Files
clang-p2996/mlir/lib/Transforms/Utils/Inliner.cpp
junfengd-nv aeec94500a [mlir][inliner] Add doClone and canHandleMultipleBlocks callbacks to Inliner Config (#131226)
Current inliner disables inlining when the caller is in a region with
single block trait, while the callee function contains multiple blocks.
the SingleBlock trait is used in operations such as do/while loop, for
example fir.do_loop, fir.iterate_while and fir.if. Typically, calls within
loops are good candidates for inlining. However, functions with multiple
blocks are also common. for example, any function with "if () then
return" will result in multiple blocks in MLIR.

This change gives the flexibility of a customized inliner to handle such
cases.
doClone: clones instructions and other information from the callee
function into the caller function. .
canHandleMultipleBlocks: checks if functions with multiple blocks can be
inlined into a region with the SingleBlock trait.

The default behavior of the inliner remains unchanged.

---------

Co-authored-by: jeanPerier <jean.perier.polytechnique@gmail.com>
Co-authored-by: Mehdi Amini <joker.eph@gmail.com>
2025-04-05 22:56:55 +02:00

778 lines
30 KiB
C++

//===- Inliner.cpp ---- SCC-based inliner ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Inliner that uses a basic inlining
// algorithm that operates bottom up over the Strongly Connect Components(SCCs)
// of the CallGraph. This enables a more incremental propagation of inlining
// decisions from the leafs to the roots of the callgraph.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Inliner.h"
#include "mlir/IR/Threading.h"
#include "mlir/Interfaces/CallInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/DebugStringHelper.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "inlining"
using namespace mlir;
using ResolvedCall = Inliner::ResolvedCall;
//===----------------------------------------------------------------------===//
// Symbol Use Tracking
//===----------------------------------------------------------------------===//
/// Walk all of the used symbol callgraph nodes referenced with the given op.
static void walkReferencedSymbolNodes(
Operation *op, CallGraph &cg, SymbolTableCollection &symbolTable,
DenseMap<Attribute, CallGraphNode *> &resolvedRefs,
function_ref<void(CallGraphNode *, Operation *)> callback) {
auto symbolUses = SymbolTable::getSymbolUses(op);
assert(symbolUses && "expected uses to be valid");
Operation *symbolTableOp = op->getParentOp();
for (const SymbolTable::SymbolUse &use : *symbolUses) {
auto refIt = resolvedRefs.insert({use.getSymbolRef(), nullptr});
CallGraphNode *&node = refIt.first->second;
// If this is the first instance of this reference, try to resolve a
// callgraph node for it.
if (refIt.second) {
auto *symbolOp = symbolTable.lookupNearestSymbolFrom(symbolTableOp,
use.getSymbolRef());
auto callableOp = dyn_cast_or_null<CallableOpInterface>(symbolOp);
if (!callableOp)
continue;
node = cg.lookupNode(callableOp.getCallableRegion());
}
if (node)
callback(node, use.getUser());
}
}
//===----------------------------------------------------------------------===//
// CGUseList
//===----------------------------------------------------------------------===//
namespace {
/// This struct tracks the uses of callgraph nodes that can be dropped when
/// use_empty. It directly tracks and manages a use-list for all of the
/// call-graph nodes. This is necessary because many callgraph nodes are
/// referenced by SymbolRefAttr, which has no mechanism akin to the SSA `Use`
/// class.
struct CGUseList {
/// This struct tracks the uses of callgraph nodes within a specific
/// operation.
struct CGUser {
/// Any nodes referenced in the top-level attribute list of this user. We
/// use a set here because the number of references does not matter.
DenseSet<CallGraphNode *> topLevelUses;
/// Uses of nodes referenced by nested operations.
DenseMap<CallGraphNode *, int> innerUses;
};
CGUseList(Operation *op, CallGraph &cg, SymbolTableCollection &symbolTable);
/// Drop uses of nodes referred to by the given call operation that resides
/// within 'userNode'.
void dropCallUses(CallGraphNode *userNode, Operation *callOp, CallGraph &cg);
/// Remove the given node from the use list.
void eraseNode(CallGraphNode *node);
/// Returns true if the given callgraph node has no uses and can be pruned.
bool isDead(CallGraphNode *node) const;
/// Returns true if the given callgraph node has a single use and can be
/// discarded.
bool hasOneUseAndDiscardable(CallGraphNode *node) const;
/// Recompute the uses held by the given callgraph node.
void recomputeUses(CallGraphNode *node, CallGraph &cg);
/// Merge the uses of 'lhs' with the uses of the 'rhs' after inlining a copy
/// of 'lhs' into 'rhs'.
void mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs);
private:
/// Decrement the uses of discardable nodes referenced by the given user.
void decrementDiscardableUses(CGUser &uses);
/// A mapping between a discardable callgraph node (that is a symbol) and the
/// number of uses for this node.
