps to avoid
|
||
// mixing non-alloca code with allocas).
|
||
// Alloc regions which do not use the block argument can still be placed in
|
||
// the entry block (therefore keeping the allocas together).
|
||
llvm::BasicBlock *privAllocBlock = nullptr;
|
||
if (!privateBlockArgs.empty())
|
||
privAllocBlock = splitBB(builder, true, "omp.private.latealloc");
|
||
for (unsigned i = 0; i < privateBlockArgs.size(); ++i) {
|
||
Region &allocRegion = privateDecls[i].getAllocRegion();
|
||
|
||
// map allocation region block argument
|
||
llvm::Value *nonPrivateVar =
|
||
moduleTranslation.lookupValue(opInst.getPrivateVars()[i]);
|
||
assert(nonPrivateVar);
|
||
moduleTranslation.mapValue(privateDecls[i].getAllocMoldArg(),
|
||
nonPrivateVar);
|
||
|
||
// in-place convert the private allocation region
|
||
SmallVector<llvm::Value *, 1> phis;
|
||
if (privateDecls[i].getAllocMoldArg().getUses().empty()) {
|
||
// TODO this should use
|
||
// allocaIP.getBlock()->getFirstNonPHIOrDbgOrAlloca() so it goes before
|
||
// the code for fetching the thread id. Not doing this for now to avoid
|
||
// test churn.
|
||
builder.SetInsertPoint(allocaIP.getBlock()->getTerminator());
|
||
} else {
|
||
builder.SetInsertPoint(privAllocBlock->getTerminator());
|
||
}
|
||
if (failed(inlineConvertOmpRegions(allocRegion, "omp.private.alloc",
|
||
builder, moduleTranslation, &phis))) {
|
||
bodyGenStatus = failure();
|
||
return;
|
||
}
|
||
assert(phis.size() == 1 && "expected one allocation to be yielded");
|
||
|
||
moduleTranslation.mapValue(privateBlockArgs[i], phis[0]);
|
||
llvmPrivateVars.push_back(phis[0]);
|
||
|
||
// clear alloc region block argument mapping in case it needs to be
|
||
// re-created with a different source for another use of the same
|
||
// reduction decl
|
||
moduleTranslation.forgetMapping(allocRegion);
|
||
}
|
||
|
||
// Allocate reduction vars
|
||
DenseMap<Value, llvm::Value *> reductionVariableMap;
|
||
|
||
MutableArrayRef<BlockArgument> reductionArgs =
|
||
cast<omp::BlockArgOpenMPOpInterface>(*opInst).getReductionBlockArgs();
|
||
|
||
allocaIP =
|
||
InsertPointTy(allocaIP.getBlock(),
|
||
allocaIP.getBlock()->getTerminator()->getIterator());
|
||
|
||
if (failed(allocReductionVars(
|
||
opInst, reductionArgs, builder, moduleTranslation, allocaIP,
|
||
reductionDecls, privateReductionVariables, reductionVariableMap,
|
||
deferredStores, isByRef)))
|
||
bodyGenStatus = failure();
|
||
|
||
// Apply copy region for firstprivate.
|
||
bool needsFirstprivate =
|
||
llvm::any_of(privateDecls, [](omp::PrivateClauseOp &privOp) {
|
||
return privOp.getDataSharingType() ==
|
||
omp::DataSharingClauseType::FirstPrivate;
|
||
});
|
||
if (needsFirstprivate) {
|
||
// Find the end of the allocation blocks
|
||
assert(afterAllocas->getSinglePredecessor());
|
||
builder.SetInsertPoint(
|
||
afterAllocas->getSinglePredecessor()->getTerminator());
|
||
llvm::BasicBlock *copyBlock =
|
||
splitBB(builder, /*CreateBranch=*/true, "omp.private.copy");
|
||
builder.SetInsertPoint(copyBlock->getFirstNonPHIOrDbgOrAlloca());
|
||
}
|
||
for (unsigned i = 0; i < privateBlockArgs.size(); ++i) {
|
||
if (privateDecls[i].getDataSharingType() !=
|
||
omp::DataSharingClauseType::FirstPrivate)
|
||
continue;
|
||
|
||
// copyRegion implements `lhs = rhs`
|
||
Region ©Region = privateDecls[i].getCopyRegion();
|
||
|
||
// map copyRegion rhs arg
|
||
llvm::Value *nonPrivateVar =
|
||
moduleTranslation.lookupValue(opInst.getPrivateVars()[i]);
|
||
assert(nonPrivateVar);
|
||
moduleTranslation.mapValue(privateDecls[i].getCopyMoldArg(),
|
||
nonPrivateVar);
|
||
|
||
// map copyRegion lhs arg
|
||
moduleTranslation.mapValue(privateDecls[i].getCopyPrivateArg(),
|
||
llvmPrivateVars[i]);
|
||
|
||
// in-place convert copy region
|
||
builder.SetInsertPoint(builder.GetInsertBlock()->getTerminator());
|
||
if (failed(inlineConvertOmpRegions(copyRegion, "omp.private.copy",
|
||
builder, moduleTranslation))) {
|
||
bodyGenStatus = failure();
|
||
return;
|
||
}
|
||
|
||
// ignore unused value yielded from copy region
|
||
|
||
// clear copy region block argument mapping in case it needs to be
|
||
// re-created with different sources for reuse of the same reduction
|
||
// decl
|
||
moduleTranslation.forgetMapping(copyRegion);
|
||
}
|
||
|
||
// Initialize reduction vars
|
||
builder.SetInsertPoint(builder.GetInsertBlock()->getTerminator());
|
||
llvm::BasicBlock *initBlock = splitBB(builder, true, "omp.reduction.init");
|
||
allocaIP =
|
||
InsertPointTy(allocaIP.getBlock(),
|
||
allocaIP.getBlock()->getTerminator()->getIterator());
|
||
|
||
builder.restoreIP(allocaIP);
|
||
SmallVector<llvm::Value *> byRefVars(opInst.getNumReductionVars());
|
||
for (unsigned i = 0; i < opInst.getNumReductionVars(); ++i) {
|
||
if (isByRef[i]) {
|
||
if (!reductionDecls[i].getAllocRegion().empty())
|
||
continue;
|
||
|
||
// TODO: remove after all users of by-ref are updated to use the alloc
|
||
// region: Allocate reduction variable (which is a pointer to the real
|
||
// reduciton variable allocated in the inlined region)
|
||
byRefVars[i] = builder.CreateAlloca(
|
||
moduleTranslation.convertType(reductionDecls[i].getType()));
|
||
}
|
||
}
|
||
|
||
builder.SetInsertPoint(initBlock->getFirstNonPHIOrDbgOrAlloca());
|
||
|
||
// insert stores deferred until after all allocas
|
||
// these store the results of the alloc region into the allocation for the
|
||
// pointer to the reduction variable
|
||
for (auto [data, addr] : deferredStores)
|
||
builder.CreateStore(data, addr);
|
||
|
||
for (unsigned i = 0; i < opInst.getNumReductionVars(); ++i) {
|
||
SmallVector<llvm::Value *> phis;
|
||
|
||
// map the block argument
|
||
mapInitializationArgs(opInst, moduleTranslation, reductionDecls,
|
||
reductionVariableMap, i);
|
||
if (failed(inlineConvertOmpRegions(
|
||
reductionDecls[i].getInitializerRegion(), "omp.reduction.neutral",
|
||
builder, moduleTranslation, &phis)))
|
||
bodyGenStatus = failure();
|
||
assert(phis.size() == 1 &&
|
||
"expected one value to be yielded from the "
|
||
"reduction neutral element declaration region");
|
||
|
||
builder.SetInsertPoint(builder.GetInsertBlock()->getTerminator());
|
||
|
||
if (isByRef[i]) {
|
||
if (!reductionDecls[i].getAllocRegion().empty())
|
||
continue;
|
||
|
||
// TODO: remove after all users of by-ref are updated to use the alloc
|
||
|
||
// Store the result of the inlined region to the allocated reduction var
|
||
// ptr
|
||
builder.CreateStore(phis[0], byRefVars[i]);
|
||
|
||
privateReductionVariables[i] = byRefVars[i];
|
||
moduleTranslation.mapValue(reductionArgs[i], phis[0]);
|
||
reductionVariableMap.try_emplace(opInst.getReductionVars()[i], phis[0]);
|
||
} else {
|
||
// for by-ref case the store is inside of the reduction init region
|
||
builder.CreateStore(phis[0], privateReductionVariables[i]);
|
||
// the rest is done in allocByValReductionVars
|
||
}
|
||
|
||
// clear block argument mapping in case it needs to be re-created with a
|
||
// different source for another use of the same reduction decl
|
||
moduleTranslation.forgetMapping(reductionDecls[i].getInitializerRegion());
|
||
}
|
||
|
||
// Store the mapping between reduction variables and their private copies on
|
||
// ModuleTranslation stack. It can be then recovered when translating
|
||
// omp.reduce operations in a separate call.
|
||
LLVM::ModuleTranslation::SaveStack<OpenMPVarMappingStackFrame> mappingGuard(
|
||
moduleTranslation, reductionVariableMap);
|
||
|
||
// Save the alloca insertion point on ModuleTranslation stack for use in
|
||
// nested regions.
|
||
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
|
||
moduleTranslation, allocaIP);
|
||
|
||
// ParallelOp has only one region associated with it.
|
||
builder.restoreIP(codeGenIP);
|
||
auto regionBlock =
|
||
convertOmpOpRegions(opInst.getRegion(), "omp.par.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
|
||
// Process the reductions if required.
|
||
if (opInst.getNumReductionVars() > 0) {
|
||
// Collect reduction info
|
||
SmallVector<OwningReductionGen> owningReductionGens;
|
||
SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
|
||
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
|
||
collectReductionInfo(opInst, builder, moduleTranslation, reductionDecls,
|
||
owningReductionGens, owningAtomicReductionGens,
|
||
privateReductionVariables, reductionInfos);
|
||
|
||
// Move to region cont block
|
||
builder.SetInsertPoint(regionBlock->getTerminator());
|
||
|
||
// Generate reductions from info
|
||
llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
|
||
builder.SetInsertPoint(tempTerminator);
|
||
|
||
llvm::OpenMPIRBuilder::InsertPointTy contInsertPoint =
|
||
ompBuilder->createReductions(builder.saveIP(), allocaIP,
|
||
reductionInfos, isByRef, false);
|
||
if (!contInsertPoint.getBlock()) {
|
||
bodyGenStatus = opInst->emitOpError() << "failed to convert reductions";
|
||
return;
|
||
}
|
||
|
||
tempTerminator->eraseFromParent();
|
||
builder.restoreIP(contInsertPoint);
|
||
}
|
||
};
|
||
|
||
auto privCB = [](InsertPointTy allocaIP, InsertPointTy codeGenIP,
|
||
llvm::Value &, llvm::Value &val, llvm::Value *&replVal) {
|
||
// tell OpenMPIRBuilder not to do anything. We handled Privatisation in
|
||
// bodyGenCB.
|
||
replVal = &val;
|
||
return codeGenIP;
|
||
};
|
||
|
||
// TODO: Perform finalization actions for variables. This has to be
|
||
// called for variables which have destructors/finalizers.
|
||
auto finiCB = [&](InsertPointTy codeGenIP) {
|
||
InsertPointTy oldIP = builder.saveIP();
|
||
builder.restoreIP(codeGenIP);
|
||
|
||
// if the reduction has a cleanup region, inline it here to finalize the
|
||
// reduction variables
|
||
SmallVector<Region *> reductionCleanupRegions;
|
||
llvm::transform(reductionDecls, std::back_inserter(reductionCleanupRegions),
|
||
[](omp::DeclareReductionOp reductionDecl) {
|
||
return &reductionDecl.getCleanupRegion();
|
||
});
|
||
if (failed(inlineOmpRegionCleanup(
|
||
reductionCleanupRegions, privateReductionVariables,
|
||
moduleTranslation, builder, "omp.reduction.cleanup")))
|
||
bodyGenStatus = failure();
|
||
|
||
SmallVector<Region *> privateCleanupRegions;
|
||
llvm::transform(privateDecls, std::back_inserter(privateCleanupRegions),
|
||
[](omp::PrivateClauseOp privatizer) {
|
||
return &privatizer.getDeallocRegion();
|
||
});
|
||
|
||
if (failed(inlineOmpRegionCleanup(
|
||
privateCleanupRegions, llvmPrivateVars, moduleTranslation, builder,
|
||
"omp.private.dealloc", /*shouldLoadCleanupRegionArg=*/false)))
|
||
bodyGenStatus = failure();
|
||
|
||
builder.restoreIP(oldIP);
|
||
};
|
||
|
||
llvm::Value *ifCond = nullptr;
|
||
if (auto ifVar = opInst.getIfExpr())
|
||
ifCond = moduleTranslation.lookupValue(ifVar);
|
||
llvm::Value *numThreads = nullptr;
|
||
if (auto numThreadsVar = opInst.getNumThreads())
|
||
numThreads = moduleTranslation.lookupValue(numThreadsVar);
|
||
auto pbKind = llvm::omp::OMP_PROC_BIND_default;
|
||
if (auto bind = opInst.getProcBindKind())
|
||
pbKind = getProcBindKind(*bind);
|
||
// TODO: Is the Parallel construct cancellable?
|
||
bool isCancellable = false;
|
||
|
||
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
|
||
findAllocaInsertPoint(builder, moduleTranslation);
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
|
||
builder.restoreIP(
|
||
ompBuilder->createParallel(ompLoc, allocaIP, bodyGenCB, privCB, finiCB,
|
||
ifCond, numThreads, pbKind, isCancellable));
|
||
|
||
return bodyGenStatus;
|
||
}
|
||
|
||
/// Convert Order attribute to llvm::omp::OrderKind.
|
||
static llvm::omp::OrderKind
|
||
convertOrderKind(std::optional<omp::ClauseOrderKind> o) {
|
||
if (!o)
|
||
return llvm::omp::OrderKind::OMP_ORDER_unknown;
|
||
switch (*o) {
|
||
case omp::ClauseOrderKind::Concurrent:
|
||
return llvm::omp::OrderKind::OMP_ORDER_concurrent;
|
||
}
|
||
llvm_unreachable("Unknown ClauseOrderKind kind");
|
||
}
|
||
|
||
static LogicalResult simdOpSupported(omp::SimdOp op) {
|
||
if (!op.getLinearVars().empty() || !op.getLinearStepVars().empty())
|
||
return op.emitError("linear clause not yet supported");
|
||
|
||
if (!op.getPrivateVars().empty() || op.getPrivateSyms())
|
||
return op.emitError("privatization clauses not yet supported");
|
||
|
||
if (!op.getReductionVars().empty() || op.getReductionByref() ||
|
||
op.getReductionSyms())
|
||
return op.emitError("reduction clause not yet supported");
|
||
|
||
return success();
|
||
}
|
||
|
||
/// Converts an OpenMP simd loop into LLVM IR using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpSimd(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
auto simdOp = cast<omp::SimdOp>(opInst);
|
||
auto loopOp = cast<omp::LoopNestOp>(simdOp.getWrappedLoop());
|
||
|
||
if (failed(simdOpSupported(simdOp)))
|
||
return failure();
|
||
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
|
||
// Generator of the canonical loop body.
|
||
// TODO: support error propagation in OpenMPIRBuilder and use it instead of
|
||
// relying on captured variables.
|
||
SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
|
||
SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
|
||
LogicalResult bodyGenStatus = success();
|
||
auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
|
||
// Make sure further conversions know about the induction variable.
|
||
moduleTranslation.mapValue(
|
||
loopOp.getRegion().front().getArgument(loopInfos.size()), iv);
|
||
|
||
// Capture the body insertion point for use in nested loops. BodyIP of the
|
||
// CanonicalLoopInfo always points to the beginning of the entry block of
|
||
// the body.
|
||
bodyInsertPoints.push_back(ip);
|
||
|
||
if (loopInfos.size() != loopOp.getNumLoops() - 1)
|
||
return;
|
||
|
||
// Convert the body of the loop.
|
||
builder.restoreIP(ip);
|
||
convertOmpOpRegions(loopOp.getRegion(), "omp.simd.region", builder,
|
||
moduleTranslation, bodyGenStatus);
|
||
};
|
||
|
||
// Delegate actual loop construction to the OpenMP IRBuilder.
|
||
// TODO: this currently assumes omp.loop_nest is semantically similar to SCF
|
||
// loop, i.e. it has a positive step, uses signed integer semantics.
|
||
// Reconsider this code when the nested loop operation clearly supports more
|
||
// cases.
