Uniform S16 shifts have to be extended to S32 using appropriate Extend before lowering to S32 instruction. Uniform packed V2S16 are lowered to SGPR S32 instructions, other option is to use VALU packed V2S16 and ReadAnyLane. For uniform S32 and S64 and divergent S16, S32, S64 and V2S16 there are instructions available.
736 lines
28 KiB
C++
736 lines
28 KiB
C++
//===-- AMDGPURegBankLegalizeRules.cpp ------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// Definitions of RegBankLegalize Rules for all opcodes.
|
|
/// Implementation of container for all the Rules and search.
|
|
/// Fast search for most common case when Rule.Predicate checks LLT and
|
|
/// uniformity of register in operand 0.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPURegBankLegalizeRules.h"
|
|
#include "AMDGPUInstrInfo.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
|
|
#include "llvm/CodeGen/MachineUniformityAnalysis.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/Support/AMDGPUAddrSpace.h"
|
|
|
|
#define DEBUG_TYPE "amdgpu-regbanklegalize"
|
|
|
|
using namespace llvm;
|
|
using namespace AMDGPU;
|
|
|
|
RegBankLLTMapping::RegBankLLTMapping(
|
|
std::initializer_list<RegBankLLTMappingApplyID> DstOpMappingList,
|
|
std::initializer_list<RegBankLLTMappingApplyID> SrcOpMappingList,
|
|
LoweringMethodID LoweringMethod)
|
|
: DstOpMapping(DstOpMappingList), SrcOpMapping(SrcOpMappingList),
|
|
LoweringMethod(LoweringMethod) {}
|
|
|
|
PredicateMapping::PredicateMapping(
|
|
std::initializer_list<UniformityLLTOpPredicateID> OpList,
|
|
std::function<bool(const MachineInstr &)> TestFunc)
|
|
: OpUniformityAndTypes(OpList), TestFunc(TestFunc) {}
|
|
|
|
bool matchUniformityAndLLT(Register Reg, UniformityLLTOpPredicateID UniID,
|
|
const MachineUniformityInfo &MUI,
|
|
const MachineRegisterInfo &MRI) {
|
|
switch (UniID) {
|
|
case S1:
|
|
return MRI.getType(Reg) == LLT::scalar(1);
|
|
case S16:
|
|
return MRI.getType(Reg) == LLT::scalar(16);
|
|
case S32:
|
|
return MRI.getType(Reg) == LLT::scalar(32);
|
|
case S64:
|
|
return MRI.getType(Reg) == LLT::scalar(64);
|
|
case P0:
|
|
return MRI.getType(Reg) == LLT::pointer(0, 64);
|
|
case P1:
|
|
return MRI.getType(Reg) == LLT::pointer(1, 64);
|
|
case P3:
|
|
return MRI.getType(Reg) == LLT::pointer(3, 32);
|
|
case P4:
|
|
return MRI.getType(Reg) == LLT::pointer(4, 64);
|
|
case P5:
|
|
return MRI.getType(Reg) == LLT::pointer(5, 32);
|
|
case V2S32:
|
|
return MRI.getType(Reg) == LLT::fixed_vector(2, 32);
|
|
case V4S32:
|
|
return MRI.getType(Reg) == LLT::fixed_vector(4, 32);
|
|
case B32:
|
|
return MRI.getType(Reg).getSizeInBits() == 32;
|
|
case B64:
|
|
return MRI.getType(Reg).getSizeInBits() == 64;
|
|
case B96:
|
|
return MRI.getType(Reg).getSizeInBits() == 96;
|
|
case B128:
|
|
return MRI.getType(Reg).getSizeInBits() == 128;
|
|
case B256:
|
|
return MRI.getType(Reg).getSizeInBits() == 256;
|
|
case B512:
|
|
return MRI.getType(Reg).getSizeInBits() == 512;
|
|
case UniS1:
|
|
return MRI.getType(Reg) == LLT::scalar(1) && MUI.isUniform(Reg);
|
|
case UniS16:
|
|