DenseMap<CallGraphNode *, int> discardableSymNodeUses;
/// A mapping between a callgraph node and the symbol callgraph nodes that it
/// uses.
DenseMap<CallGraphNode *, CGUser> nodeUses;
/// A symbol table to use when resolving call lookups.
SymbolTableCollection &symbolTable;
};
} // namespace
CGUseList::CGUseList(Operation *op, CallGraph &cg,
SymbolTableCollection &symbolTable)
: symbolTable(symbolTable) {
/// A set of callgraph nodes that are always known to be live during inlining.
DenseMap<Attribute, CallGraphNode *> alwaysLiveNodes;
// Walk each of the symbol tables looking for discardable callgraph nodes.
auto walkFn = [&](Operation *symbolTableOp, bool allUsesVisible) {
for (Operation &op : symbolTableOp->getRegion(0).getOps()) {
// If this is a callgraph operation, check to see if it is discardable.
if (auto callable = dyn_cast<CallableOpInterface>(&op)) {
if (auto *node = cg.lookupNode(callable.getCallableRegion())) {
SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(&op);
if (symbol && (allUsesVisible || symbol.isPrivate()) &&
symbol.canDiscardOnUseEmpty()) {
discardableSymNodeUses.try_emplace(node, 0);
}
continue;
}
}
// Otherwise, check for any referenced nodes. These will be always-live.
walkReferencedSymbolNodes(&op, cg, symbolTable, alwaysLiveNodes,
[](CallGraphNode *, Operation *) {});
}
};
SymbolTable::walkSymbolTables(op, /*allSymUsesVisible=*/!op->getBlock(),
walkFn);
// Drop the use information for any discardable nodes that are always live.
for (auto &it : alwaysLiveNodes)
discardableSymNodeUses.erase(it.second);
// Compute the uses for each of the callable nodes in the graph.
for (CallGraphNode *node : cg)
recomputeUses(node, cg);
}
void CGUseList::dropCallUses(CallGraphNode *userNode, Operation *callOp,
CallGraph &cg) {
auto &userRefs = nodeUses[userNode].innerUses;
auto walkFn = [&](CallGraphNode *node, Operation *user) {
auto parentIt = userRefs.find(node);
if (parentIt == userRefs.end())
return;
--parentIt->second;
--discardableSymNodeUses[node];
};
DenseMap<Attribute, CallGraphNode *> resolvedRefs;
walkReferencedSymbolNodes(callOp, cg, symbolTable, resolvedRefs, walkFn);
}
void CGUseList::eraseNode(CallGraphNode *node) {
// Drop all child nodes.
for (auto &edge : *node)
if (edge.isChild())
eraseNode(edge.getTarget());
// Drop the uses held by this node and erase it.
auto useIt = nodeUses.find(node);
assert(useIt != nodeUses.end() && "expected node to be valid");
decrementDiscardableUses(useIt->getSecond());
nodeUses.erase(useIt);
discardableSymNodeUses.erase(node);
}
bool CGUseList::isDead(CallGraphNode *node) const {
// If the parent operation isn't a symbol, simply check normal SSA deadness.
Operation *nodeOp = node->getCallableRegion()->getParentOp();
if (!isa<SymbolOpInterface>(nodeOp))
return isMemoryEffectFree(nodeOp) && nodeOp->use_empty();
// Otherwise, check the number of symbol uses.
auto symbolIt = discardableSymNodeUses.find(node);
return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 0;
}
bool CGUseList::hasOneUseAndDiscardable(CallGraphNode *node) const {
// If this isn't a symbol node, check for side-effects and SSA use count.