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
for (unsigned i = 0, e = loopOp.getNumLoops(); i < e; ++i) {
|
||
llvm::Value *lowerBound =
|
||
moduleTranslation.lookupValue(loopOp.getLoopLowerBounds()[i]);
|
||
llvm::Value *upperBound =
|
||
moduleTranslation.lookupValue(loopOp.getLoopUpperBounds()[i]);
|
||
llvm::Value *step = moduleTranslation.lookupValue(loopOp.getLoopSteps()[i]);
|
||
|
||
// Make sure loop trip count are emitted in the preheader of the outermost
|
||
// loop at the latest so that they are all available for the new collapsed
|
||
// loop will be created below.
|
||
llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
|
||
llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
|
||
if (i != 0) {
|
||
loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back(),
|
||
ompLoc.DL);
|
||
computeIP = loopInfos.front()->getPreheaderIP();
|
||
}
|
||
loopInfos.push_back(ompBuilder->createCanonicalLoop(
|
||
loc, bodyGen, lowerBound, upperBound, step,
|
||
/*IsSigned=*/true, /*Inclusive=*/true, computeIP));
|
||
|
||
if (failed(bodyGenStatus))
|
||
return failure();
|
||
}
|
||
|
||
// Collapse loops.
|
||
llvm::IRBuilderBase::InsertPoint afterIP = loopInfos.front()->getAfterIP();
|
||
llvm::CanonicalLoopInfo *loopInfo =
|
||
ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
|
||
|
||
llvm::ConstantInt *simdlen = nullptr;
|
||
if (std::optional<uint64_t> simdlenVar = simdOp.getSimdlen())
|
||
simdlen = builder.getInt64(simdlenVar.value());
|
||
|
||
llvm::ConstantInt *safelen = nullptr;
|
||
if (std::optional<uint64_t> safelenVar = simdOp.getSafelen())
|
||
safelen = builder.getInt64(safelenVar.value());
|
||
|
||
llvm::MapVector<llvm::Value *, llvm::Value *> alignedVars;
|
||
llvm::omp::OrderKind order = convertOrderKind(simdOp.getOrder());
|
||
ompBuilder->applySimd(loopInfo, alignedVars,
|
||
simdOp.getIfExpr()
|
||
? moduleTranslation.lookupValue(simdOp.getIfExpr())
|
||
: nullptr,
|
||
order, simdlen, safelen);
|
||
|
||
builder.restoreIP(afterIP);
|
||
return success();
|
||
}
|
||
|
||
/// Convert an Atomic Ordering attribute to llvm::AtomicOrdering.
|
||
static llvm::AtomicOrdering
|
||
convertAtomicOrdering(std::optional<omp::ClauseMemoryOrderKind> ao) {
|
||
if (!ao)
|
||
return llvm::AtomicOrdering::Monotonic; // Default Memory Ordering
|
||
|
||
switch (*ao) {
|
||
case omp::ClauseMemoryOrderKind::Seq_cst:
|
||
return llvm::AtomicOrdering::SequentiallyConsistent;
|
||
case omp::ClauseMemoryOrderKind::Acq_rel:
|
||
return llvm::AtomicOrdering::AcquireRelease;
|
||
case omp::ClauseMemoryOrderKind::Acquire:
|
||
return llvm::AtomicOrdering::Acquire;
|
||
case omp::ClauseMemoryOrderKind::Release:
|
||
return llvm::AtomicOrdering::Release;
|
||
case omp::ClauseMemoryOrderKind::Relaxed:
|
||
return llvm::AtomicOrdering::Monotonic;
|
||
}
|
||
llvm_unreachable("Unknown ClauseMemoryOrderKind kind");
|
||
}
|
||
|
||
/// Convert omp.atomic.read operation to LLVM IR.
|
||
static LogicalResult
|
||
convertOmpAtomicRead(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
|
||
auto readOp = cast<omp::AtomicReadOp>(opInst);
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
|
||
llvm::AtomicOrdering AO = convertAtomicOrdering(readOp.getMemoryOrder());
|
||
llvm::Value *x = moduleTranslation.lookupValue(readOp.getX());
|
||
llvm::Value *v = moduleTranslation.lookupValue(readOp.getV());
|
||
|
||
llvm::Type *elementType =
|
||
moduleTranslation.convertType(readOp.getElementType());
|
||
|
||
llvm::OpenMPIRBuilder::AtomicOpValue V = {v, elementType, false, false};
|
||
llvm::OpenMPIRBuilder::AtomicOpValue X = {x, elementType, false, false};
|
||
builder.restoreIP(ompBuilder->createAtomicRead(ompLoc, X, V, AO));
|
||
return success();
|
||
}
|
||
|
||
/// Converts an omp.atomic.write operation to LLVM IR.
|
||
static LogicalResult
|
||
convertOmpAtomicWrite(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
auto writeOp = cast<omp::AtomicWriteOp>(opInst);
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
llvm::AtomicOrdering ao = convertAtomicOrdering(writeOp.getMemoryOrder());
|
||
llvm::Value *expr = moduleTranslation.lookupValue(writeOp.getExpr());
|
||
llvm::Value *dest = moduleTranslation.lookupValue(writeOp.getX());
|
||
llvm::Type *ty = moduleTranslation.convertType(writeOp.getExpr().getType());
|
||
llvm::OpenMPIRBuilder::AtomicOpValue x = {dest, ty, /*isSigned=*/false,
|
||
/*isVolatile=*/false};
|
||
builder.restoreIP(ompBuilder->createAtomicWrite(ompLoc, x, expr, ao));
|
||
return success();
|
||
}
|
||
|
||
/// Converts an LLVM dialect binary operation to the corresponding enum value
|
||
/// for `atomicrmw` supported binary operation.
|
||
llvm::AtomicRMWInst::BinOp convertBinOpToAtomic(Operation &op) {
|
||
return llvm::TypeSwitch<Operation *, llvm::AtomicRMWInst::BinOp>(&op)
|
||
.Case([&](LLVM::AddOp) { return llvm::AtomicRMWInst::BinOp::Add; })
|
||
.Case([&](LLVM::SubOp) { return llvm::AtomicRMWInst::BinOp::Sub; })
|
||
.Case([&](LLVM::AndOp) { return llvm::AtomicRMWInst::BinOp::And; })
|
||
.Case([&](LLVM::OrOp) { return llvm::AtomicRMWInst::BinOp::Or; })
|
||
.Case([&](LLVM::XOrOp) { return llvm::AtomicRMWInst::BinOp::Xor; })
|
||
.Case([&](LLVM::UMaxOp) { return llvm::AtomicRMWInst::BinOp::UMax; })
|
||
.Case([&](LLVM::UMinOp) { return llvm::AtomicRMWInst::BinOp::UMin; })
|
||
.Case([&](LLVM::FAddOp) { return llvm::AtomicRMWInst::BinOp::FAdd; })
|
||
.Case([&](LLVM::FSubOp) { return llvm::AtomicRMWInst::BinOp::FSub; })
|
||
.Default(llvm::AtomicRMWInst::BinOp::BAD_BINOP);
|
||
}
|
||
|
||
/// Converts an OpenMP atomic update operation using OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpAtomicUpdate(omp::AtomicUpdateOp &opInst,
|
||
llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
// Convert values and types.
|
||
auto &innerOpList = opInst.getRegion().front().getOperations();
|
||
bool isXBinopExpr{false};
|
||
llvm::AtomicRMWInst::BinOp binop;
|
||
mlir::Value mlirExpr;
|
||
llvm::Value *llvmExpr = nullptr;
|
||
llvm::Value *llvmX = nullptr;
|
||
llvm::Type *llvmXElementType = nullptr;
|
||
if (innerOpList.size() == 2) {
|
||
// The two operations here are the update and the terminator.
|
||
// Since we can identify the update operation, there is a possibility
|
||
// that we can generate the atomicrmw instruction.
|
||
mlir::Operation &innerOp = *opInst.getRegion().front().begin();
|
||
if (!llvm::is_contained(innerOp.getOperands(),
|
||
opInst.getRegion().getArgument(0))) {
|
||
return opInst.emitError("no atomic update operation with region argument"
|
||
" as operand found inside atomic.update region");
|
||
}
|
||
binop = convertBinOpToAtomic(innerOp);
|
||
isXBinopExpr = innerOp.getOperand(0) == opInst.getRegion().getArgument(0);
|
||
mlirExpr = (isXBinopExpr ? innerOp.getOperand(1) : innerOp.getOperand(0));
|
||
llvmExpr = moduleTranslation.lookupValue(mlirExpr);
|
||
} else {
|
||
// Since the update region includes more than one operation
|
||
// we will resort to generating a cmpxchg loop.
|
||
binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
|
||
}
|
||
llvmX = moduleTranslation.lookupValue(opInst.getX());
|
||
llvmXElementType = moduleTranslation.convertType(
|
||
opInst.getRegion().getArgument(0).getType());
|
||
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
|
||
/*isSigned=*/false,
|
||
/*isVolatile=*/false};
|
||
|
||
llvm::AtomicOrdering atomicOrdering =
|
||
convertAtomicOrdering(opInst.getMemoryOrder());
|
||
|
||
// Generate update code.
|
||
LogicalResult updateGenStatus = success();
|
||
auto updateFn = [&opInst, &moduleTranslation, &updateGenStatus](
|
||
llvm::Value *atomicx,
|
||
llvm::IRBuilder<> &builder) -> llvm::Value * {
|
||
Block &bb = *opInst.getRegion().begin();
|
||
moduleTranslation.mapValue(*opInst.getRegion().args_begin(), atomicx);
|
||
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
|
||
if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
|
||
updateGenStatus = (opInst.emitError()
|
||
<< "unable to convert update operation to llvm IR");
|
||
return nullptr;
|
||
}
|
||
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
|
||
assert(yieldop && yieldop.getResults().size() == 1 &&
|
||
"terminator must be omp.yield op and it must have exactly one "
|
||
"argument");
|
||
return moduleTranslation.lookupValue(yieldop.getResults()[0]);
|
||
};
|
||
|
||
// Handle ambiguous alloca, if any.
|
||
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(ompBuilder->createAtomicUpdate(
|
||
ompLoc, allocaIP, llvmAtomicX, llvmExpr, atomicOrdering, binop, updateFn,
|
||
isXBinopExpr));
|
||
return updateGenStatus;
|
||
}
|
||
|
||
static LogicalResult
|
||
convertOmpAtomicCapture(omp::AtomicCaptureOp atomicCaptureOp,
|
||
llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
mlir::Value mlirExpr;
|
||
bool isXBinopExpr = false, isPostfixUpdate = false;
|
||
llvm::AtomicRMWInst::BinOp binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
|
||
|
||
omp::AtomicUpdateOp atomicUpdateOp = atomicCaptureOp.getAtomicUpdateOp();
|
||
omp::AtomicWriteOp atomicWriteOp = atomicCaptureOp.getAtomicWriteOp();
|
||
|
||
assert((atomicUpdateOp || atomicWriteOp) &&
|
||
"internal op must be an atomic.update or atomic.write op");
|
||
|
||
if (atomicWriteOp) {
|
||
isPostfixUpdate = true;
|
||
mlirExpr = atomicWriteOp.getExpr();
|
||
} else {
|
||
isPostfixUpdate = atomicCaptureOp.getSecondOp() ==
|
||
atomicCaptureOp.getAtomicUpdateOp().getOperation();
|
||
auto &innerOpList = atomicUpdateOp.getRegion().front().getOperations();
|
||
// Find the binary update operation that uses the region argument
|
||
// and get the expression to update
|
||
if (innerOpList.size() == 2) {
|
||
mlir::Operation &innerOp = *atomicUpdateOp.getRegion().front().begin();
|
||
if (!llvm::is_contained(innerOp.getOperands(),
|
||
atomicUpdateOp.getRegion().getArgument(0))) {
|
||
return atomicUpdateOp.emitError(
|
||
"no atomic update operation with region argument"
|
||
" as operand found inside atomic.update region");
|
||
}
|
||
binop = convertBinOpToAtomic(innerOp);
|
||
isXBinopExpr =
|
||
innerOp.getOperand(0) == atomicUpdateOp.getRegion().getArgument(0);
|
||
mlirExpr = (isXBinopExpr ? innerOp.getOperand(1) : innerOp.getOperand(0));
|
||
} else {
|
||
binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
|
||
}
|
||
}
|
||
|
||
llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr);
|
||
llvm::Value *llvmX =
|
||
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().getX());
|
||
llvm::Value *llvmV =
|
||
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().getV());
|
||
llvm::Type *llvmXElementType = moduleTranslation.convertType(
|
||
atomicCaptureOp.getAtomicReadOp().getElementType());
|
||
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
|
||
/*isSigned=*/false,
|
||
/*isVolatile=*/false};
|
||
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicV = {llvmV, llvmXElementType,
|
||
/*isSigned=*/false,
|
||
/*isVolatile=*/false};
|
||
|
||
llvm::AtomicOrdering atomicOrdering =
|
||
convertAtomicOrdering(atomicCaptureOp.getMemoryOrder());
|
||
|
||
LogicalResult updateGenStatus = success();
|
||
auto updateFn = [&](llvm::Value *atomicx,
|
||
llvm::IRBuilder<> &builder) -> llvm::Value * {
|
||
if (atomicWriteOp)
|
||
return moduleTranslation.lookupValue(atomicWriteOp.getExpr());
|
||
Block &bb = *atomicUpdateOp.getRegion().begin();
|
||
moduleTranslation.mapValue(*atomicUpdateOp.getRegion().args_begin(),
|
||
atomicx);
|
||
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
|
||
if (failed(moduleTranslation.convertBlock(bb, true, builder))) {
|
||
updateGenStatus = (atomicUpdateOp.emitError()
|
||
<< "unable to convert update operation to llvm IR");
|
||
return nullptr;
|
||
}
|
||
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
|
||
assert(yieldop && yieldop.getResults().size() == 1 &&
|
||
"terminator must be omp.yield op and it must have exactly one "
|
||
"argument");
|
||
return moduleTranslation.lookupValue(yieldop.getResults()[0]);
|
||
};
|
||
|
||
// Handle ambiguous alloca, if any.