return MRI.getType(Reg) == LLT::scalar(16) && MUI.isUniform(Reg);
|
|
case UniS32:
|
|
return MRI.getType(Reg) == LLT::scalar(32) && MUI.isUniform(Reg);
|
|
case UniS64:
|
|
return MRI.getType(Reg) == LLT::scalar(64) && MUI.isUniform(Reg);
|
|
case UniP0:
|
|
return MRI.getType(Reg) == LLT::pointer(0, 64) && MUI.isUniform(Reg);
|
|
case UniP1:
|
|
return MRI.getType(Reg) == LLT::pointer(1, 64) && MUI.isUniform(Reg);
|
|
case UniP3:
|
|
return MRI.getType(Reg) == LLT::pointer(3, 32) && MUI.isUniform(Reg);
|
|
case UniP4:
|
|
return MRI.getType(Reg) == LLT::pointer(4, 64) && MUI.isUniform(Reg);
|
|
case UniP5:
|
|
return MRI.getType(Reg) == LLT::pointer(5, 32) && MUI.isUniform(Reg);
|
|
case UniV2S16:
|
|
return MRI.getType(Reg) == LLT::fixed_vector(2, 16) && MUI.isUniform(Reg);
|
|
case UniB32:
|
|
return MRI.getType(Reg).getSizeInBits() == 32 && MUI.isUniform(Reg);
|
|
case UniB64:
|
|
return MRI.getType(Reg).getSizeInBits() == 64 && MUI.isUniform(Reg);
|
|
case UniB96:
|
|
return MRI.getType(Reg).getSizeInBits() == 96 && MUI.isUniform(Reg);
|
|
case UniB128:
|
|
return MRI.getType(Reg).getSizeInBits() == 128 && MUI.isUniform(Reg);
|
|
case UniB256:
|
|
return MRI.getType(Reg).getSizeInBits() == 256 && MUI.isUniform(Reg);
|
|
case UniB512:
|
|
return MRI.getType(Reg).getSizeInBits() == 512 && MUI.isUniform(Reg);
|
|
case DivS1:
|
|
return MRI.getType(Reg) == LLT::scalar(1) && MUI.isDivergent(Reg);
|
|
case DivS16:
|
|
return MRI.getType(Reg) == LLT::scalar(16) && MUI.isDivergent(Reg);
|
|
case DivS32:
|
|
return MRI.getType(Reg) == LLT::scalar(32) && MUI.isDivergent(Reg);
|
|
case DivS64:
|
|
return MRI.getType(Reg) == LLT::scalar(64) && MUI.isDivergent(Reg);
|
|
case DivP0:
|
|
return MRI.getType(Reg) == LLT::pointer(0, 64) && MUI.isDivergent(Reg);
|
|
case DivP1:
|
|
return MRI.getType(Reg) == LLT::pointer(1, 64) && MUI.isDivergent(Reg);
|
|
case DivP3:
|
|
return MRI.getType(Reg) == LLT::pointer(3, 32) && MUI.isDivergent(Reg);
|
|
case DivP4:
|
|
return MRI.getType(Reg) == LLT::pointer(4, 64) && MUI.isDivergent(Reg);
|
|
case DivP5:
|
|
return MRI.getType(Reg) == LLT::pointer(5, 32) && MUI.isDivergent(Reg);
|
|
case DivV2S16:
|
|
return MRI.getType(Reg) == LLT::fixed_vector(2, 16) && MUI.isDivergent(Reg);
|
|
case DivB32:
|
|
return MRI.getType(Reg).getSizeInBits() == 32 && MUI.isDivergent(Reg);
|
|
case DivB64:
|
|
return MRI.getType(Reg).getSizeInBits() == 64 && MUI.isDivergent(Reg);
|
|
case DivB96:
|
|
return MRI.getType(Reg).getSizeInBits() == 96 && MUI.isDivergent(Reg);
|
|
case DivB128:
|
|
return MRI.getType(Reg).getSizeInBits() == 128 && MUI.isDivergent(Reg);
|
|
case DivB256:
|
|
return MRI.getType(Reg).getSizeInBits() == 256 && MUI.isDivergent(Reg);
|
|
case DivB512:
|
|
return MRI.getType(Reg).getSizeInBits() == 512 && MUI.isDivergent(Reg);
|
|
case _:
|
|
return true;
|
|
default:
|
|
llvm_unreachable("missing matchUniformityAndLLT");
|
|
}
|
|
}
|
|
|
|
bool PredicateMapping::match(const MachineInstr &MI,
|
|
const MachineUniformityInfo &MUI,
|
|
const MachineRegisterInfo &MRI) const {
|
|
// Check LLT signature.