Operation *nodeOp = node->getCallableRegion()->getParentOp();
if (!isa<SymbolOpInterface>(nodeOp))
return isMemoryEffectFree(nodeOp) && nodeOp->hasOneUse();
// Otherwise, check the number of symbol uses.
auto symbolIt = discardableSymNodeUses.find(node);
return symbolIt != discardableSymNodeUses.end() && symbolIt->second == 1;
}
void CGUseList::recomputeUses(CallGraphNode *node, CallGraph &cg) {
Operation *parentOp = node->getCallableRegion()->getParentOp();
CGUser &uses = nodeUses[node];
decrementDiscardableUses(uses);
// Collect the new discardable uses within this node.
uses = CGUser();
DenseMap<Attribute, CallGraphNode *> resolvedRefs;
auto walkFn = [&](CallGraphNode *refNode, Operation *user) {
auto discardSymIt = discardableSymNodeUses.find(refNode);
if (discardSymIt == discardableSymNodeUses.end())
return;
if (user != parentOp)
++uses.innerUses[refNode];
else if (!uses.topLevelUses.insert(refNode).second)
return;
++discardSymIt->second;
};
walkReferencedSymbolNodes(parentOp, cg, symbolTable, resolvedRefs, walkFn);
}
void CGUseList::mergeUsesAfterInlining(CallGraphNode *lhs, CallGraphNode *rhs) {
auto &lhsUses = nodeUses[lhs], &rhsUses = nodeUses[rhs];
for (auto &useIt : lhsUses.innerUses) {
rhsUses.innerUses[useIt.first] += useIt.second;
discardableSymNodeUses[useIt.first] += useIt.second;
}
}
void CGUseList::decrementDiscardableUses(CGUser &uses) {
for (CallGraphNode *node : uses.topLevelUses)
--discardableSymNodeUses[node];
for (auto &it : uses.innerUses)
discardableSymNodeUses[it.first] -= it.second;
}
//===----------------------------------------------------------------------===//
// CallGraph traversal
//===----------------------------------------------------------------------===//
namespace {
/// This class represents a specific callgraph SCC.
class CallGraphSCC {
public:
CallGraphSCC(llvm::scc_iterator<const CallGraph *> &parentIterator)
: parentIterator(parentIterator) {}
/// Return a range over the nodes within this SCC.
std::vector<CallGraphNode *>::iterator begin() { return nodes.begin(); }
std::vector<CallGraphNode *>::iterator end() { return nodes.end(); }
/// Reset the nodes of this SCC with those provided.
void reset(const std::vector<CallGraphNode *> &newNodes) { nodes = newNodes; }
/// Remove the given node from this SCC.
void remove(CallGraphNode *node) {
auto it = llvm::find(nodes, node);
if (it != nodes.end()) {
nodes.erase(it);
parentIterator.ReplaceNode(node, nullptr);
}
}
private:
std::vector<CallGraphNode *> nodes;
llvm::scc_iterator<const CallGraph *> &parentIterator;
};
} // namespace
/// Run a given transformation over the SCCs of the callgraph in a bottom up
/// traversal.
static LogicalResult runTransformOnCGSCCs(
const CallGraph &cg,
function_ref<LogicalResult(CallGraphSCC &)> sccTransformer) {
llvm::scc_iterator<const CallGraph *> cgi = llvm::scc_begin(&cg);
CallGraphSCC currentSCC(cgi);
while (!cgi.isAtEnd()) {
// Copy the current SCC and increment so that the transformer can modify the
// SCC without invalidating our iterator.
currentSCC.reset(*cgi);
++cgi;
if (failed(sccTransformer(currentSCC)))
return failure();
}
return success();
}
/// Collect all of the callable operations within the given range of blocks. If
/// `traverseNestedCGNodes` is true, this will also collect call operations
/// inside of nested callgraph nodes.
static void collectCallOps(iterator_range<Region::iterator> blocks,
CallGraphNode *sourceNode, CallGraph &cg,
SymbolTableCollection &symbolTable,
SmallVectorImpl<ResolvedCall> &calls,
bool traverseNestedCGNodes) {
SmallVector<std::pair<Block *, CallGraphNode *>, 8> worklist;
auto addToWorklist = [&](CallGraphNode *node,
iterator_range<Region::iterator> blocks) {
for (Block &block : blocks)
worklist.emplace_back(&block, node);
};
addToWorklist(sourceNode, blocks);
while (!worklist.empty()) {
Block *block;
std::tie(block, sourceNode) = worklist.pop_back_val();
for (Operation &op : *block) {
if (auto call = dyn_cast<CallOpInterface>(op)) {
// TODO: Support inlining nested call references.