|
||
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
builder.restoreIP(ompBuilder->createAtomicCapture(
|
||
ompLoc, allocaIP, llvmAtomicX, llvmAtomicV, llvmExpr, atomicOrdering,
|
||
binop, updateFn, atomicUpdateOp, isPostfixUpdate, isXBinopExpr));
|
||
return updateGenStatus;
|
||
}
|
||
|
||
/// Converts an OpenMP Threadprivate operation into LLVM IR using
|
||
/// OpenMPIRBuilder.
|
||
static LogicalResult
|
||
convertOmpThreadprivate(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
auto threadprivateOp = cast<omp::ThreadprivateOp>(opInst);
|
||
|
||
Value symAddr = threadprivateOp.getSymAddr();
|
||
auto *symOp = symAddr.getDefiningOp();
|
||
if (!isa<LLVM::AddressOfOp>(symOp))
|
||
return opInst.emitError("Addressing symbol not found");
|
||
LLVM::AddressOfOp addressOfOp = dyn_cast<LLVM::AddressOfOp>(symOp);
|
||
|
||
LLVM::GlobalOp global =
|
||
addressOfOp.getGlobal(moduleTranslation.symbolTable());
|
||
llvm::GlobalValue *globalValue = moduleTranslation.lookupGlobal(global);
|
||
llvm::Type *type = globalValue->getValueType();
|
||
llvm::TypeSize typeSize =
|
||
builder.GetInsertBlock()->getModule()->getDataLayout().getTypeStoreSize(
|
||
type);
|
||
llvm::ConstantInt *size = builder.getInt64(typeSize.getFixedValue());
|
||
llvm::StringRef suffix = llvm::StringRef(".cache", 6);
|
||
std::string cacheName = (Twine(global.getSymName()).concat(suffix)).str();
|
||
llvm::Value *callInst =
|
||
moduleTranslation.getOpenMPBuilder()->createCachedThreadPrivate(
|
||
ompLoc, globalValue, size, cacheName);
|
||
moduleTranslation.mapValue(opInst.getResult(0), callInst);
|
||
return success();
|
||
}
|
||
|
||
static llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseKind
|
||
convertToDeviceClauseKind(mlir::omp::DeclareTargetDeviceType deviceClause) {
|
||
switch (deviceClause) {
|
||
case mlir::omp::DeclareTargetDeviceType::host:
|
||
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseHost;
|
||
break;
|
||
case mlir::omp::DeclareTargetDeviceType::nohost:
|
||
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseNoHost;
|
||
break;
|
||
case mlir::omp::DeclareTargetDeviceType::any:
|
||
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseAny;
|
||
break;
|
||
}
|
||
llvm_unreachable("unhandled device clause");
|
||
}
|
||
|
||
static llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind
|
||
convertToCaptureClauseKind(
|
||
mlir::omp::DeclareTargetCaptureClause captureClause) {
|
||
switch (captureClause) {
|
||
case mlir::omp::DeclareTargetCaptureClause::to:
|
||
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
|
||
case mlir::omp::DeclareTargetCaptureClause::link:
|
||
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink;
|
||
case mlir::omp::DeclareTargetCaptureClause::enter:
|
||
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter;
|
||
}
|
||
llvm_unreachable("unhandled capture clause");
|
||
}
|
||
|
||
static llvm::SmallString<64>
|
||
getDeclareTargetRefPtrSuffix(LLVM::GlobalOp globalOp,
|
||
llvm::OpenMPIRBuilder &ompBuilder) {
|
||
llvm::SmallString<64> suffix;
|
||
llvm::raw_svector_ostream os(suffix);
|
||
if (globalOp.getVisibility() == mlir::SymbolTable::Visibility::Private) {
|
||
auto loc = globalOp->getLoc()->findInstanceOf<FileLineColLoc>();
|
||
auto fileInfoCallBack = [&loc]() {
|
||
return std::pair<std::string, uint64_t>(
|
||
llvm::StringRef(loc.getFilename()), loc.getLine());
|
||
};
|
||
|
||
os << llvm::format(
|
||
"_%x", ompBuilder.getTargetEntryUniqueInfo(fileInfoCallBack).FileID);
|
||
}
|
||
os << "_decl_tgt_ref_ptr";
|
||
|
||
return suffix;
|
||
}
|
||
|
||
static bool isDeclareTargetLink(mlir::Value value) {
|
||
if (auto addressOfOp =
|
||
llvm::dyn_cast_if_present<LLVM::AddressOfOp>(value.getDefiningOp())) {
|
||
auto modOp = addressOfOp->getParentOfType<mlir::ModuleOp>();
|
||
Operation *gOp = modOp.lookupSymbol(addressOfOp.getGlobalName());
|
||
if (auto declareTargetGlobal =
|
||
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(gOp))
|
||
if (declareTargetGlobal.getDeclareTargetCaptureClause() ==
|
||
mlir::omp::DeclareTargetCaptureClause::link)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// Returns the reference pointer generated by the lowering of the declare target
|
||
// operation in cases where the link clause is used or the to clause is used in
|
||
// USM mode.
|
||
static llvm::Value *
|
||
getRefPtrIfDeclareTarget(mlir::Value value,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
// An easier way to do this may just be to keep track of any pointer
|
||
// references and their mapping to their respective operation
|
||
if (auto addressOfOp =
|
||
llvm::dyn_cast_if_present<LLVM::AddressOfOp>(value.getDefiningOp())) {
|
||
if (auto gOp = llvm::dyn_cast_or_null<LLVM::GlobalOp>(
|
||
addressOfOp->getParentOfType<mlir::ModuleOp>().lookupSymbol(
|
||
addressOfOp.getGlobalName()))) {
|
||
|
||
if (auto declareTargetGlobal =
|
||
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(
|
||
gOp.getOperation())) {
|
||
|
||
// In this case, we must utilise the reference pointer generated by the
|
||
// declare target operation, similar to Clang
|
||
if ((declareTargetGlobal.getDeclareTargetCaptureClause() ==
|
||
mlir::omp::DeclareTargetCaptureClause::link) ||
|
||
(declareTargetGlobal.getDeclareTargetCaptureClause() ==
|
||
mlir::omp::DeclareTargetCaptureClause::to &&
|
||
ompBuilder->Config.hasRequiresUnifiedSharedMemory())) {
|
||
llvm::SmallString<64> suffix =
|
||
getDeclareTargetRefPtrSuffix(gOp, *ompBuilder);
|
||
|
||
if (gOp.getSymName().contains(suffix))
|
||
return moduleTranslation.getLLVMModule()->getNamedValue(
|
||
gOp.getSymName());
|
||
|
||
return moduleTranslation.getLLVMModule()->getNamedValue(
|
||
(gOp.getSymName().str() + suffix.str()).str());
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
namespace {
|
||
// A small helper structure to contain data gathered
|
||
// for map lowering and coalese it into one area and
|
||
// avoiding extra computations such as searches in the
|
||
// llvm module for lowered mapped variables or checking
|
||
// if something is declare target (and retrieving the
|
||
// value) more than neccessary.
|
||
struct MapInfoData : llvm::OpenMPIRBuilder::MapInfosTy {
|
||
llvm::SmallVector<bool, 4> IsDeclareTarget;
|
||
llvm::SmallVector<bool, 4> IsAMember;
|
||
// Identify if mapping was added by mapClause or use_device clauses.
|
||
llvm::SmallVector<bool, 4> IsAMapping;
|
||
llvm::SmallVector<mlir::Operation *, 4> MapClause;
|
||
llvm::SmallVector<llvm::Value *, 4> OriginalValue;
|
||
// Stripped off array/pointer to get the underlying
|
||
// element type
|
||
llvm::SmallVector<llvm::Type *, 4> BaseType;
|
||
|
||
/// Append arrays in \a CurInfo.
|
||
void append(MapInfoData &CurInfo) {
|
||
IsDeclareTarget.append(CurInfo.IsDeclareTarget.begin(),
|
||
CurInfo.IsDeclareTarget.end());
|
||
MapClause.append(CurInfo.MapClause.begin(), CurInfo.MapClause.end());
|
||
OriginalValue.append(CurInfo.OriginalValue.begin(),
|
||
CurInfo.OriginalValue.end());
|
||
BaseType.append(CurInfo.BaseType.begin(), CurInfo.BaseType.end());
|
||
llvm::OpenMPIRBuilder::MapInfosTy::append(CurInfo);
|
||
}
|
||
};
|
||
} // namespace
|
||
|
||
uint64_t getArrayElementSizeInBits(LLVM::LLVMArrayType arrTy, DataLayout &dl) {
|
||
if (auto nestedArrTy = llvm::dyn_cast_if_present<LLVM::LLVMArrayType>(
|
||
arrTy.getElementType()))
|
||
return getArrayElementSizeInBits(nestedArrTy, dl);
|
||
return dl.getTypeSizeInBits(arrTy.getElementType());
|
||
}
|
||
|
||
// This function calculates the size to be offloaded for a specified type, given
|
||
// its associated map clause (which can contain bounds information which affects
|
||
// the total size), this size is calculated based on the underlying element type
|
||
// e.g. given a 1-D array of ints, we will calculate the size from the integer
|
||
// type * number of elements in the array. This size can be used in other
|
||
// calculations but is ultimately used as an argument to the OpenMP runtimes
|
||
// kernel argument structure which is generated through the combinedInfo data
|
||
// structures.
|
||
// This function is somewhat equivalent to Clang's getExprTypeSize inside of
|
||
// CGOpenMPRuntime.cpp.
|
||
llvm::Value *getSizeInBytes(DataLayout &dl, const mlir::Type &type,
|
||
Operation *clauseOp, llvm::Value *basePointer,
|
||
llvm::Type *baseType, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
if (auto memberClause =
|
||
mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(clauseOp)) {
|
||
// This calculates the size to transfer based on bounds and the underlying
|
||
// element type, provided bounds have been specified (Fortran
|
||
// pointers/allocatables/target and arrays that have sections specified fall
|
||
// into this as well).
|
||
if (!memberClause.getBounds().empty()) {
|
||
llvm::Value *elementCount = builder.getInt64(1);
|
||
for (auto bounds : memberClause.getBounds()) {
|
||
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::MapBoundsOp>(
|
||
bounds.getDefiningOp())) {
|
||
// The below calculation for the size to be mapped calculated from the
|
||
// map.info's bounds is: (elemCount * [UB - LB] + 1), later we
|
||
// multiply by the underlying element types byte size to get the full
|
||
// size to be offloaded based on the bounds
|
||
elementCount = builder.CreateMul(
|
||
elementCount,
|
||
builder.CreateAdd(
|
||
builder.CreateSub(
|
||
moduleTranslation.lookupValue(boundOp.getUpperBound()),
|
||
moduleTranslation.lookupValue(boundOp.getLowerBound())),
|
||
builder.getInt64(1)));
|
||
}
|
||
}
|
||
|
||
// utilising getTypeSizeInBits instead of getTypeSize as getTypeSize gives
|
||
// the size in inconsistent byte or bit format.
|
||
uint64_t underlyingTypeSzInBits = dl.getTypeSizeInBits(type);
|
||
if (auto arrTy = llvm::dyn_cast_if_present<LLVM::LLVMArrayType>(type))
|
||
underlyingTypeSzInBits = getArrayElementSizeInBits(arrTy, dl);
|
||
|
||
// The size in bytes x number of elements, the sizeInBytes stored is
|
||
// the underyling types size, e.g. if ptr<i32>, it'll be the i32's
|
||
// size, so we do some on the fly runtime math to get the size in
|
||
// bytes from the extent (ub - lb) * sizeInBytes. NOTE: This may need
|
||
// some adjustment for members with more complex types.
|
||
return builder.CreateMul(elementCount,
|
||
builder.getInt64(underlyingTypeSzInBits / 8));
|
||
}
|
||
}
|
||
|
||
return builder.getInt64(dl.getTypeSizeInBits(type) / 8);
|
||
}
|
||
|
||
static void collectMapDataFromMapOperands(
|
||
MapInfoData &mapData, SmallVectorImpl<Value> &mapVars,
|
||
LLVM::ModuleTranslation &moduleTranslation, DataLayout &dl,
|
||
llvm::IRBuilderBase &builder, const ArrayRef<Value> &useDevPtrOperands = {},
|
||
const ArrayRef<Value> &useDevAddrOperands = {}) {
|
||
auto checkIsAMember = [](const auto &mapVars, auto mapOp) {
|
||
// Check if this is a member mapping and correctly assign that it is, if
|
||
// it is a member of a larger object.
|
||
// TODO: Need better handling of members, and distinguishing of members
|
||
// that are implicitly allocated on device vs explicitly passed in as
|
||
// arguments.
|
||
// TODO: May require some further additions to support nested record
|
||
// types, i.e. member maps that can have member maps.