|
|
for (unsigned i = 0; i < OpUniformityAndTypes.size(); ++i) {
|
|
if (OpUniformityAndTypes[i] == _) {
|
|
if (MI.getOperand(i).isReg())
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// Remaining IDs check registers.
|
|
if (!MI.getOperand(i).isReg())
|
|
return false;
|
|
|
|
if (!matchUniformityAndLLT(MI.getOperand(i).getReg(),
|
|
OpUniformityAndTypes[i], MUI, MRI))
|
|
return false;
|
|
}
|
|
|
|
// More complex check.
|
|
if (TestFunc)
|
|
return TestFunc(MI);
|
|
|
|
return true;
|
|
}
|
|
|
|
SetOfRulesForOpcode::SetOfRulesForOpcode() {}
|
|
|
|
SetOfRulesForOpcode::SetOfRulesForOpcode(FastRulesTypes FastTypes)
|
|
: FastTypes(FastTypes) {}
|
|
|
|
UniformityLLTOpPredicateID LLTToId(LLT Ty) {
|
|
if (Ty == LLT::scalar(16))
|
|
return S16;
|
|
if (Ty == LLT::scalar(32))
|
|
return S32;
|
|
if (Ty == LLT::scalar(64))
|
|
return S64;
|
|
if (Ty == LLT::fixed_vector(2, 16))
|
|
return V2S16;
|
|
if (Ty == LLT::fixed_vector(2, 32))
|
|
return V2S32;
|
|
if (Ty == LLT::fixed_vector(3, 32))
|
|
return V3S32;
|
|
if (Ty == LLT::fixed_vector(4, 32))
|
|
return V4S32;
|
|
return _;
|
|
}
|
|
|
|
UniformityLLTOpPredicateID LLTToBId(LLT Ty) {
|
|
if (Ty == LLT::scalar(32) || Ty == LLT::fixed_vector(2, 16) ||
|
|
Ty == LLT::pointer(3, 32) || Ty == LLT::pointer(5, 32) ||
|
|
Ty == LLT::pointer(6, 32))
|
|
return B32;
|
|
if (Ty == LLT::scalar(64) || Ty == LLT::fixed_vector(2, 32) ||
|
|
Ty == LLT::fixed_vector(4, 16) || Ty == LLT::pointer(1, 64) ||
|
|
Ty == LLT::pointer(4, 64) ||
|
|
(Ty.isPointer() && Ty.getAddressSpace() > AMDGPUAS::MAX_AMDGPU_ADDRESS))
|
|
return B64;
|
|
if (Ty == LLT::fixed_vector(3, 32))
|
|
return B96;
|
|
if (Ty == LLT::fixed_vector(4, 32))
|
|
return B128;
|
|
return _;
|
|
}
|
|
|
|
const RegBankLLTMapping &
|
|
SetOfRulesForOpcode::findMappingForMI(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI,
|
|
const MachineUniformityInfo &MUI) const {
|
|
// Search in "Fast Rules".
|
|
// Note: if fast rules are enabled, RegBankLLTMapping must be added in each
|
|
// slot that could "match fast Predicate". If not, InvalidMapping is
|
|
// returned which results in failure, does not search "Slow Rules".
|
|
if (FastTypes != NoFastRules) {
|
|
Register Reg = MI.getOperand(0).getReg();
|
|
int Slot;
|
|
if (FastTypes == StandardB)
|
|
Slot = getFastPredicateSlot(LLTToBId(MRI.getType(Reg)));
|
|
else
|
|
Slot = getFastPredicateSlot(LLTToId(MRI.getType(Reg)));
|
|
|
|
if (Slot != -1)
|
|
return MUI.isUniform(Reg) ? Uni[Slot] : Div[Slot];
|
|
}
|
|
|
|
// Slow search for more complex rules.