CallInterfaceCallable callable = call.getCallableForCallee();
if (SymbolRefAttr symRef = dyn_cast<SymbolRefAttr>(callable)) {
if (!isa<FlatSymbolRefAttr>(symRef))
continue;
}
CallGraphNode *targetNode = cg.resolveCallable(call, symbolTable);
if (!targetNode->isExternal())
calls.emplace_back(call, sourceNode, targetNode);
continue;
}
// If this is not a call, traverse the nested regions. If
// `traverseNestedCGNodes` is false, then don't traverse nested call graph
// regions.
for (auto &nestedRegion : op.getRegions()) {
CallGraphNode *nestedNode = cg.lookupNode(&nestedRegion);
if (traverseNestedCGNodes || !nestedNode)
addToWorklist(nestedNode ? nestedNode : sourceNode, nestedRegion);
}
}
}
}
//===----------------------------------------------------------------------===//
// InlinerInterfaceImpl
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static std::string getNodeName(CallOpInterface op) {
if (llvm::dyn_cast_if_present<SymbolRefAttr>(op.getCallableForCallee()))
return debugString(op);
return "_unnamed_callee_";
}
#endif
/// Return true if the specified `inlineHistoryID` indicates an inline history
/// that already includes `node`.
static bool inlineHistoryIncludes(
CallGraphNode *node, std::optional<size_t> inlineHistoryID,
MutableArrayRef<std::pair<CallGraphNode *, std::optional<size_t>>>
inlineHistory) {
while (inlineHistoryID.has_value()) {
assert(*inlineHistoryID < inlineHistory.size() &&
"Invalid inline history ID");
if (inlineHistory[*inlineHistoryID].first == node)
return true;
inlineHistoryID = inlineHistory[*inlineHistoryID].second;
}
return false;
}
namespace {
/// This class provides a specialization of the main inlining interface.
struct InlinerInterfaceImpl : public InlinerInterface {
InlinerInterfaceImpl(MLIRContext *context, CallGraph &cg,
SymbolTableCollection &symbolTable)
: InlinerInterface(context), cg(cg), symbolTable(symbolTable) {}
/// Process a set of blocks that have been inlined. This callback is invoked
/// *before* inlined terminator operations have been processed.
void
processInlinedBlocks(iterator_range<Region::iterator> inlinedBlocks) final {
// Find the closest callgraph node from the first block.
CallGraphNode *node;
Region *region = inlinedBlocks.begin()->getParent();
while (!(node = cg.lookupNode(region))) {
region = region->getParentRegion();
assert(region && "expected valid parent node");
}
collectCallOps(inlinedBlocks, node, cg, symbolTable, calls,
/*traverseNestedCGNodes=*/true);
}
/// Mark the given callgraph node for deletion.
void markForDeletion(CallGraphNode *node) { deadNodes.insert(node); }
/// This method properly disposes of callables that became dead during
/// inlining. This should not be called while iterating over the SCCs.
void eraseDeadCallables() {
for (CallGraphNode *node : deadNodes)
node->getCallableRegion()->getParentOp()->erase();
}
/// The set of callables known to be dead.
SmallPtrSet<CallGraphNode *, 8> deadNodes;
/// The current set of call instructions to consider for inlining.
SmallVector<ResolvedCall, 8> calls;
/// The callgraph being operated on.
CallGraph &cg;
/// A symbol table to use when resolving call lookups.
SymbolTableCollection &symbolTable;
};
} // namespace
namespace mlir {
class Inliner::Impl {
public:
Impl(Inliner &inliner) : inliner(inliner) {}
/// Attempt to inline calls within the given scc, and run simplifications,
/// until a fixed point is reached. This allows for the inlining of newly
/// devirtualized calls. Returns failure if there was a fatal error during
/// inlining.
LogicalResult inlineSCC(InlinerInterfaceImpl &inlinerIface,
CGUseList &useList, CallGraphSCC &currentSCC,
MLIRContext *context);
private:
/// Optimize the nodes within the given SCC with one of the held optimization
/// pass pipelines. Returns failure if an error occurred during the
/// optimization of the SCC, success otherwise.
LogicalResult optimizeSCC(CallGraph &cg, CGUseList &useList,
CallGraphSCC &currentSCC, MLIRContext *context);
/// Optimize the nodes within the given SCC in parallel. Returns failure if an
/// error occurred during the optimization of the SCC, success otherwise.