|
||
for (Value mapValue : mapVars) {
|
||
auto map = cast<omp::MapInfoOp>(mapValue.getDefiningOp());
|
||
for (auto member : map.getMembers())
|
||
if (member == mapOp)
|
||
return true;
|
||
}
|
||
return false;
|
||
};
|
||
|
||
// Process MapOperands
|
||
for (Value mapValue : mapVars) {
|
||
auto mapOp = cast<omp::MapInfoOp>(mapValue.getDefiningOp());
|
||
Value offloadPtr =
|
||
mapOp.getVarPtrPtr() ? mapOp.getVarPtrPtr() : mapOp.getVarPtr();
|
||
mapData.OriginalValue.push_back(moduleTranslation.lookupValue(offloadPtr));
|
||
mapData.Pointers.push_back(mapData.OriginalValue.back());
|
||
|
||
if (llvm::Value *refPtr =
|
||
getRefPtrIfDeclareTarget(offloadPtr,
|
||
moduleTranslation)) { // declare target
|
||
mapData.IsDeclareTarget.push_back(true);
|
||
mapData.BasePointers.push_back(refPtr);
|
||
} else { // regular mapped variable
|
||
mapData.IsDeclareTarget.push_back(false);
|
||
mapData.BasePointers.push_back(mapData.OriginalValue.back());
|
||
}
|
||
|
||
mapData.BaseType.push_back(
|
||
moduleTranslation.convertType(mapOp.getVarType()));
|
||
mapData.Sizes.push_back(
|
||
getSizeInBytes(dl, mapOp.getVarType(), mapOp, mapData.Pointers.back(),
|
||
mapData.BaseType.back(), builder, moduleTranslation));
|
||
mapData.MapClause.push_back(mapOp.getOperation());
|
||
mapData.Types.push_back(
|
||
llvm::omp::OpenMPOffloadMappingFlags(mapOp.getMapType().value()));
|
||
mapData.Names.push_back(LLVM::createMappingInformation(
|
||
mapOp.getLoc(), *moduleTranslation.getOpenMPBuilder()));
|
||
mapData.DevicePointers.push_back(llvm::OpenMPIRBuilder::DeviceInfoTy::None);
|
||
mapData.IsAMapping.push_back(true);
|
||
mapData.IsAMember.push_back(checkIsAMember(mapVars, mapOp));
|
||
}
|
||
|
||
auto findMapInfo = [&mapData](llvm::Value *val,
|
||
llvm::OpenMPIRBuilder::DeviceInfoTy devInfoTy) {
|
||
unsigned index = 0;
|
||
bool found = false;
|
||
for (llvm::Value *basePtr : mapData.OriginalValue) {
|
||
if (basePtr == val && mapData.IsAMapping[index]) {
|
||
found = true;
|
||
mapData.Types[index] |=
|
||
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM;
|
||
mapData.DevicePointers[index] = devInfoTy;
|
||
}
|
||
index++;
|
||
}
|
||
return found;
|
||
};
|
||
|
||
// Process useDevPtr(Addr)Operands
|
||
auto addDevInfos = [&](const llvm::ArrayRef<Value> &useDevOperands,
|
||
llvm::OpenMPIRBuilder::DeviceInfoTy devInfoTy) {
|
||
for (Value mapValue : useDevOperands) {
|
||
auto mapOp = cast<omp::MapInfoOp>(mapValue.getDefiningOp());
|
||
Value offloadPtr =
|
||
mapOp.getVarPtrPtr() ? mapOp.getVarPtrPtr() : mapOp.getVarPtr();
|
||
llvm::Value *origValue = moduleTranslation.lookupValue(offloadPtr);
|
||
|
||
// Check if map info is already present for this entry.
|
||
if (!findMapInfo(origValue, devInfoTy)) {
|
||
mapData.OriginalValue.push_back(origValue);
|
||
mapData.Pointers.push_back(mapData.OriginalValue.back());
|
||
mapData.IsDeclareTarget.push_back(false);
|
||
mapData.BasePointers.push_back(mapData.OriginalValue.back());
|
||
mapData.BaseType.push_back(
|
||
moduleTranslation.convertType(mapOp.getVarType()));
|
||
mapData.Sizes.push_back(builder.getInt64(0));
|
||
mapData.MapClause.push_back(mapOp.getOperation());
|
||
mapData.Types.push_back(
|
||
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM);
|
||
mapData.Names.push_back(LLVM::createMappingInformation(
|
||
mapOp.getLoc(), *moduleTranslation.getOpenMPBuilder()));
|
||
mapData.DevicePointers.push_back(devInfoTy);
|
||
mapData.IsAMapping.push_back(false);
|
||
mapData.IsAMember.push_back(checkIsAMember(useDevOperands, mapOp));
|
||
}
|
||
}
|
||
};
|
||
|
||
addDevInfos(useDevAddrOperands, llvm::OpenMPIRBuilder::DeviceInfoTy::Address);
|
||
addDevInfos(useDevPtrOperands, llvm::OpenMPIRBuilder::DeviceInfoTy::Pointer);
|
||
}
|
||
|
||
static int getMapDataMemberIdx(MapInfoData &mapData, omp::MapInfoOp memberOp) {
|
||
auto *res = llvm::find(mapData.MapClause, memberOp);
|
||
assert(res != mapData.MapClause.end() &&
|
||
"MapInfoOp for member not found in MapData, cannot return index");
|
||
return std::distance(mapData.MapClause.begin(), res);
|
||
}
|
||
|
||
static omp::MapInfoOp getFirstOrLastMappedMemberPtr(omp::MapInfoOp mapInfo,
|
||
bool first) {
|
||
DenseIntElementsAttr indexAttr = mapInfo.getMembersIndexAttr();
|
||
|
||
// Only 1 member has been mapped, we can return it.
|
||
if (indexAttr.size() == 1)
|
||
if (auto mapOp =
|
||
dyn_cast<omp::MapInfoOp>(mapInfo.getMembers()[0].getDefiningOp()))
|
||
return mapOp;
|
||
|
||
llvm::ArrayRef<int64_t> shape = indexAttr.getShapedType().getShape();
|
||
llvm::SmallVector<size_t> indices(shape[0]);
|
||
std::iota(indices.begin(), indices.end(), 0);
|
||
|
||
llvm::sort(indices.begin(), indices.end(),
|
||
[&](const size_t a, const size_t b) {
|
||
auto indexValues = indexAttr.getValues<int32_t>();
|
||
for (int i = 0; i < shape[1]; ++i) {
|
||
int aIndex = indexValues[a * shape[1] + i];
|
||
int bIndex = indexValues[b * shape[1] + i];
|
||
|
||
if (aIndex == bIndex)
|
||
continue;
|
||
|
||
if (aIndex != -1 && bIndex == -1)
|
||
return false;
|
||
|
||
if (aIndex == -1 && bIndex != -1)
|
||
return true;
|
||
|
||
// A is earlier in the record type layout than B
|
||
if (aIndex < bIndex)
|
||
return first;
|
||
|
||
if (bIndex < aIndex)
|
||
return !first;
|
||
}
|
||
|
||
// Iterated the entire list and couldn't make a decision, all
|
||
// elements were likely the same. Return false, since the sort
|
||
// comparator should return false for equal elements.
|
||
return false;
|
||
});
|
||
|
||
return llvm::cast<omp::MapInfoOp>(
|
||
mapInfo.getMembers()[indices.front()].getDefiningOp());
|
||
}
|
||
|
||
/// This function calculates the array/pointer offset for map data provided
|
||
/// with bounds operations, e.g. when provided something like the following:
|
||
///
|
||
/// Fortran
|
||
/// map(tofrom: array(2:5, 3:2))
|
||
/// or
|
||
/// C++
|
||
/// map(tofrom: array[1:4][2:3])
|
||
/// We must calculate the initial pointer offset to pass across, this function
|
||
/// performs this using bounds.
|
||
///
|
||
/// NOTE: which while specified in row-major order it currently needs to be
|
||
/// flipped for Fortran's column order array allocation and access (as
|
||
/// opposed to C++'s row-major, hence the backwards processing where order is
|
||
/// important). This is likely important to keep in mind for the future when
|
||
/// we incorporate a C++ frontend, both frontends will need to agree on the
|
||
/// ordering of generated bounds operations (one may have to flip them) to
|
||
/// make the below lowering frontend agnostic. The offload size
|
||
/// calcualtion may also have to be adjusted for C++.
|
||
std::vector<llvm::Value *>
|
||
calculateBoundsOffset(LLVM::ModuleTranslation &moduleTranslation,
|
||
llvm::IRBuilderBase &builder, bool isArrayTy,
|
||
OperandRange bounds) {
|
||
std::vector<llvm::Value *> idx;
|
||
// There's no bounds to calculate an offset from, we can safely
|
||
// ignore and return no indices.
|
||
if (bounds.empty())
|
||
return idx;
|
||
|
||
// If we have an array type, then we have its type so can treat it as a
|
||
// normal GEP instruction where the bounds operations are simply indexes
|
||
// into the array. We currently do reverse order of the bounds, which
|
||
// I believe leans more towards Fortran's column-major in memory.
|
||
if (isArrayTy) {
|
||
idx.push_back(builder.getInt64(0));
|
||
for (int i = bounds.size() - 1; i >= 0; --i) {
|
||
if (auto boundOp = dyn_cast_if_present<omp::MapBoundsOp>(
|
||
bounds[i].getDefiningOp())) {
|
||
idx.push_back(moduleTranslation.lookupValue(boundOp.getLowerBound()));
|
||
}
|
||
}
|
||
} else {
|
||
// If we do not have an array type, but we have bounds, then we're dealing
|
||
// with a pointer that's being treated like an array and we have the
|
||
// underlying type e.g. an i32, or f64 etc, e.g. a fortran descriptor base
|
||
// address (pointer pointing to the actual data) so we must caclulate the
|
||
// offset using a single index which the following two loops attempts to
|
||
// compute.
|
||
|
||
// Calculates the size offset we need to make per row e.g. first row or
|
||
// column only needs to be offset by one, but the next would have to be
|
||
// the previous row/column offset multiplied by the extent of current row.
|
||
//
|
||
// For example ([1][10][100]):
|
||
//
|
||
// - First row/column we move by 1 for each index increment
|
||
// - Second row/column we move by 1 (first row/column) * 10 (extent/size of
|
||
// current) for 10 for each index increment
|
||
// - Third row/column we would move by 10 (second row/column) *
|
||
// (extent/size of current) 100 for 1000 for each index increment
|
||
std::vector<llvm::Value *> dimensionIndexSizeOffset{builder.getInt64(1)};
|
||
for (size_t i = 1; i < bounds.size(); ++i) {
|
||
if (auto boundOp = dyn_cast_if_present<omp::MapBoundsOp>(
|
||
bounds[i].getDefiningOp())) {
|
||
dimensionIndexSizeOffset.push_back(builder.CreateMul(
|
||
moduleTranslation.lookupValue(boundOp.getExtent()),
|
||
dimensionIndexSizeOffset[i - 1]));
|
||
}
|
||
}
|
||
|
||
// Now that we have calculated how much we move by per index, we must
|
||
// multiply each lower bound offset in indexes by the size offset we
|
||
// have calculated in the previous and accumulate the results to get
|
||
// our final resulting offset.
|
||
for (int i = bounds.size() - 1; i >= 0; --i) {
|
||
if (auto boundOp = dyn_cast_if_present<omp::MapBoundsOp>(
|
||
bounds[i].getDefiningOp())) {
|
||
if (idx.empty())
|
||
idx.emplace_back(builder.CreateMul(
|
||
moduleTranslation.lookupValue(boundOp.getLowerBound()),
|
||
dimensionIndexSizeOffset[i]));
|
||
else
|
||
idx.back() = builder.CreateAdd(
|
||
idx.back(), builder.CreateMul(moduleTranslation.lookupValue(
|
||
boundOp.getLowerBound()),
|
||
dimensionIndexSizeOffset[i]));
|
||
}
|
||
}
|
||
}
|
||
|
||
return idx;
|
||
}
|
||
|
||
// This creates two insertions into the MapInfosTy data structure for the
|
||
// "parent" of a set of members, (usually a container e.g.
|
||
// class/structure/derived type) when subsequent members have also been
|
||
// explicitly mapped on the same map clause. Certain types, such as Fortran
|
||
// descriptors are mapped like this as well, however, the members are
|
||
// implicit as far as a user is concerned, but we must explicitly map them
|
||
// internally.
|
||
//
|
||
// This function also returns the memberOfFlag for this particular parent,
|
||
// which is utilised in subsequent member mappings (by modifying there map type
|
||
// with it) to indicate that a member is part of this parent and should be
|
||
// treated by the runtime as such. Important to achieve the correct mapping.
|
||
//
|
||
// This function borrows a lot from Clang's emitCombinedEntry function
|
||
// inside of CGOpenMPRuntime.cpp
|
||
static llvm::omp::OpenMPOffloadMappingFlags mapParentWithMembers(
|
||
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
|
||
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl,
|
||
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo, MapInfoData &mapData,
|
||
uint64_t mapDataIndex, bool isTargetParams) {
|
||
// Map the first segment of our structure
|
||
combinedInfo.Types.emplace_back(
|
||
isTargetParams
|
||
? llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM
|
||
: llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_NONE);
|
||
combinedInfo.DevicePointers.emplace_back(
|
||
mapData.DevicePointers[mapDataIndex]);
|
||
combinedInfo.Names.emplace_back(LLVM::createMappingInformation(
|
||
mapData.MapClause[mapDataIndex]->getLoc(), ompBuilder));
|
||
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
|
||
|
||
// Calculate size of the parent object being mapped based on the
|
||
// addresses at runtime, highAddr - lowAddr = size. This of course
|
||
// doesn't factor in allocated data like pointers, hence the further
|
||
// processing of members specified by users, or in the case of
|
||
// Fortran pointers and allocatables, the mapping of the pointed to
|
||
// data by the descriptor (which itself, is a structure containing
|
||
// runtime information on the dynamically allocated data).
|
||
auto parentClause =
|
||
llvm::cast<omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
|
||
|
||
llvm::Value *lowAddr, *highAddr;
|
||
if (!parentClause.getPartialMap()) {
|
||
lowAddr = builder.CreatePointerCast(mapData.Pointers[mapDataIndex],
|
||
builder.getPtrTy());
|
||
highAddr = builder.CreatePointerCast(
|
||
builder.CreateConstGEP1_32(mapData.BaseType[mapDataIndex],
|
||
mapData.Pointers[mapDataIndex], 1),
|
||
builder.getPtrTy());
|
||
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIndex]);
|
||
} else {
|
||
auto mapOp = dyn_cast<omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
|
||
int firstMemberIdx = getMapDataMemberIdx(
|
||
mapData, getFirstOrLastMappedMemberPtr(mapOp, true));
|
||
lowAddr = builder.CreatePointerCast(mapData.Pointers[firstMemberIdx],
|
||
builder.getPtrTy());
|
||
int lastMemberIdx = getMapDataMemberIdx(
|
||
mapData, getFirstOrLastMappedMemberPtr(mapOp, false));
|
||
highAddr = builder.CreatePointerCast(
|
||
builder.CreateGEP(mapData.BaseType[lastMemberIdx],
|
||
mapData.Pointers[lastMemberIdx], builder.getInt64(1)),
|
||
builder.getPtrTy());
|
||
combinedInfo.Pointers.emplace_back(mapData.Pointers[firstMemberIdx]);
|
||
}
|
||
|
||
llvm::Value *size = builder.CreateIntCast(
|
||
builder.CreatePtrDiff(builder.getInt8Ty(), highAddr, lowAddr),
|
||
builder.getInt64Ty(),
|
||
/*isSigned=*/false);
|
||
combinedInfo.Sizes.push_back(size);
|
||
|
||
// TODO: This will need to be expanded to include the whole host of logic for
|
||
// the map flags that Clang currently supports (e.g. it should take the map
|
||
// flag of the parent map flag, remove the OMP_MAP_TARGET_PARAM and do some
|
||
// further case specific flag modifications). For the moment, it handles what
|
||
// we support as expected.
|
||
llvm::omp::OpenMPOffloadMappingFlags mapFlag =
|
||
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TO;
|
||
|
||
llvm::omp::OpenMPOffloadMappingFlags memberOfFlag =
|
||
ompBuilder.getMemberOfFlag(combinedInfo.BasePointers.size() - 1);
|
||
ompBuilder.setCorrectMemberOfFlag(mapFlag, memberOfFlag);
|
||
|
||
// This creates the initial MEMBER_OF mapping that consists of
|
||
// the parent/top level container (same as above effectively, except
|
||
// with a fixed initial compile time size and separate maptype which
|
||
// indicates the true mape type (tofrom etc.). This parent mapping is
|
||
// only relevant if the structure in its totality is being mapped,
|
||
// otherwise the above suffices.