|
|
for (const RegBankLegalizeRule &Rule : Rules) {
|
|
if (Rule.Predicate.match(MI, MUI, MRI))
|
|
return Rule.OperandMapping;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
|
|
llvm_unreachable("None of the rules defined for MI's opcode matched MI");
|
|
}
|
|
|
|
void SetOfRulesForOpcode::addRule(RegBankLegalizeRule Rule) {
|
|
Rules.push_back(Rule);
|
|
}
|
|
|
|
void SetOfRulesForOpcode::addFastRuleDivergent(UniformityLLTOpPredicateID Ty,
|
|
RegBankLLTMapping RuleApplyIDs) {
|
|
int Slot = getFastPredicateSlot(Ty);
|
|
assert(Slot != -1 && "Ty unsupported in this FastRulesTypes");
|
|
Div[Slot] = RuleApplyIDs;
|
|
}
|
|
|
|
void SetOfRulesForOpcode::addFastRuleUniform(UniformityLLTOpPredicateID Ty,
|
|
RegBankLLTMapping RuleApplyIDs) {
|
|
int Slot = getFastPredicateSlot(Ty);
|
|
assert(Slot != -1 && "Ty unsupported in this FastRulesTypes");
|
|
Uni[Slot] = RuleApplyIDs;
|
|
}
|
|
|
|
int SetOfRulesForOpcode::getFastPredicateSlot(
|
|
UniformityLLTOpPredicateID Ty) const {
|
|
switch (FastTypes) {
|
|
case Standard: {
|
|
switch (Ty) {
|
|
case S32:
|
|
return 0;
|
|
case S16:
|
|
return 1;
|
|
case S64:
|
|
return 2;
|
|
case V2S16:
|
|
return 3;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
case StandardB: {
|
|
switch (Ty) {
|
|
case B32:
|
|
return 0;
|
|
case B64:
|
|
return 1;
|
|
case B96:
|
|
return 2;
|
|
case B128:
|
|
return 3;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
case Vector: {
|
|
switch (Ty) {
|
|
case S32:
|
|
return 0;
|
|
case V2S32:
|
|
return 1;
|
|
case V3S32:
|
|
return 2;
|
|
case V4S32:
|
|
return 3;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
RegBankLegalizeRules::RuleSetInitializer
|
|
RegBankLegalizeRules::addRulesForGOpcs(std::initializer_list<unsigned> OpcList,
|
|
FastRulesTypes FastTypes) {
|
|
return RuleSetInitializer(OpcList, GRulesAlias, GRules, FastTypes);
|
|
}
|
|
|
|
RegBankLegalizeRules::RuleSetInitializer
|
|
RegBankLegalizeRules::addRulesForIOpcs(std::initializer_list<unsigned> OpcList,
|
|
FastRulesTypes FastTypes) {
|
|
return RuleSetInitializer(OpcList, IRulesAlias, IRules, FastTypes);
|
|
}
|
|
|
|
const SetOfRulesForOpcode &
|
|
RegBankLegalizeRules::getRulesForOpc(MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
if (Opc == AMDGPU::G_INTRINSIC || Opc == AMDGPU::G_INTRINSIC_CONVERGENT ||
|
|
Opc == AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS ||
|
|
Opc == AMDGPU::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS) {
|
|
unsigned IntrID = cast<GIntrinsic>(MI).getIntrinsicID();
|
|
auto IRAIt = IRulesAlias.find(IntrID);
|
|
if (IRAIt == IRulesAlias.end()) {
|
|
LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
|
|
llvm_unreachable("No rules defined for intrinsic opcode");
|
|
}
|
|
return IRules.at(IRAIt->second);
|
|
}
|
|
|
|
auto GRAIt = GRulesAlias.find(Opc);
|
|
if (GRAIt == GRulesAlias.end()) {
|
|
LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
|
|
llvm_unreachable("No rules defined for generic opcode");
|
|
}
|
|
return GRules.at(GRAIt->second);
|
|
}
|
|
|
|
// Syntactic sugar wrapper for predicate lambda that enables '&&', '||' and '!'.
|
|
class Predicate {
|
|
private:
|
|
struct Elt {
|
|
// Save formula composed of Pred, '&&', '||' and '!' as a jump table.
|
|
// Sink ! to Pred. For example !((A && !B) || C) -> (!A || B) && !C
|
|
// Sequences of && and || will be represented by jumps, for example:
|
|
// (A && B && ... X) or (A && B && ... X) || Y
|
|
// A == true jump to B
|
|
// A == false jump to end or Y, result is A(false) or Y
|
|
// (A || B || ... X) or (A || B || ... X) && Y
|
|
// A == true jump to end or Y, result is A(true) or Y
|
|
// A == false jump to B
|
|
// Notice that when negating expression, we simply flip Neg on each Pred
|
|
// and swap TJumpOffset and FJumpOffset (&& becomes ||, || becomes &&).