LogicalResult optimizeSCCAsync(MutableArrayRef<CallGraphNode *> nodesToVisit,
MLIRContext *context);
/// Optimize the given callable node with one of the pass managers provided
/// with `pipelines`, or the generic pre-inline pipeline. Returns failure if
/// an error occurred during the optimization of the callable, success
/// otherwise.
LogicalResult optimizeCallable(CallGraphNode *node,
llvm::StringMap<OpPassManager> &pipelines);
/// Attempt to inline calls within the given scc. This function returns
/// success if any calls were inlined, failure otherwise.
LogicalResult inlineCallsInSCC(InlinerInterfaceImpl &inlinerIface,
CGUseList &useList, CallGraphSCC &currentSCC);
/// Returns true if the given call should be inlined.
bool shouldInline(ResolvedCall &resolvedCall);
private:
Inliner &inliner;
llvm::SmallVector<llvm::StringMap<OpPassManager>> pipelines;
};
LogicalResult Inliner::Impl::inlineSCC(InlinerInterfaceImpl &inlinerIface,
CGUseList &useList,
CallGraphSCC &currentSCC,
MLIRContext *context) {
// Continuously simplify and inline until we either reach a fixed point, or
// hit the maximum iteration count. Simplifying early helps to refine the cost
// model, and in future iterations may devirtualize new calls.
unsigned iterationCount = 0;
do {
if (failed(optimizeSCC(inlinerIface.cg, useList, currentSCC, context)))
return failure();
if (failed(inlineCallsInSCC(inlinerIface, useList, currentSCC)))
break;
} while (++iterationCount < inliner.config.getMaxInliningIterations());
return success();
}
LogicalResult Inliner::Impl::optimizeSCC(CallGraph &cg, CGUseList &useList,
CallGraphSCC &currentSCC,
MLIRContext *context) {
// Collect the sets of nodes to simplify.
SmallVector<CallGraphNode *, 4> nodesToVisit;
for (auto *node : currentSCC) {
if (node->isExternal())
continue;
// Don't simplify nodes with children. Nodes with children require special
// handling as we may remove the node during simplification. In the future,
// we should be able to handle this case with proper node deletion tracking.
if (node->hasChildren())
continue;
// We also won't apply simplifications to nodes that can't have passes
// scheduled on them.
auto *region = node->getCallableRegion();
if (!region->getParentOp()->hasTrait<OpTrait::IsIsolatedFromAbove>())
continue;
nodesToVisit.push_back(node);
}
if (nodesToVisit.empty())
return success();
// Optimize each of the nodes within the SCC in parallel.
if (failed(optimizeSCCAsync(nodesToVisit, context)))
return failure();
// Recompute the uses held by each of the nodes.
for (CallGraphNode *node : nodesToVisit)
useList.recomputeUses(node, cg);
return success();
}
LogicalResult
Inliner::Impl::optimizeSCCAsync(MutableArrayRef<CallGraphNode *> nodesToVisit,
MLIRContext *ctx) {
// We must maintain a fixed pool of pass managers which is at least as large
// as the maximum parallelism of the failableParallelForEach below.
// Note: The number of pass managers here needs to remain constant
// to prevent issues with pass instrumentations that rely on having the same
// pass manager for the main thread.
size_t numThreads = ctx->getNumThreads();
const auto &opPipelines = inliner.config.getOpPipelines();
if (pipelines.size() < numThreads) {
pipelines.reserve(numThreads);
pipelines.resize(numThreads, opPipelines);
}
// Ensure an analysis manager has been constructed for each of the nodes.
// This prevents thread races when running the nested pipelines.
for (CallGraphNode *node : nodesToVisit)
inliner.am.nest(node->getCallableRegion()->getParentOp());
// An atomic failure variable for the async executors.
std::vector<std::atomic<bool>> activePMs(pipelines.size());
std::fill(activePMs.begin(), activePMs.end(), false);
return failableParallelForEach(ctx, nodesToVisit, [&](CallGraphNode *node) {
// Find a pass manager for this operation.
auto it = llvm::find_if(activePMs, [](std::atomic<bool> &isActive) {
bool expectedInactive = false;
return isActive.compare_exchange_strong(expectedInactive, true);
});
assert(it != activePMs.end() &&
"could not find inactive pass manager for thread");
unsigned pmIndex = it - activePMs.begin();
// Optimize this callable node.