|
||
if (!parentClause.getPartialMap()) {
|
||
combinedInfo.Types.emplace_back(mapFlag);
|
||
combinedInfo.DevicePointers.emplace_back(
|
||
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
|
||
combinedInfo.Names.emplace_back(LLVM::createMappingInformation(
|
||
mapData.MapClause[mapDataIndex]->getLoc(), ompBuilder));
|
||
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
|
||
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIndex]);
|
||
combinedInfo.Sizes.emplace_back(mapData.Sizes[mapDataIndex]);
|
||
}
|
||
return memberOfFlag;
|
||
}
|
||
|
||
// The intent is to verify if the mapped data being passed is a
|
||
// pointer -> pointee that requires special handling in certain cases,
|
||
// e.g. applying the OMP_MAP_PTR_AND_OBJ map type.
|
||
//
|
||
// There may be a better way to verify this, but unfortunately with
|
||
// opaque pointers we lose the ability to easily check if something is
|
||
// a pointer whilst maintaining access to the underlying type.
|
||
static bool checkIfPointerMap(omp::MapInfoOp mapOp) {
|
||
// If we have a varPtrPtr field assigned then the underlying type is a pointer
|
||
if (mapOp.getVarPtrPtr())
|
||
return true;
|
||
|
||
// If the map data is declare target with a link clause, then it's represented
|
||
// as a pointer when we lower it to LLVM-IR even if at the MLIR level it has
|
||
// no relation to pointers.
|
||
if (isDeclareTargetLink(mapOp.getVarPtr()))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
// This function is intended to add explicit mappings of members
|
||
static void processMapMembersWithParent(
|
||
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
|
||
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl,
|
||
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo, MapInfoData &mapData,
|
||
uint64_t mapDataIndex, llvm::omp::OpenMPOffloadMappingFlags memberOfFlag) {
|
||
|
||
auto parentClause =
|
||
llvm::cast<omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
|
||
|
||
for (auto mappedMembers : parentClause.getMembers()) {
|
||
auto memberClause =
|
||
llvm::cast<omp::MapInfoOp>(mappedMembers.getDefiningOp());
|
||
int memberDataIdx = getMapDataMemberIdx(mapData, memberClause);
|
||
|
||
assert(memberDataIdx >= 0 && "could not find mapped member of structure");
|
||
|
||
// Same MemberOfFlag to indicate its link with parent and other members
|
||
// of.
|
||
auto mapFlag =
|
||
llvm::omp::OpenMPOffloadMappingFlags(memberClause.getMapType().value());
|
||
mapFlag &= ~llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
|
||
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
|
||
ompBuilder.setCorrectMemberOfFlag(mapFlag, memberOfFlag);
|
||
if (checkIfPointerMap(memberClause))
|
||
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
|
||
|
||
combinedInfo.Types.emplace_back(mapFlag);
|
||
combinedInfo.DevicePointers.emplace_back(
|
||
mapData.DevicePointers[memberDataIdx]);
|
||
combinedInfo.Names.emplace_back(
|
||
LLVM::createMappingInformation(memberClause.getLoc(), ompBuilder));
|
||
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
|
||
combinedInfo.Pointers.emplace_back(mapData.Pointers[memberDataIdx]);
|
||
combinedInfo.Sizes.emplace_back(mapData.Sizes[memberDataIdx]);
|
||
}
|
||
}
|
||
|
||
static void
|
||
processIndividualMap(MapInfoData &mapData, size_t mapDataIdx,
|
||
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo,
|
||
bool isTargetParams, int mapDataParentIdx = -1) {
|
||
// Declare Target Mappings are excluded from being marked as
|
||
// OMP_MAP_TARGET_PARAM as they are not passed as parameters, they're
|
||
// marked with OMP_MAP_PTR_AND_OBJ instead.
|
||
auto mapFlag = mapData.Types[mapDataIdx];
|
||
auto mapInfoOp = llvm::cast<omp::MapInfoOp>(mapData.MapClause[mapDataIdx]);
|
||
|
||
bool isPtrTy = checkIfPointerMap(mapInfoOp);
|
||
if (isPtrTy)
|
||
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
|
||
|
||
if (isTargetParams && !mapData.IsDeclareTarget[mapDataIdx])
|
||
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
|
||
|
||
if (mapInfoOp.getMapCaptureType().value() ==
|
||
omp::VariableCaptureKind::ByCopy &&
|
||
!isPtrTy)
|
||
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_LITERAL;
|
||
|
||
// if we're provided a mapDataParentIdx, then the data being mapped is
|
||
// part of a larger object (in a parent <-> member mapping) and in this
|
||
// case our BasePointer should be the parent.
|
||
if (mapDataParentIdx >= 0)
|
||
combinedInfo.BasePointers.emplace_back(
|
||
mapData.BasePointers[mapDataParentIdx]);
|
||
else
|
||
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIdx]);
|
||
|
||
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIdx]);
|
||
combinedInfo.DevicePointers.emplace_back(mapData.DevicePointers[mapDataIdx]);
|
||
combinedInfo.Names.emplace_back(mapData.Names[mapDataIdx]);
|
||
combinedInfo.Types.emplace_back(mapFlag);
|
||
combinedInfo.Sizes.emplace_back(mapData.Sizes[mapDataIdx]);
|
||
}
|
||
|
||
static void processMapWithMembersOf(
|
||
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
|
||
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl,
|
||
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo, MapInfoData &mapData,
|
||
uint64_t mapDataIndex, bool isTargetParams) {
|
||
auto parentClause =
|
||
llvm::cast<omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
|
||
|
||
// If we have a partial map (no parent referenced in the map clauses of the
|
||
// directive, only members) and only a single member, we do not need to bind
|
||
// the map of the member to the parent, we can pass the member separately.
|
||
if (parentClause.getMembers().size() == 1 && parentClause.getPartialMap()) {
|
||
auto memberClause = llvm::cast<omp::MapInfoOp>(
|
||
parentClause.getMembers()[0].getDefiningOp());
|
||
int memberDataIdx = getMapDataMemberIdx(mapData, memberClause);
|
||
// Note: Clang treats arrays with explicit bounds that fall into this
|
||
// category as a parent with map case, however, it seems this isn't a
|
||
// requirement, and processing them as an individual map is fine. So,
|
||
// we will handle them as individual maps for the moment, as it's
|
||
// difficult for us to check this as we always require bounds to be
|
||
// specified currently and it's also marginally more optimal (single
|
||
// map rather than two). The difference may come from the fact that
|
||
// Clang maps array without bounds as pointers (which we do not
|
||
// currently do), whereas we treat them as arrays in all cases
|
||
// currently.
|
||
processIndividualMap(mapData, memberDataIdx, combinedInfo, isTargetParams,
|
||
mapDataIndex);
|
||
return;
|
||
}
|
||
|
||
llvm::omp::OpenMPOffloadMappingFlags memberOfParentFlag =
|
||
mapParentWithMembers(moduleTranslation, builder, ompBuilder, dl,
|
||
combinedInfo, mapData, mapDataIndex, isTargetParams);
|
||
processMapMembersWithParent(moduleTranslation, builder, ompBuilder, dl,
|
||
combinedInfo, mapData, mapDataIndex,
|
||
memberOfParentFlag);
|
||
}
|
||
|
||
// This is a variation on Clang's GenerateOpenMPCapturedVars, which
|
||
// generates different operation (e.g. load/store) combinations for
|
||
// arguments to the kernel, based on map capture kinds which are then
|
||
// utilised in the combinedInfo in place of the original Map value.
|
||
static void
|
||
createAlteredByCaptureMap(MapInfoData &mapData,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
llvm::IRBuilderBase &builder) {
|
||
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
|
||
// if it's declare target, skip it, it's handled separately.
|
||
if (!mapData.IsDeclareTarget[i]) {
|
||
auto mapOp = cast<omp::MapInfoOp>(mapData.MapClause[i]);
|
||
omp::VariableCaptureKind captureKind =
|
||
mapOp.getMapCaptureType().value_or(omp::VariableCaptureKind::ByRef);
|
||
bool isPtrTy = checkIfPointerMap(mapOp);
|
||
|
||
// Currently handles array sectioning lowerbound case, but more
|
||
// logic may be required in the future. Clang invokes EmitLValue,
|
||
// which has specialised logic for special Clang types such as user
|
||
// defines, so it is possible we will have to extend this for
|
||
// structures or other complex types. As the general idea is that this
|
||
// function mimics some of the logic from Clang that we require for
|
||
// kernel argument passing from host -> device.
|
||
switch (captureKind) {
|
||
case omp::VariableCaptureKind::ByRef: {
|
||
llvm::Value *newV = mapData.Pointers[i];
|
||
std::vector<llvm::Value *> offsetIdx = calculateBoundsOffset(
|
||
moduleTranslation, builder, mapData.BaseType[i]->isArrayTy(),
|
||
mapOp.getBounds());
|
||
if (isPtrTy)
|
||
newV = builder.CreateLoad(builder.getPtrTy(), newV);
|
||
|
||
if (!offsetIdx.empty())
|
||
newV = builder.CreateInBoundsGEP(mapData.BaseType[i], newV, offsetIdx,
|
||
"array_offset");
|
||
mapData.Pointers[i] = newV;
|
||
} break;
|
||
case omp::VariableCaptureKind::ByCopy: {
|
||
llvm::Type *type = mapData.BaseType[i];
|
||
llvm::Value *newV;
|
||
if (mapData.Pointers[i]->getType()->isPointerTy())
|
||
newV = builder.CreateLoad(type, mapData.Pointers[i]);
|
||
else
|
||
newV = mapData.Pointers[i];
|
||
|
||
if (!isPtrTy) {
|
||
auto curInsert = builder.saveIP();
|
||
builder.restoreIP(findAllocaInsertPoint(builder, moduleTranslation));
|
||
auto *memTempAlloc =
|
||
builder.CreateAlloca(builder.getPtrTy(), nullptr, ".casted");
|
||
builder.restoreIP(curInsert);
|
||
|
||
builder.CreateStore(newV, memTempAlloc);
|
||
newV = builder.CreateLoad(builder.getPtrTy(), memTempAlloc);
|
||
}
|
||
|
||
mapData.Pointers[i] = newV;
|
||
mapData.BasePointers[i] = newV;
|
||
} break;
|
||
case omp::VariableCaptureKind::This:
|
||
case omp::VariableCaptureKind::VLAType:
|
||
mapData.MapClause[i]->emitOpError("Unhandled capture kind");
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Generate all map related information and fill the combinedInfo.
|
||
static void genMapInfos(llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
DataLayout &dl,
|
||
llvm::OpenMPIRBuilder::MapInfosTy &combinedInfo,
|
||
MapInfoData &mapData, bool isTargetParams = false) {
|
||
// We wish to modify some of the methods in which arguments are
|
||
// passed based on their capture type by the target region, this can
|
||
// involve generating new loads and stores, which changes the
|
||
// MLIR value to LLVM value mapping, however, we only wish to do this
|
||
// locally for the current function/target and also avoid altering
|
||
// ModuleTranslation, so we remap the base pointer or pointer stored
|
||
// in the map infos corresponding MapInfoData, which is later accessed
|
||
// by genMapInfos and createTarget to help generate the kernel and
|
||
// kernel arg structure. It primarily becomes relevant in cases like
|
||
// bycopy, or byref range'd arrays. In the default case, we simply
|
||
// pass thee pointer byref as both basePointer and pointer.
|
||
if (!moduleTranslation.getOpenMPBuilder()->Config.isTargetDevice())
|
||
createAlteredByCaptureMap(mapData, moduleTranslation, builder);
|
||
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
// We operate under the assumption that all vectors that are
|
||
// required in MapInfoData are of equal lengths (either filled with
|
||
// default constructed data or appropiate information) so we can
|
||
// utilise the size from any component of MapInfoData, if we can't
|
||
// something is missing from the initial MapInfoData construction.
|
||
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
|
||
// NOTE/TODO: We currently do not support arbitrary depth record
|
||
// type mapping.
|
||
if (mapData.IsAMember[i])
|
||
continue;
|
||
|
||
auto mapInfoOp = dyn_cast<omp::MapInfoOp>(mapData.MapClause[i]);
|
||
if (!mapInfoOp.getMembers().empty()) {
|
||
processMapWithMembersOf(moduleTranslation, builder, *ompBuilder, dl,
|
||
combinedInfo, mapData, i, isTargetParams);
|
||
continue;
|
||
}
|
||
|
||
processIndividualMap(mapData, i, combinedInfo, isTargetParams);
|
||
}
|
||
}
|
||
|
||
static LogicalResult
|
||
convertOmpTargetData(Operation *op, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
llvm::Value *ifCond = nullptr;
|
||
int64_t deviceID = llvm::omp::OMP_DEVICEID_UNDEF;
|
||
SmallVector<Value> mapVars;
|
||
SmallVector<Value> useDevicePtrVars;
|
||
SmallVector<Value> useDeviceAddrVars;
|
||
llvm::omp::RuntimeFunction RTLFn;
|
||
DataLayout DL = DataLayout(op->getParentOfType<ModuleOp>());
|
||
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
LogicalResult result =
|
||
llvm::TypeSwitch<Operation *, LogicalResult>(op)
|
||
.Case([&](omp::TargetDataOp dataOp) {
|
||
if (auto ifVar = dataOp.getIfExpr())
|
||
ifCond = moduleTranslation.lookupValue(ifVar);
|
||
|
||
if (auto devId = dataOp.getDevice())
|
||
if (auto constOp =
|
||
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
|
||
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
|
||
deviceID = intAttr.getInt();
|
||
|
||
mapVars = dataOp.getMapVars();
|
||
useDevicePtrVars = dataOp.getUseDevicePtrVars();
|
||
useDeviceAddrVars = dataOp.getUseDeviceAddrVars();
|
||
return success();
|
||
})
|
||
.Case([&](omp::TargetEnterDataOp enterDataOp) {
|
||
if (enterDataOp.getNowait())
|
||
return (LogicalResult)(enterDataOp.emitError(
|
||
"`nowait` is not supported yet"));
|
||
|
||
if (auto ifVar = enterDataOp.getIfExpr())
|
||
ifCond = moduleTranslation.lookupValue(ifVar);
|
||
|
||
if (auto devId = enterDataOp.getDevice())
|
||
if (auto constOp =
|
||
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
|
||
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
|
||
deviceID = intAttr.getInt();
|
||
RTLFn = llvm::omp::OMPRTL___tgt_target_data_begin_mapper;
|
||
mapVars = enterDataOp.getMapVars();
|
||
return success();
|
||
})
|
||
.Case([&](omp::TargetExitDataOp exitDataOp) {
|
||
if (exitDataOp.getNowait())
|
||
return (LogicalResult)(exitDataOp.emitError(
|
||
"`nowait` is not supported yet"));
|
||
|
||
if (auto ifVar = exitDataOp.getIfExpr())
|
||
ifCond = moduleTranslation.lookupValue(ifVar);
|
||
|
||
if (auto devId = exitDataOp.getDevice())
|
||
if (auto constOp =
|
||
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
|
||
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
|
||
deviceID = intAttr.getInt();
|
||
|
||
RTLFn = llvm::omp::OMPRTL___tgt_target_data_end_mapper;
|
||
mapVars = exitDataOp.getMapVars();
|
||
return success();
|
||
})
|
||
.Case([&](omp::TargetUpdateOp updateDataOp) {
|
||
if (updateDataOp.getNowait())
|
||
return (LogicalResult)(updateDataOp.emitError(
|
||
"`nowait` is not supported yet"));
|
||
|
||
if (auto ifVar = updateDataOp.getIfExpr())
|
||
ifCond = moduleTranslation.lookupValue(ifVar);
|
||
|
||
if (auto devId = updateDataOp.getDevice())
|
||
if (auto constOp =
|
||
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
|
||
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
|
||
deviceID = intAttr.getInt();
|
||
|
||
RTLFn = llvm::omp::OMPRTL___tgt_target_data_update_mapper;
|
||
mapVars = updateDataOp.getMapVars();
|
||
return success();
|
||
})
|
||
.Default([&](Operation *op) {
|
||
return op->emitError("unsupported OpenMP operation: ")
|
||
<< op->getName();
|
||
});
|
||
|
||
if (failed(result))
|
||
return failure();
|
||
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
|
||
MapInfoData mapData;
|
||
collectMapDataFromMapOperands(mapData, mapVars, moduleTranslation, DL,
|
||
builder, useDevicePtrVars, useDeviceAddrVars);
|
||
|
||
// Fill up the arrays with all the mapped variables.