|
|
std::function<bool(const MachineInstr &)> Pred;
|
|
bool Neg; // Neg of Pred is calculated before jump
|
|
unsigned TJumpOffset;
|
|
unsigned FJumpOffset;
|
|
};
|
|
|
|
SmallVector<Elt, 8> Expression;
|
|
|
|
Predicate(SmallVectorImpl<Elt> &&Expr) { Expression.swap(Expr); };
|
|
|
|
public:
|
|
Predicate(std::function<bool(const MachineInstr &)> Pred) {
|
|
Expression.push_back({Pred, false, 1, 1});
|
|
};
|
|
|
|
bool operator()(const MachineInstr &MI) const {
|
|
unsigned Idx = 0;
|
|
unsigned ResultIdx = Expression.size();
|
|
bool Result;
|
|
do {
|
|
Result = Expression[Idx].Pred(MI);
|
|
Result = Expression[Idx].Neg ? !Result : Result;
|
|
if (Result) {
|
|
Idx += Expression[Idx].TJumpOffset;
|
|
} else {
|
|
Idx += Expression[Idx].FJumpOffset;
|
|
}
|
|
} while ((Idx != ResultIdx));
|
|
|
|
return Result;
|
|
};
|
|
|
|
Predicate operator!() const {
|
|
SmallVector<Elt, 8> NegExpression;
|
|
for (const Elt &ExprElt : Expression) {
|
|
NegExpression.push_back({ExprElt.Pred, !ExprElt.Neg, ExprElt.FJumpOffset,
|
|
ExprElt.TJumpOffset});
|
|
}
|
|
return Predicate(std::move(NegExpression));
|
|
};
|
|
|
|
Predicate operator&&(const Predicate &RHS) const {
|
|
SmallVector<Elt, 8> AndExpression = Expression;
|
|
|
|
unsigned RHSSize = RHS.Expression.size();
|
|
unsigned ResultIdx = Expression.size();
|
|
for (unsigned i = 0; i < ResultIdx; ++i) {
|
|
// LHS results in false, whole expression results in false.
|
|
if (i + AndExpression[i].FJumpOffset == ResultIdx)
|
|
AndExpression[i].FJumpOffset += RHSSize;
|
|
}
|
|
|
|
AndExpression.append(RHS.Expression);
|
|
|
|
return Predicate(std::move(AndExpression));
|
|
}
|
|
|
|
Predicate operator||(const Predicate &RHS) const {
|
|
SmallVector<Elt, 8> OrExpression = Expression;
|
|
|
|
unsigned RHSSize = RHS.Expression.size();
|
|
unsigned ResultIdx = Expression.size();
|
|
for (unsigned i = 0; i < ResultIdx; ++i) {
|
|
// LHS results in true, whole expression results in true.
|
|
if (i + OrExpression[i].TJumpOffset == ResultIdx)
|
|
OrExpression[i].TJumpOffset += RHSSize;
|
|
}
|
|
|
|
OrExpression.append(RHS.Expression);
|
|
|
|
return Predicate(std::move(OrExpression));
|
|
}
|
|
};
|
|
|
|
// Initialize rules
|
|
RegBankLegalizeRules::RegBankLegalizeRules(const GCNSubtarget &_ST,
|
|
MachineRegisterInfo &_MRI)
|
|
: ST(&_ST), MRI(&_MRI) {
|
|
|
|
addRulesForGOpcs({G_ADD, G_SUB}, Standard)
|
|
.Uni(S32, {{Sgpr32}, {Sgpr32, Sgpr32}})
|
|
.Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32}});
|
|
|
|
addRulesForGOpcs({G_MUL}, Standard).Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32}});