LogicalResult result = optimizeCallable(node, pipelines[pmIndex]);
// Reset the active bit for this pass manager.
activePMs[pmIndex].store(false);
return result;
});
}
LogicalResult
Inliner::Impl::optimizeCallable(CallGraphNode *node,
llvm::StringMap<OpPassManager> &pipelines) {
Operation *callable = node->getCallableRegion()->getParentOp();
StringRef opName = callable->getName().getStringRef();
auto pipelineIt = pipelines.find(opName);
const auto &defaultPipeline = inliner.config.getDefaultPipeline();
if (pipelineIt == pipelines.end()) {
// If a pipeline didn't exist, use the generic pipeline if possible.
if (!defaultPipeline)
return success();
OpPassManager defaultPM(opName);
defaultPipeline(defaultPM);
pipelineIt = pipelines.try_emplace(opName, std::move(defaultPM)).first;
}
return inliner.runPipelineHelper(inliner.pass, pipelineIt->second, callable);
}
/// Attempt to inline calls within the given scc. This function returns
/// success if any calls were inlined, failure otherwise.
LogicalResult
Inliner::Impl::inlineCallsInSCC(InlinerInterfaceImpl &inlinerIface,
CGUseList &useList, CallGraphSCC &currentSCC) {
CallGraph &cg = inlinerIface.cg;
auto &calls = inlinerIface.calls;
// A set of dead nodes to remove after inlining.
llvm::SmallSetVector<CallGraphNode *, 1> deadNodes;
// Collect all of the direct calls within the nodes of the current SCC. We
// don't traverse nested callgraph nodes, because they are handled separately
// likely within a different SCC.
for (CallGraphNode *node : currentSCC) {
if (node->isExternal())
continue;
// Don't collect calls if the node is already dead.
if (useList.isDead(node)) {
deadNodes.insert(node);
} else {
collectCallOps(*node->getCallableRegion(), node, cg,
inlinerIface.symbolTable, calls,
/*traverseNestedCGNodes=*/false);
}
}
// When inlining a callee produces new call sites, we want to keep track of
// the fact that they were inlined from the callee. This allows us to avoid
// infinite inlining.
using InlineHistoryT = std::optional<size_t>;
SmallVector<std::pair<CallGraphNode *, InlineHistoryT>, 8> inlineHistory;
std::vector<InlineHistoryT> callHistory(calls.size(), InlineHistoryT{});
LLVM_DEBUG({
llvm::dbgs() << "* Inliner: Initial calls in SCC are: {\n";
for (unsigned i = 0, e = calls.size(); i < e; ++i)
llvm::dbgs() << " " << i << ". " << calls[i].call << ",\n";
llvm::dbgs() << "}\n";
});
// Try to inline each of the call operations. Don't cache the end iterator
// here as more calls may be added during inlining.
bool inlinedAnyCalls = false;
for (unsigned i = 0; i < calls.size(); ++i) {
if (deadNodes.contains(calls[i].sourceNode))
continue;
ResolvedCall it = calls[i];
InlineHistoryT inlineHistoryID = callHistory[i];
bool inHistory =
inlineHistoryIncludes(it.targetNode, inlineHistoryID, inlineHistory);
bool doInline = !inHistory && shouldInline(it);
CallOpInterface call = it.call;
LLVM_DEBUG({
if (doInline)
llvm::dbgs() << "* Inlining call: " << i << ". " << call << "\n";
else
llvm::dbgs() << "* Not inlining call: " << i << ". " << call << "\n";
});
if (!doInline)
continue;
unsigned prevSize = calls.size();
Region *targetRegion = it.targetNode->getCallableRegion();
// If this is the last call to the target node and the node is discardable,
// then inline it in-place and delete the node if successful.
bool inlineInPlace = useList.hasOneUseAndDiscardable(it.targetNode);
LogicalResult inlineResult =
inlineCall(inlinerIface, inliner.config.getCloneCallback(), call,
cast<CallableOpInterface>(targetRegion->getParentOp()),
targetRegion, /*shouldCloneInlinedRegion=*/!inlineInPlace);
if (failed(inlineResult)) {
LLVM_DEBUG(llvm::dbgs() << "** Failed to inline\n");
continue;
}
inlinedAnyCalls = true;
// Create a inline history entry for this inlined call, so that we remember
// that new callsites came about due to inlining Callee.