|
||
llvm::OpenMPIRBuilder::MapInfosTy combinedInfo;
|
||
auto genMapInfoCB =
|
||
[&](InsertPointTy codeGenIP) -> llvm::OpenMPIRBuilder::MapInfosTy & {
|
||
builder.restoreIP(codeGenIP);
|
||
genMapInfos(builder, moduleTranslation, DL, combinedInfo, mapData);
|
||
return combinedInfo;
|
||
};
|
||
|
||
// Define a lambda to apply mappings between use_device_addr and
|
||
// use_device_ptr base pointers, and their associated block arguments.
|
||
auto mapUseDevice =
|
||
[&moduleTranslation](
|
||
llvm::OpenMPIRBuilder::DeviceInfoTy type,
|
||
llvm::ArrayRef<BlockArgument> blockArgs,
|
||
llvm::OpenMPIRBuilder::MapValuesArrayTy &basePointers,
|
||
llvm::OpenMPIRBuilder::MapDeviceInfoArrayTy &devicePointers,
|
||
llvm::function_ref<llvm::Value *(llvm::Value *)> mapper = nullptr) {
|
||
// Get a range to iterate over `basePointers` after filtering based on
|
||
// `devicePointers` and the given device info type.
|
||
auto basePtrRange = llvm::map_range(
|
||
llvm::make_filter_range(
|
||
llvm::zip_equal(basePointers, devicePointers),
|
||
[type](auto x) { return std::get<1>(x) == type; }),
|
||
[](auto x) { return std::get<0>(x); });
|
||
|
||
// Map block arguments to the corresponding processed base pointer. If
|
||
// a mapper is not specified, map the block argument to the base pointer
|
||
// directly.
|
||
for (auto [arg, basePointer] : llvm::zip_equal(blockArgs, basePtrRange))
|
||
moduleTranslation.mapValue(arg, mapper ? mapper(basePointer)
|
||
: basePointer);
|
||
};
|
||
|
||
llvm::OpenMPIRBuilder::TargetDataInfo info(/*RequiresDevicePointerInfo=*/true,
|
||
/*SeparateBeginEndCalls=*/true);
|
||
|
||
using BodyGenTy = llvm::OpenMPIRBuilder::BodyGenTy;
|
||
LogicalResult bodyGenStatus = success();
|
||
auto bodyGenCB = [&](InsertPointTy codeGenIP, BodyGenTy bodyGenType) {
|
||
assert(isa<omp::TargetDataOp>(op) &&
|
||
"BodyGen requested for non TargetDataOp");
|
||
auto blockArgIface = cast<omp::BlockArgOpenMPOpInterface>(op);
|
||
Region ®ion = cast<omp::TargetDataOp>(op).getRegion();
|
||
switch (bodyGenType) {
|
||
case BodyGenTy::Priv:
|
||
// Check if any device ptr/addr info is available
|
||
if (!info.DevicePtrInfoMap.empty()) {
|
||
builder.restoreIP(codeGenIP);
|
||
|
||
mapUseDevice(llvm::OpenMPIRBuilder::DeviceInfoTy::Address,
|
||
blockArgIface.getUseDeviceAddrBlockArgs(),
|
||
combinedInfo.BasePointers, combinedInfo.DevicePointers,
|
||
[&](llvm::Value *basePointer) -> llvm::Value * {
|
||
return builder.CreateLoad(
|
||
builder.getPtrTy(),
|
||
info.DevicePtrInfoMap[basePointer].second);
|
||
});
|
||
mapUseDevice(llvm::OpenMPIRBuilder::DeviceInfoTy::Pointer,
|
||
blockArgIface.getUseDevicePtrBlockArgs(),
|
||
combinedInfo.BasePointers, combinedInfo.DevicePointers,
|
||
[&](llvm::Value *basePointer) {
|
||
return info.DevicePtrInfoMap[basePointer].second;
|
||
});
|
||
|
||
bodyGenStatus = inlineConvertOmpRegions(region, "omp.data.region",
|
||
builder, moduleTranslation);
|
||
}
|
||
break;
|
||
case BodyGenTy::DupNoPriv:
|
||
break;
|
||
case BodyGenTy::NoPriv:
|
||
// If device info is available then region has already been generated
|
||
if (info.DevicePtrInfoMap.empty()) {
|
||
builder.restoreIP(codeGenIP);
|
||
// For device pass, if use_device_ptr(addr) mappings were present,
|
||
// we need to link them here before codegen.
|
||
if (ompBuilder->Config.IsTargetDevice.value_or(false)) {
|
||
mapUseDevice(llvm::OpenMPIRBuilder::DeviceInfoTy::Address,
|
||
blockArgIface.getUseDeviceAddrBlockArgs(),
|
||
mapData.BasePointers, mapData.DevicePointers);
|
||
mapUseDevice(llvm::OpenMPIRBuilder::DeviceInfoTy::Pointer,
|
||
blockArgIface.getUseDevicePtrBlockArgs(),
|
||
mapData.BasePointers, mapData.DevicePointers);
|
||
}
|
||
|
||
bodyGenStatus = inlineConvertOmpRegions(region, "omp.data.region",
|
||
builder, moduleTranslation);
|
||
}
|
||
break;
|
||
}
|
||
return builder.saveIP();
|
||
};
|
||
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
|
||
findAllocaInsertPoint(builder, moduleTranslation);
|
||
if (isa<omp::TargetDataOp>(op)) {
|
||
builder.restoreIP(ompBuilder->createTargetData(
|
||
ompLoc, allocaIP, builder.saveIP(), builder.getInt64(deviceID), ifCond,
|
||
info, genMapInfoCB, nullptr, bodyGenCB));
|
||
} else {
|
||
builder.restoreIP(ompBuilder->createTargetData(
|
||
ompLoc, allocaIP, builder.saveIP(), builder.getInt64(deviceID), ifCond,
|
||
info, genMapInfoCB, &RTLFn));
|
||
}
|
||
|
||
return bodyGenStatus;
|
||
}
|
||
|
||
/// Lowers the FlagsAttr which is applied to the module on the device
|
||
/// pass when offloading, this attribute contains OpenMP RTL globals that can
|
||
/// be passed as flags to the frontend, otherwise they are set to default
|
||
LogicalResult convertFlagsAttr(Operation *op, mlir::omp::FlagsAttr attribute,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
if (!cast<mlir::ModuleOp>(op))
|
||
return failure();
|
||
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
ompBuilder->M.addModuleFlag(llvm::Module::Max, "openmp-device",
|
||
attribute.getOpenmpDeviceVersion());
|
||
|
||
if (attribute.getNoGpuLib())
|
||
return success();
|
||
|
||
ompBuilder->createGlobalFlag(
|
||
attribute.getDebugKind() /*LangOpts().OpenMPTargetDebug*/,
|
||
"__omp_rtl_debug_kind");
|
||
ompBuilder->createGlobalFlag(
|
||
attribute
|
||
.getAssumeTeamsOversubscription() /*LangOpts().OpenMPTeamSubscription*/
|
||
,
|
||
"__omp_rtl_assume_teams_oversubscription");
|
||
ompBuilder->createGlobalFlag(
|
||
attribute
|
||
.getAssumeThreadsOversubscription() /*LangOpts().OpenMPThreadSubscription*/
|
||
,
|
||
"__omp_rtl_assume_threads_oversubscription");
|
||
ompBuilder->createGlobalFlag(
|
||
attribute.getAssumeNoThreadState() /*LangOpts().OpenMPNoThreadState*/,
|
||
"__omp_rtl_assume_no_thread_state");
|
||
ompBuilder->createGlobalFlag(
|
||
attribute
|
||
.getAssumeNoNestedParallelism() /*LangOpts().OpenMPNoNestedParallelism*/
|
||
,
|
||
"__omp_rtl_assume_no_nested_parallelism");
|
||
return success();
|
||
}
|
||
|
||
static bool getTargetEntryUniqueInfo(llvm::TargetRegionEntryInfo &targetInfo,
|
||
omp::TargetOp targetOp,
|
||
llvm::StringRef parentName = "") {
|
||
auto fileLoc = targetOp.getLoc()->findInstanceOf<FileLineColLoc>();
|
||
|
||
assert(fileLoc && "No file found from location");
|
||
StringRef fileName = fileLoc.getFilename().getValue();
|
||
|
||
llvm::sys::fs::UniqueID id;
|
||
if (auto ec = llvm::sys::fs::getUniqueID(fileName, id)) {
|
||
targetOp.emitError("Unable to get unique ID for file");
|
||
return false;
|
||
}
|
||
|
||
uint64_t line = fileLoc.getLine();
|
||
targetInfo = llvm::TargetRegionEntryInfo(parentName, id.getDevice(),
|
||
id.getFile(), line);
|
||
return true;
|
||
}
|
||
|
||
static bool targetOpSupported(Operation &opInst) {
|
||
auto targetOp = cast<omp::TargetOp>(opInst);
|
||
if (targetOp.getIfExpr()) {
|
||
opInst.emitError("If clause not yet supported");
|
||
return false;
|
||
}
|
||
|
||
if (targetOp.getDevice()) {
|
||
opInst.emitError("Device clause not yet supported");
|
||
return false;
|
||
}
|
||
|
||
if (targetOp.getThreadLimit()) {
|
||
opInst.emitError("Thread limit clause not yet supported");
|
||
return false;
|
||
}
|
||
|
||
if (!targetOp.getAllocateVars().empty() ||
|
||
!targetOp.getAllocatorVars().empty()) {
|
||
opInst.emitError("Allocate clause not yet supported");
|
||
return false;
|
||
}
|
||
|
||
if (!targetOp.getInReductionVars().empty() ||
|
||
targetOp.getInReductionByref() || targetOp.getInReductionSyms()) {
|
||
opInst.emitError("In reduction clause not yet supported");
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static void
|
||
handleDeclareTargetMapVar(MapInfoData &mapData,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
llvm::IRBuilderBase &builder, llvm::Function *func) {
|
||
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
|
||
// In the case of declare target mapped variables, the basePointer is
|
||
// the reference pointer generated by the convertDeclareTargetAttr
|
||
// method. Whereas the kernelValue is the original variable, so for
|
||
// the device we must replace all uses of this original global variable
|
||
// (stored in kernelValue) with the reference pointer (stored in
|
||
// basePointer for declare target mapped variables), as for device the
|
||
// data is mapped into this reference pointer and should be loaded
|
||
// from it, the original variable is discarded. On host both exist and
|
||
// metadata is generated (elsewhere in the convertDeclareTargetAttr)
|
||
// function to link the two variables in the runtime and then both the
|
||
// reference pointer and the pointer are assigned in the kernel argument
|
||
// structure for the host.
|
||
if (mapData.IsDeclareTarget[i]) {
|
||
// If the original map value is a constant, then we have to make sure all
|
||
// of it's uses within the current kernel/function that we are going to
|
||
// rewrite are converted to instructions, as we will be altering the old
|
||
// use (OriginalValue) from a constant to an instruction, which will be
|
||
// illegal and ICE the compiler if the user is a constant expression of
|
||
// some kind e.g. a constant GEP.
|
||
if (auto *constant = dyn_cast<llvm::Constant>(mapData.OriginalValue[i]))
|
||
convertUsersOfConstantsToInstructions(constant, func, false);
|
||
|
||
// The users iterator will get invalidated if we modify an element,
|
||
// so we populate this vector of uses to alter each user on an
|
||
// individual basis to emit its own load (rather than one load for
|
||
// all).
|
||
llvm::SmallVector<llvm::User *> userVec;
|
||
for (llvm::User *user : mapData.OriginalValue[i]->users())
|
||
userVec.push_back(user);
|
||
|
||
for (llvm::User *user : userVec) {
|
||
if (auto *insn = dyn_cast<llvm::Instruction>(user)) {
|
||
if (insn->getFunction() == func) {
|
||
auto *load = builder.CreateLoad(mapData.BasePointers[i]->getType(),
|
||
mapData.BasePointers[i]);
|
||
load->moveBefore(insn);
|
||
user->replaceUsesOfWith(mapData.OriginalValue[i], load);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// The createDeviceArgumentAccessor function generates
|
||
// instructions for retrieving (acessing) kernel
|
||
// arguments inside of the device kernel for use by
|
||
// the kernel. This enables different semantics such as
|
||
// the creation of temporary copies of data allowing
|
||
// semantics like read-only/no host write back kernel
|
||
// arguments.
|
||
//
|
||
// This currently implements a very light version of Clang's
|
||
// EmitParmDecl's handling of direct argument handling as well
|
||
// as a portion of the argument access generation based on
|
||
// capture types found at the end of emitOutlinedFunctionPrologue
|
||
// in Clang. The indirect path handling of EmitParmDecl's may be
|
||
// required for future work, but a direct 1-to-1 copy doesn't seem
|
||
// possible as the logic is rather scattered throughout Clang's
|
||
// lowering and perhaps we wish to deviate slightly.
|
||
//
|
||
// \param mapData - A container containing vectors of information
|
||
// corresponding to the input argument, which should have a
|
||
// corresponding entry in the MapInfoData containers
|
||
// OrigialValue's.
|
||
// \param arg - This is the generated kernel function argument that
|
||
// corresponds to the passed in input argument. We generated different
|
||
// accesses of this Argument, based on capture type and other Input
|
||
// related information.