|
|
|
|
addRulesForGOpcs({G_XOR, G_OR, G_AND}, StandardB)
|
|
.Any({{UniS1}, {{Sgpr32Trunc}, {Sgpr32AExt, Sgpr32AExt}}})
|
|
.Any({{DivS1}, {{Vcc}, {Vcc, Vcc}}})
|
|
.Any({{UniS16}, {{Sgpr16}, {Sgpr16, Sgpr16}}})
|
|
.Any({{DivS16}, {{Vgpr16}, {Vgpr16, Vgpr16}}})
|
|
.Uni(B32, {{SgprB32}, {SgprB32, SgprB32}})
|
|
.Div(B32, {{VgprB32}, {VgprB32, VgprB32}})
|
|
.Uni(B64, {{SgprB64}, {SgprB64, SgprB64}})
|
|
.Div(B64, {{VgprB64}, {VgprB64, VgprB64}, SplitTo32});
|
|
|
|
addRulesForGOpcs({G_SHL}, Standard)
|
|
.Uni(S16, {{Sgpr32Trunc}, {Sgpr32AExt, Sgpr32ZExt}})
|
|
.Div(S16, {{Vgpr16}, {Vgpr16, Vgpr16}})
|
|
.Uni(V2S16, {{SgprV2S16}, {SgprV2S16, SgprV2S16}, UnpackBitShift})
|
|
.Div(V2S16, {{VgprV2S16}, {VgprV2S16, VgprV2S16}})
|
|
.Uni(S32, {{Sgpr32}, {Sgpr32, Sgpr32}})
|
|
.Uni(S64, {{Sgpr64}, {Sgpr64, Sgpr32}})
|
|
.Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32}})
|
|
.Div(S64, {{Vgpr64}, {Vgpr64, Vgpr32}});
|
|
|
|
addRulesForGOpcs({G_LSHR}, Standard)
|
|
.Uni(S16, {{Sgpr32Trunc}, {Sgpr32ZExt, Sgpr32ZExt}})
|
|
.Div(S16, {{Vgpr16}, {Vgpr16, Vgpr16}})
|
|
.Uni(V2S16, {{SgprV2S16}, {SgprV2S16, SgprV2S16}, UnpackBitShift})
|
|
.Div(V2S16, {{VgprV2S16}, {VgprV2S16, VgprV2S16}})
|
|
.Uni(S32, {{Sgpr32}, {Sgpr32, Sgpr32}})
|
|
.Uni(S64, {{Sgpr64}, {Sgpr64, Sgpr32}})
|
|
.Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32}})
|
|
.Div(S64, {{Vgpr64}, {Vgpr64, Vgpr32}});
|
|
|
|
addRulesForGOpcs({G_ASHR}, Standard)
|
|
.Uni(S16, {{Sgpr32Trunc}, {Sgpr32SExt, Sgpr32ZExt}})
|
|
.Div(S16, {{Vgpr16}, {Vgpr16, Vgpr16}})
|
|
.Uni(V2S16, {{SgprV2S16}, {SgprV2S16, SgprV2S16}, UnpackBitShift})
|
|
.Div(V2S16, {{VgprV2S16}, {VgprV2S16, VgprV2S16}})
|
|
.Uni(S32, {{Sgpr32}, {Sgpr32, Sgpr32}})
|
|
.Uni(S64, {{Sgpr64}, {Sgpr64, Sgpr32}})
|
|
.Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32}})
|
|
.Div(S64, {{Vgpr64}, {Vgpr64, Vgpr32}});
|
|
|
|
addRulesForGOpcs({G_FRAME_INDEX}).Any({{UniP5, _}, {{SgprP5}, {None}}});
|
|
|
|
addRulesForGOpcs({G_UBFX, G_SBFX}, Standard)
|
|
.Uni(S32, {{Sgpr32}, {Sgpr32, Sgpr32, Sgpr32}, S_BFE})
|
|
.Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32, Vgpr32}})
|
|
.Uni(S64, {{Sgpr64}, {Sgpr64, Sgpr32, Sgpr32}, S_BFE})
|
|
.Div(S64, {{Vgpr64}, {Vgpr64, Vgpr32, Vgpr32}, V_BFE});
|
|
|
|
// Note: we only write S1 rules for G_IMPLICIT_DEF, G_CONSTANT, G_FCONSTANT
|
|
// and G_FREEZE here, rest is trivially regbankselected earlier
|
|
addRulesForGOpcs({G_IMPLICIT_DEF}).Any({{UniS1}, {{Sgpr32Trunc}, {}}});
|
|
addRulesForGOpcs({G_CONSTANT})