InlineHistoryT newInlineHistoryID{inlineHistory.size()};
inlineHistory.push_back(std::make_pair(it.targetNode, inlineHistoryID));
auto historyToString = [](InlineHistoryT h) {
return h.has_value() ? std::to_string(*h) : "root";
};
(void)historyToString;
LLVM_DEBUG(llvm::dbgs()
<< "* new inlineHistory entry: " << newInlineHistoryID << ". ["
<< getNodeName(call) << ", " << historyToString(inlineHistoryID)
<< "]\n");
for (unsigned k = prevSize; k != calls.size(); ++k) {
callHistory.push_back(newInlineHistoryID);
LLVM_DEBUG(llvm::dbgs() << "* new call " << k << " {" << calls[i].call
<< "}\n with historyID = " << newInlineHistoryID
<< ", added due to inlining of\n call {" << call
<< "}\n with historyID = "
<< historyToString(inlineHistoryID) << "\n");
}
// If the inlining was successful, Merge the new uses into the source node.
useList.dropCallUses(it.sourceNode, call.getOperation(), cg);
useList.mergeUsesAfterInlining(it.targetNode, it.sourceNode);
// then erase the call.
call.erase();
// If we inlined in place, mark the node for deletion.
if (inlineInPlace) {
useList.eraseNode(it.targetNode);
deadNodes.insert(it.targetNode);
}
}
for (CallGraphNode *node : deadNodes) {
currentSCC.remove(node);
inlinerIface.markForDeletion(node);
}
calls.clear();
return success(inlinedAnyCalls);
}
/// Returns true if the given call should be inlined.
bool Inliner::Impl::shouldInline(ResolvedCall &resolvedCall) {
// Don't allow inlining terminator calls. We currently don't support this
// case.
if (resolvedCall.call->hasTrait<OpTrait::IsTerminator>())
return false;
// Don't allow inlining if the target is a self-recursive function.
// Don't allow inlining if the call graph is like A->B->A.
if (llvm::count_if(*resolvedCall.targetNode,
[&](CallGraphNode::Edge const &edge) -> bool {
return edge.getTarget() == resolvedCall.targetNode ||
edge.getTarget() == resolvedCall.sourceNode;
}) > 0)
return false;
// Don't allow inlining if the target is an ancestor of the call. This
// prevents inlining recursively.
Region *callableRegion = resolvedCall.targetNode->getCallableRegion();
if (callableRegion->isAncestor(resolvedCall.call->getParentRegion()))
return false;
// Don't allow inlining if the callee has multiple blocks (unstructured
// control flow) but we cannot be sure that the caller region supports that.
if (!inliner.config.getCanHandleMultipleBlocks()) {
bool calleeHasMultipleBlocks =
llvm::hasNItemsOrMore(*callableRegion, /*N=*/2);
// If both parent ops have the same type, it is safe to inline. Otherwise,
// decide based on whether the op has the SingleBlock trait or not.
// Note: This check does currently not account for
// SizedRegion/MaxSizedRegion.
auto callerRegionSupportsMultipleBlocks = [&]() {
return callableRegion->getParentOp()->getName() ==
resolvedCall.call->getParentOp()->getName() ||
!resolvedCall.call->getParentOp()
->mightHaveTrait<OpTrait::SingleBlock>();
};
if (calleeHasMultipleBlocks && !callerRegionSupportsMultipleBlocks())
return false;
}
if (!inliner.isProfitableToInline(resolvedCall))
return false;
// Otherwise, inline.
return true;
}
LogicalResult Inliner::doInlining() {
Impl impl(*this);
auto *context = op->getContext();
// Run the inline transform in post-order over the SCCs in the callgraph.
SymbolTableCollection symbolTable;
// FIXME: some clean-up can be done for the arguments
// of the Impl's methods, if the inlinerIface and useList
// become the states of the Impl.
InlinerInterfaceImpl inlinerIface(context, cg, symbolTable);
CGUseList useList(op, cg, symbolTable);
LogicalResult result = runTransformOnCGSCCs(cg, [&](CallGraphSCC &scc) {
return impl.inlineSCC(inlinerIface, useList, scc, context);
});
if (failed(result))
return result;
// After inlining, make sure to erase any callables proven to be dead.
inlinerIface.eraseDeadCallables();
return success();
}
} // namespace mlir