|
||
// \param input - This is the host side value that will be passed to
|
||
// the kernel i.e. the kernel input, we rewrite all uses of this within
|
||
// the kernel (as we generate the kernel body based on the target's region
|
||
// which maintians references to the original input) to the retVal argument
|
||
// apon exit of this function inside of the OMPIRBuilder. This interlinks
|
||
// the kernel argument to future uses of it in the function providing
|
||
// appropriate "glue" instructions inbetween.
|
||
// \param retVal - This is the value that all uses of input inside of the
|
||
// kernel will be re-written to, the goal of this function is to generate
|
||
// an appropriate location for the kernel argument to be accessed from,
|
||
// e.g. ByRef will result in a temporary allocation location and then
|
||
// a store of the kernel argument into this allocated memory which
|
||
// will then be loaded from, ByCopy will use the allocated memory
|
||
// directly.
|
||
static llvm::IRBuilderBase::InsertPoint
|
||
createDeviceArgumentAccessor(MapInfoData &mapData, llvm::Argument &arg,
|
||
llvm::Value *input, llvm::Value *&retVal,
|
||
llvm::IRBuilderBase &builder,
|
||
llvm::OpenMPIRBuilder &ompBuilder,
|
||
LLVM::ModuleTranslation &moduleTranslation,
|
||
llvm::IRBuilderBase::InsertPoint allocaIP,
|
||
llvm::IRBuilderBase::InsertPoint codeGenIP) {
|
||
builder.restoreIP(allocaIP);
|
||
|
||
omp::VariableCaptureKind capture = omp::VariableCaptureKind::ByRef;
|
||
|
||
// Find the associated MapInfoData entry for the current input
|
||
for (size_t i = 0; i < mapData.MapClause.size(); ++i)
|
||
if (mapData.OriginalValue[i] == input) {
|
||
auto mapOp = cast<omp::MapInfoOp>(mapData.MapClause[i]);
|
||
capture =
|
||
mapOp.getMapCaptureType().value_or(omp::VariableCaptureKind::ByRef);
|
||
|
||
break;
|
||
}
|
||
|
||
unsigned int allocaAS = ompBuilder.M.getDataLayout().getAllocaAddrSpace();
|
||
unsigned int defaultAS =
|
||
ompBuilder.M.getDataLayout().getProgramAddressSpace();
|
||
|
||
// Create the alloca for the argument the current point.
|
||
llvm::Value *v = builder.CreateAlloca(arg.getType(), allocaAS);
|
||
|
||
if (allocaAS != defaultAS && arg.getType()->isPointerTy())
|
||
v = builder.CreateAddrSpaceCast(v, builder.getPtrTy(defaultAS));
|
||
|
||
builder.CreateStore(&arg, v);
|
||
|
||
builder.restoreIP(codeGenIP);
|
||
|
||
switch (capture) {
|
||
case omp::VariableCaptureKind::ByCopy: {
|
||
retVal = v;
|
||
break;
|
||
}
|
||
case omp::VariableCaptureKind::ByRef: {
|
||
retVal = builder.CreateAlignedLoad(
|
||
v->getType(), v,
|
||
ompBuilder.M.getDataLayout().getPrefTypeAlign(v->getType()));
|
||
break;
|
||
}
|
||
case omp::VariableCaptureKind::This:
|
||
case omp::VariableCaptureKind::VLAType:
|
||
assert(false && "Currently unsupported capture kind");
|
||
break;
|
||
}
|
||
|
||
return builder.saveIP();
|
||
}
|
||
|
||
static LogicalResult
|
||
convertOmpTarget(Operation &opInst, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
|
||
if (!targetOpSupported(opInst))
|
||
return failure();
|
||
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
bool isTargetDevice = ompBuilder->Config.isTargetDevice();
|
||
auto parentFn = opInst.getParentOfType<LLVM::LLVMFuncOp>();
|
||
auto targetOp = cast<omp::TargetOp>(opInst);
|
||
auto &targetRegion = targetOp.getRegion();
|
||
DataLayout dl = DataLayout(opInst.getParentOfType<ModuleOp>());
|
||
SmallVector<Value> mapVars = targetOp.getMapVars();
|
||
ArrayRef<BlockArgument> mapBlockArgs =
|
||
cast<omp::BlockArgOpenMPOpInterface>(opInst).getMapBlockArgs();
|
||
llvm::Function *llvmOutlinedFn = nullptr;
|
||
|
||
// TODO: It can also be false if a compile-time constant `false` IF clause is
|
||
// specified.
|
||
bool isOffloadEntry =
|
||
isTargetDevice || !ompBuilder->Config.TargetTriples.empty();
|
||
|
||
LogicalResult bodyGenStatus = success();
|
||
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
|
||
auto bodyCB = [&](InsertPointTy allocaIP,
|
||
InsertPointTy codeGenIP) -> InsertPointTy {
|
||
// Forward target-cpu and target-features function attributes from the
|
||
// original function to the new outlined function.
|
||
llvm::Function *llvmParentFn =
|
||
moduleTranslation.lookupFunction(parentFn.getName());
|
||
llvmOutlinedFn = codeGenIP.getBlock()->getParent();
|
||
assert(llvmParentFn && llvmOutlinedFn &&
|
||
"Both parent and outlined functions must exist at this point");
|
||
|
||
if (auto attr = llvmParentFn->getFnAttribute("target-cpu");
|
||
attr.isStringAttribute())
|
||
llvmOutlinedFn->addFnAttr(attr);
|
||
|
||
if (auto attr = llvmParentFn->getFnAttribute("target-features");
|
||
attr.isStringAttribute())
|
||
llvmOutlinedFn->addFnAttr(attr);
|
||
|
||
builder.restoreIP(codeGenIP);
|
||
for (auto [arg, mapOp] : llvm::zip_equal(mapBlockArgs, mapVars)) {
|
||
auto mapInfoOp = cast<omp::MapInfoOp>(mapOp.getDefiningOp());
|
||
llvm::Value *mapOpValue =
|
||
moduleTranslation.lookupValue(mapInfoOp.getVarPtr());
|
||
moduleTranslation.mapValue(arg, mapOpValue);
|
||
}
|
||
|
||
// Do privatization after moduleTranslation has already recorded
|
||
// mapped values.
|
||
if (!targetOp.getPrivateVars().empty()) {
|
||
builder.restoreIP(allocaIP);
|
||
|
||
OperandRange privateVars = targetOp.getPrivateVars();
|
||
std::optional<ArrayAttr> privateSyms = targetOp.getPrivateSyms();
|
||
MutableArrayRef<BlockArgument> privateBlockArgs =
|
||
cast<omp::BlockArgOpenMPOpInterface>(opInst).getPrivateBlockArgs();
|
||
|
||
for (auto [privVar, privatizerNameAttr, privBlockArg] :
|
||
llvm::zip_equal(privateVars, *privateSyms, privateBlockArgs)) {
|
||
|
||
SymbolRefAttr privSym = cast<SymbolRefAttr>(privatizerNameAttr);
|
||
omp::PrivateClauseOp privatizer = findPrivatizer(&opInst, privSym);
|
||
if (privatizer.getDataSharingType() ==
|
||
omp::DataSharingClauseType::FirstPrivate ||
|
||
!privatizer.getDeallocRegion().empty()) {
|
||
opInst.emitError("Translation of omp.target from MLIR to LLVMIR "
|
||
"failed because translation of firstprivate and "
|
||
" private allocatables is not supported yet");
|
||
bodyGenStatus = failure();
|
||
} else {
|
||
moduleTranslation.mapValue(privatizer.getAllocMoldArg(),
|
||
moduleTranslation.lookupValue(privVar));
|
||
Region &allocRegion = privatizer.getAllocRegion();
|
||
SmallVector<llvm::Value *, 1> yieldedValues;
|
||
if (failed(inlineConvertOmpRegions(
|
||
allocRegion, "omp.targetop.privatizer", builder,
|
||
moduleTranslation, &yieldedValues))) {
|
||
opInst.emitError(
|
||
"failed to inline `alloc` region of an `omp.private` "
|
||
"op in the target region");
|
||
bodyGenStatus = failure();
|
||
} else {
|
||
assert(yieldedValues.size() == 1);
|
||
moduleTranslation.mapValue(privBlockArg, yieldedValues.front());
|
||
}
|
||
moduleTranslation.forgetMapping(allocRegion);
|
||
builder.restoreIP(builder.saveIP());
|
||
}
|
||
}
|
||
}
|
||
llvm::BasicBlock *exitBlock = convertOmpOpRegions(
|
||
targetRegion, "omp.target", builder, moduleTranslation, bodyGenStatus);
|
||
builder.SetInsertPoint(exitBlock);
|
||
return builder.saveIP();
|
||
};
|
||
|
||
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
|
||
StringRef parentName = parentFn.getName();
|
||
|
||
llvm::TargetRegionEntryInfo entryInfo;
|
||
|
||
if (!getTargetEntryUniqueInfo(entryInfo, targetOp, parentName))
|
||
return failure();
|
||
|
||
int32_t defaultValTeams = -1;
|
||
int32_t defaultValThreads = 0;
|
||
|
||
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
|
||
findAllocaInsertPoint(builder, moduleTranslation);
|
||
|
||
MapInfoData mapData;
|
||
collectMapDataFromMapOperands(mapData, mapVars, moduleTranslation, dl,
|
||
builder);
|
||
|
||
llvm::OpenMPIRBuilder::MapInfosTy combinedInfos;
|
||
auto genMapInfoCB = [&](llvm::OpenMPIRBuilder::InsertPointTy codeGenIP)
|
||
-> llvm::OpenMPIRBuilder::MapInfosTy & {
|
||
builder.restoreIP(codeGenIP);
|
||
genMapInfos(builder, moduleTranslation, dl, combinedInfos, mapData, true);
|
||
return combinedInfos;
|
||
};
|
||
|
||
auto argAccessorCB = [&](llvm::Argument &arg, llvm::Value *input,
|
||
llvm::Value *&retVal, InsertPointTy allocaIP,
|
||
InsertPointTy codeGenIP) {
|
||
// We just return the unaltered argument for the host function
|
||
// for now, some alterations may be required in the future to
|
||
// keep host fallback functions working identically to the device
|
||
// version (e.g. pass ByCopy values should be treated as such on
|
||
// host and device, currently not always the case)
|
||
if (!isTargetDevice) {
|
||
retVal = cast<llvm::Value>(&arg);
|
||
return codeGenIP;
|
||
}
|
||
|
||
return createDeviceArgumentAccessor(mapData, arg, input, retVal, builder,
|
||
*ompBuilder, moduleTranslation,
|
||
allocaIP, codeGenIP);
|
||
};
|
||
|
||
llvm::SmallVector<llvm::Value *, 4> kernelInput;
|
||
for (size_t i = 0; i < mapVars.size(); ++i) {
|
||
// declare target arguments are not passed to kernels as arguments
|
||
// TODO: We currently do not handle cases where a member is explicitly
|
||
// passed in as an argument, this will likley need to be handled in
|
||
// the near future, rather than using IsAMember, it may be better to
|
||
// test if the relevant BlockArg is used within the target region and
|
||
// then use that as a basis for exclusion in the kernel inputs.
|
||
if (!mapData.IsDeclareTarget[i] && !mapData.IsAMember[i])
|
||
kernelInput.push_back(mapData.OriginalValue[i]);
|
||
}
|
||
SmallVector<llvm::OpenMPIRBuilder::DependData> dds;
|
||
buildDependData(targetOp.getDependKinds(), targetOp.getDependVars(),
|
||
moduleTranslation, dds);
|
||
|
||
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createTarget(
|
||
ompLoc, isOffloadEntry, allocaIP, builder.saveIP(), entryInfo,
|
||
defaultValTeams, defaultValThreads, kernelInput, genMapInfoCB, bodyCB,
|
||
argAccessorCB, dds, targetOp.getNowait()));
|
||
|
||
// Remap access operations to declare target reference pointers for the
|
||
// device, essentially generating extra loadop's as necessary
|
||
if (moduleTranslation.getOpenMPBuilder()->Config.isTargetDevice())
|
||
handleDeclareTargetMapVar(mapData, moduleTranslation, builder,
|
||
llvmOutlinedFn);
|
||
|
||
return bodyGenStatus;
|
||
}
|
||
|
||
static LogicalResult
|
||
convertDeclareTargetAttr(Operation *op, mlir::omp::DeclareTargetAttr attribute,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
// Amend omp.declare_target by deleting the IR of the outlined functions
|
||
// created for target regions. They cannot be filtered out from MLIR earlier
|
||
// because the omp.target operation inside must be translated to LLVM, but
|
||
// the wrapper functions themselves must not remain at the end of the
|
||
// process. We know that functions where omp.declare_target does not match
|
||
// omp.is_target_device at this stage can only be wrapper functions because
|
||
// those that aren't are removed earlier as an MLIR transformation pass.
|
||
if (FunctionOpInterface funcOp = dyn_cast<FunctionOpInterface>(op)) {
|
||
if (auto offloadMod = dyn_cast<omp::OffloadModuleInterface>(
|
||
op->getParentOfType<ModuleOp>().getOperation())) {
|
||
if (!offloadMod.getIsTargetDevice())
|
||
return success();
|
||
|
||
omp::DeclareTargetDeviceType declareType =
|
||
attribute.getDeviceType().getValue();
|
||
|
||
if (declareType == omp::DeclareTargetDeviceType::host) {
|
||
llvm::Function *llvmFunc =
|
||
moduleTranslation.lookupFunction(funcOp.getName());
|
||
llvmFunc->dropAllReferences();
|
||
llvmFunc->eraseFromParent();
|
||
}
|
||
}
|
||
return success();
|
||
}
|
||
|
||
if (LLVM::GlobalOp gOp = dyn_cast<LLVM::GlobalOp>(op)) {
|
||
llvm::Module *llvmModule = moduleTranslation.getLLVMModule();
|
||
if (auto *gVal = llvmModule->getNamedValue(gOp.getSymName())) {
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
bool isDeclaration = gOp.isDeclaration();
|
||
bool isExternallyVisible =
|
||
gOp.getVisibility() != mlir::SymbolTable::Visibility::Private;
|
||
auto loc = op->getLoc()->findInstanceOf<FileLineColLoc>();
|
||
llvm::StringRef mangledName = gOp.getSymName();
|
||
auto captureClause =
|
||
convertToCaptureClauseKind(attribute.getCaptureClause().getValue());
|
||
auto deviceClause =
|
||
convertToDeviceClauseKind(attribute.getDeviceType().getValue());
|
||
// unused for MLIR at the moment, required in Clang for book
|
||
// keeping
|
||
std::vector<llvm::GlobalVariable *> generatedRefs;
|
||
|
||
std::vector<llvm::Triple> targetTriple;
|
||
auto targetTripleAttr = dyn_cast_or_null<mlir::StringAttr>(
|
||
op->getParentOfType<mlir::ModuleOp>()->getAttr(
|
||
LLVM::LLVMDialect::getTargetTripleAttrName()));
|
||
if (targetTripleAttr)
|
||
targetTriple.emplace_back(targetTripleAttr.data());
|
||
|
||
auto fileInfoCallBack = [&loc]() {
|
||
std::string filename = "";
|
||
std::uint64_t lineNo = 0;
|
||
|
||
if (loc) {
|
||
filename = loc.getFilename().str();
|
||
lineNo = loc.getLine();
|
||
}
|
||
|
||
return std::pair<std::string, std::uint64_t>(llvm::StringRef(filename),
|
||
lineNo);
|
||
};
|
||
|
||
ompBuilder->registerTargetGlobalVariable(
|
||
captureClause, deviceClause, isDeclaration, isExternallyVisible,
|
||
ompBuilder->getTargetEntryUniqueInfo(fileInfoCallBack), mangledName,
|
||
generatedRefs, /*OpenMPSimd*/ false, targetTriple,
|
||
/*GlobalInitializer*/ nullptr, /*VariableLinkage*/ nullptr,
|
||
gVal->getType(), gVal);
|
||
|
||
if (ompBuilder->Config.isTargetDevice() &&
|
||
(attribute.getCaptureClause().getValue() !=
|
||
mlir::omp::DeclareTargetCaptureClause::to ||
|
||
ompBuilder->Config.hasRequiresUnifiedSharedMemory())) {
|
||
ompBuilder->getAddrOfDeclareTargetVar(
|
||
captureClause, deviceClause, isDeclaration, isExternallyVisible,
|
||
ompBuilder->getTargetEntryUniqueInfo(fileInfoCallBack), mangledName,
|
||
generatedRefs, /*OpenMPSimd*/ false, targetTriple, gVal->getType(),
|
||
/*GlobalInitializer*/ nullptr,
|
||
/*VariableLinkage*/ nullptr);
|
||
}
|
||
}
|
||
}
|
||
|
||
return success();
|
||
}
|
||
|
||
// Returns true if the operation is inside a TargetOp or
|
||
// is part of a declare target function.
|
||
static bool isTargetDeviceOp(Operation *op) {
|
||
// Assumes no reverse offloading
|
||
if (op->getParentOfType<omp::TargetOp>())
|
||
return true;
|
||
|
||
if (auto parentFn = op->getParentOfType<LLVM::LLVMFuncOp>())
|
||
if (auto declareTargetIface =
|
||
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(
|
||
parentFn.getOperation()))
|
||
if (declareTargetIface.isDeclareTarget() &&
|
||
declareTargetIface.getDeclareTargetDeviceType() !=
|
||
mlir::omp::DeclareTargetDeviceType::host)
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/// Given an OpenMP MLIR operation, create the corresponding LLVM IR
|
||
/// (including OpenMP runtime calls).
|
||
static LogicalResult
|
||
convertHostOrTargetOperation(Operation *op, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
|
||
return llvm::TypeSwitch<Operation *, LogicalResult>(op)
|
||
.Case([&](omp::BarrierOp) {
|
||
ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
|
||
return success();
|
||
})
|
||
.Case([&](omp::TaskyieldOp) {
|
||
ompBuilder->createTaskyield(builder.saveIP());
|
||
return success();
|
||
})
|
||
.Case([&](omp::FlushOp) {
|
||
// No support in Openmp runtime function (__kmpc_flush) to accept
|
||
// the argument list.
|
||
// OpenMP standard states the following:
|
||
// "An implementation may implement a flush with a list by ignoring
|
||
// the list, and treating it the same as a flush without a list."
|
||
//
|
||
// The argument list is discarded so that, flush with a list is treated
|
||
// same as a flush without a list.
|
||
ompBuilder->createFlush(builder.saveIP());
|
||
return success();
|
||
})
|
||
.Case([&](omp::ParallelOp op) {
|
||
return convertOmpParallel(op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::MaskedOp) {
|
||
return convertOmpMasked(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::MasterOp) {
|
||
return convertOmpMaster(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::CriticalOp) {
|
||
return convertOmpCritical(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::OrderedRegionOp) {
|
||
return convertOmpOrderedRegion(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::OrderedOp) {
|
||
return convertOmpOrdered(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::WsloopOp) {
|
||
return convertOmpWsloop(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::SimdOp) {
|
||
return convertOmpSimd(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::AtomicReadOp) {
|
||
return convertOmpAtomicRead(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::AtomicWriteOp) {
|
||
return convertOmpAtomicWrite(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::AtomicUpdateOp op) {
|
||
return convertOmpAtomicUpdate(op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::AtomicCaptureOp op) {
|
||
return convertOmpAtomicCapture(op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::SectionsOp) {
|
||
return convertOmpSections(*op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::SingleOp op) {
|
||
return convertOmpSingle(op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::TeamsOp op) {
|
||
return convertOmpTeams(op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::TaskOp op) {
|
||
return convertOmpTaskOp(op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::TaskgroupOp op) {
|
||
return convertOmpTaskgroupOp(op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::TaskwaitOp op) {
|
||
return convertOmpTaskwaitOp(op, builder, moduleTranslation);
|
||
})
|
||
.Case<omp::YieldOp, omp::TerminatorOp, omp::DeclareReductionOp,
|
||
omp::CriticalDeclareOp>([](auto op) {
|
||
// `yield` and `terminator` can be just omitted. The block structure
|
||
// was created in the region that handles their parent operation.
|
||
// `declare_reduction` will be used by reductions and is not
|
||
// converted directly, skip it.
|
||
// `critical.declare` is only used to declare names of critical
|
||
// sections which will be used by `critical` ops and hence can be
|
||
// ignored for lowering. The OpenMP IRBuilder will create unique
|
||
// name for critical section names.
|
||
return success();
|
||
})
|
||
.Case([&](omp::ThreadprivateOp) {
|
||
return convertOmpThreadprivate(*op, builder, moduleTranslation);
|
||
})
|
||
.Case<omp::TargetDataOp, omp::TargetEnterDataOp, omp::TargetExitDataOp,
|
||
omp::TargetUpdateOp>([&](auto op) {
|
||
return convertOmpTargetData(op, builder, moduleTranslation);
|
||
})
|
||
.Case([&](omp::TargetOp) {
|
||
return convertOmpTarget(*op, builder, moduleTranslation);
|
||
})
|
||
.Case<omp::MapInfoOp, omp::MapBoundsOp, omp::PrivateClauseOp>(
|
||
[&](auto op) {
|
||
// No-op, should be handled by relevant owning operations e.g.
|
||
// TargetOp, TargetEnterDataOp, TargetExitDataOp, TargetDataOp etc.
|
||
// and then discarded
|
||
return success();
|
||
})
|
||
.Default([&](Operation *inst) {
|
||
return inst->emitError("unsupported OpenMP operation: ")
|
||
<< inst->getName();
|
||
});
|
||
}
|
||
|
||
static LogicalResult
|
||
convertTargetDeviceOp(Operation *op, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
return convertHostOrTargetOperation(op, builder, moduleTranslation);
|
||
}
|
||
|
||
static LogicalResult
|
||
convertTargetOpsInNest(Operation *op, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) {
|
||
if (isa<omp::TargetOp>(op))
|
||
return convertOmpTarget(*op, builder, moduleTranslation);
|
||
if (isa<omp::TargetDataOp>(op))
|
||
return convertOmpTargetData(op, builder, moduleTranslation);
|
||
bool interrupted =
|
||
op->walk<WalkOrder::PreOrder>([&](Operation *oper) {
|
||
if (isa<omp::TargetOp>(oper)) {
|
||
if (failed(convertOmpTarget(*oper, builder, moduleTranslation)))
|
||
return WalkResult::interrupt();
|
||
return WalkResult::skip();
|
||
}
|
||
if (isa<omp::TargetDataOp>(oper)) {
|
||
if (failed(convertOmpTargetData(oper, builder, moduleTranslation)))
|
||
return WalkResult::interrupt();
|
||
return WalkResult::skip();
|
||
}
|
||
return WalkResult::advance();
|
||
}).wasInterrupted();
|
||
return failure(interrupted);
|
||
}
|
||
|
||
namespace {
|
||
|
||
/// Implementation of the dialect interface that converts operations belonging
|
||
/// to the OpenMP dialect to LLVM IR.
|
||
class OpenMPDialectLLVMIRTranslationInterface
|
||
: public LLVMTranslationDialectInterface {
|
||
public:
|
||
using LLVMTranslationDialectInterface::LLVMTranslationDialectInterface;
|
||
|
||
/// Translates the given operation to LLVM IR using the provided IR builder
|
||
/// and saving the state in `moduleTranslation`.
|
||
LogicalResult
|
||
convertOperation(Operation *op, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) const final;
|
||
|
||
/// Given an OpenMP MLIR attribute, create the corresponding LLVM-IR,
|
||
/// runtime calls, or operation amendments
|
||
LogicalResult
|
||
amendOperation(Operation *op, ArrayRef<llvm::Instruction *> instructions,
|
||
NamedAttribute attribute,
|
||
LLVM::ModuleTranslation &moduleTranslation) const final;
|
||
};
|
||
|
||
} // namespace
|
||
|
||
LogicalResult OpenMPDialectLLVMIRTranslationInterface::amendOperation(
|
||
Operation *op, ArrayRef<llvm::Instruction *> instructions,
|
||
NamedAttribute attribute,
|
||
LLVM::ModuleTranslation &moduleTranslation) const {
|
||
return llvm::StringSwitch<llvm::function_ref<LogicalResult(Attribute)>>(
|
||
attribute.getName())
|
||
.Case("omp.is_target_device",
|
||
[&](Attribute attr) {
|
||
if (auto deviceAttr = dyn_cast<BoolAttr>(attr)) {
|
||
llvm::OpenMPIRBuilderConfig &config =
|
||
moduleTranslation.getOpenMPBuilder()->Config;
|
||
config.setIsTargetDevice(deviceAttr.getValue());
|
||
return success();
|
||
}
|
||
return failure();
|
||
})
|
||
.Case("omp.is_gpu",
|
||
[&](Attribute attr) {
|
||
if (auto gpuAttr = dyn_cast<BoolAttr>(attr)) {
|
||
llvm::OpenMPIRBuilderConfig &config =
|
||
moduleTranslation.getOpenMPBuilder()->Config;
|
||
config.setIsGPU(gpuAttr.getValue());
|
||
return success();
|
||
}
|
||
return failure();
|
||
})
|
||
.Case("omp.host_ir_filepath",
|
||
[&](Attribute attr) {
|
||
if (auto filepathAttr = dyn_cast<StringAttr>(attr)) {
|
||
llvm::OpenMPIRBuilder *ompBuilder =
|
||
moduleTranslation.getOpenMPBuilder();
|
||
ompBuilder->loadOffloadInfoMetadata(filepathAttr.getValue());
|
||
return success();
|
||
}
|
||
return failure();
|
||
})
|
||
.Case("omp.flags",
|
||
[&](Attribute attr) {
|
||
if (auto rtlAttr = dyn_cast<omp::FlagsAttr>(attr))
|
||
return convertFlagsAttr(op, rtlAttr, moduleTranslation);
|
||
return failure();
|
||
})
|
||
.Case("omp.version",
|
||
[&](Attribute attr) {
|
||
if (auto versionAttr = dyn_cast<omp::VersionAttr>(attr)) {
|
||
llvm::OpenMPIRBuilder *ompBuilder =
|
||
moduleTranslation.getOpenMPBuilder();
|
||
ompBuilder->M.addModuleFlag(llvm::Module::Max, "openmp",
|
||
versionAttr.getVersion());
|
||
return success();
|
||
}
|
||
return failure();
|
||
})
|
||
.Case("omp.declare_target",
|
||
[&](Attribute attr) {
|
||
if (auto declareTargetAttr =
|
||
dyn_cast<omp::DeclareTargetAttr>(attr))
|
||
return convertDeclareTargetAttr(op, declareTargetAttr,
|
||
moduleTranslation);
|
||
return failure();
|
||
})
|
||
.Case("omp.requires",
|
||
[&](Attribute attr) {
|
||
if (auto requiresAttr = dyn_cast<omp::ClauseRequiresAttr>(attr)) {
|
||
using Requires = omp::ClauseRequires;
|
||
Requires flags = requiresAttr.getValue();
|
||
llvm::OpenMPIRBuilderConfig &config =
|
||
moduleTranslation.getOpenMPBuilder()->Config;
|
||
config.setHasRequiresReverseOffload(
|
||
bitEnumContainsAll(flags, Requires::reverse_offload));
|
||
config.setHasRequiresUnifiedAddress(
|
||
bitEnumContainsAll(flags, Requires::unified_address));
|
||
config.setHasRequiresUnifiedSharedMemory(
|
||
bitEnumContainsAll(flags, Requires::unified_shared_memory));
|
||
config.setHasRequiresDynamicAllocators(
|
||
bitEnumContainsAll(flags, Requires::dynamic_allocators));
|
||
return success();
|
||
}
|
||
return failure();
|
||
})
|
||
.Case("omp.target_triples",
|
||
[&](Attribute attr) {
|
||
if (auto triplesAttr = dyn_cast<ArrayAttr>(attr)) {
|
||
llvm::OpenMPIRBuilderConfig &config =
|
||
moduleTranslation.getOpenMPBuilder()->Config;
|
||
config.TargetTriples.clear();
|
||
config.TargetTriples.reserve(triplesAttr.size());
|
||
for (Attribute tripleAttr : triplesAttr) {
|
||
if (auto tripleStrAttr = dyn_cast<StringAttr>(tripleAttr))
|
||
config.TargetTriples.emplace_back(tripleStrAttr.getValue());
|
||
else
|
||
return failure();
|
||
}
|
||
return success();
|
||
}
|
||
return failure();
|
||
})
|
||
.Default([](Attribute) {
|
||
// Fall through for omp attributes that do not require lowering.
|
||
return success();
|
||
})(attribute.getValue());
|
||
|
||
return failure();
|
||
}
|
||
|
||
/// Given an OpenMP MLIR operation, create the corresponding LLVM IR
|
||
/// (including OpenMP runtime calls).
|
||
LogicalResult OpenMPDialectLLVMIRTranslationInterface::convertOperation(
|
||
Operation *op, llvm::IRBuilderBase &builder,
|
||
LLVM::ModuleTranslation &moduleTranslation) const {
|
||
|
||
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
|
||
if (ompBuilder->Config.isTargetDevice()) {
|
||
if (isTargetDeviceOp(op)) {
|
||
return convertTargetDeviceOp(op, builder, moduleTranslation);
|
||
} else {
|
||
return convertTargetOpsInNest(op, builder, moduleTranslation);
|
||
}
|
||
}
|
||
return convertHostOrTargetOperation(op, builder, moduleTranslation);
|
||
}
|
||
|
||
void mlir::registerOpenMPDialectTranslation(DialectRegistry ®istry) {
|
||
registry.insert<omp::OpenMPDialect>();
|
||
registry.addExtension(+[](MLIRContext *ctx, omp::OpenMPDialect *dialect) {
|
||
dialect->addInterfaces<OpenMPDialectLLVMIRTranslationInterface>();
|
||
});
|
||
}
|
||
|
||
void mlir::registerOpenMPDialectTranslation(MLIRContext &context) {
|
||
DialectRegistry registry;
|
||
registerOpenMPDialectTranslation(registry);
|
||
context.appendDialectRegistry(registry);
|
||
}
|