|
|
.Any({{UniS1, _}, {{Sgpr32Trunc}, {None}, UniCstExt}});
|
|
addRulesForGOpcs({G_FREEZE}).Any({{DivS1}, {{Vcc}, {Vcc}}});
|
|
|
|
addRulesForGOpcs({G_ICMP})
|
|
.Any({{UniS1, _, S32}, {{Sgpr32Trunc}, {None, Sgpr32, Sgpr32}}})
|
|
.Any({{DivS1, _, S32}, {{Vcc}, {None, Vgpr32, Vgpr32}}});
|
|
|
|
addRulesForGOpcs({G_FCMP})
|
|
.Any({{UniS1, _, S32}, {{UniInVcc}, {None, Vgpr32, Vgpr32}}})
|
|
.Any({{DivS1, _, S32}, {{Vcc}, {None, Vgpr32, Vgpr32}}});
|
|
|
|
addRulesForGOpcs({G_BRCOND})
|
|
.Any({{UniS1}, {{}, {Sgpr32AExtBoolInReg}}})
|
|
.Any({{DivS1}, {{}, {Vcc}}});
|
|
|
|
addRulesForGOpcs({G_BR}).Any({{_}, {{}, {None}}});
|
|
|
|
addRulesForGOpcs({G_SELECT}, StandardB)
|
|
.Any({{DivS16}, {{Vgpr16}, {Vcc, Vgpr16, Vgpr16}}})
|
|
.Any({{UniS16}, {{Sgpr16}, {Sgpr32AExtBoolInReg, Sgpr16, Sgpr16}}})
|
|
.Div(B32, {{VgprB32}, {Vcc, VgprB32, VgprB32}})
|
|
.Uni(B32, {{SgprB32}, {Sgpr32AExtBoolInReg, SgprB32, SgprB32}})
|
|
.Div(B64, {{VgprB64}, {Vcc, VgprB64, VgprB64}, SplitTo32Select})
|
|
.Uni(B64, {{SgprB64}, {Sgpr32AExtBoolInReg, SgprB64, SgprB64}});
|
|
|
|
addRulesForGOpcs({G_ANYEXT})
|
|
.Any({{UniS16, S1}, {{None}, {None}}}) // should be combined away
|
|
.Any({{UniS32, S1}, {{None}, {None}}}) // should be combined away
|
|
.Any({{UniS64, S1}, {{None}, {None}}}) // should be combined away
|
|
.Any({{DivS16, S1}, {{Vgpr16}, {Vcc}, VccExtToSel}})
|
|
.Any({{DivS32, S1}, {{Vgpr32}, {Vcc}, VccExtToSel}})
|
|
.Any({{DivS64, S1}, {{Vgpr64}, {Vcc}, VccExtToSel}})
|
|
.Any({{UniS64, S32}, {{Sgpr64}, {Sgpr32}, Ext32To64}})
|
|
.Any({{DivS64, S32}, {{Vgpr64}, {Vgpr32}, Ext32To64}})
|
|
.Any({{UniS32, S16}, {{Sgpr32}, {Sgpr16}}})
|
|
.Any({{DivS32, S16}, {{Vgpr32}, {Vgpr16}}});
|
|
|
|
// In global-isel G_TRUNC in-reg is treated as no-op, inst selected into COPY.
|
|
// It is up to user to deal with truncated bits.
|
|
addRulesForGOpcs({G_TRUNC})
|
|
.Any({{UniS1, UniS16}, {{None}, {None}}}) // should be combined away
|
|
.Any({{UniS1, UniS32}, {{None}, {None}}}) // should be combined away
|
|
.Any({{UniS1, UniS64}, {{None}, {None}}}) // should be combined away
|
|
.Any({{UniS16, S32}, {{Sgpr16}, {Sgpr32}}})
|
|
.Any({{DivS16, S32}, {{Vgpr16}, {Vgpr32}}})
|
|
.Any({{UniS32, S64}, {{Sgpr32}, {Sgpr64}}})
|
|
.Any({{DivS32, S64}, {{Vgpr32}, {Vgpr64}}})
|
|
.Any({{UniV2S16, V2S32}, {{SgprV2S16}, {SgprV2S32}}})
|
|
.Any({{DivV2S16, V2S32}, {{VgprV2S16}, {VgprV2S32}}})
|
|
// This is non-trivial. VgprToVccCopy is done using compare instruction.
|
|
.Any({{DivS1, DivS16}, {{Vcc}, {Vgpr16}, VgprToVccCopy}})
|
|
.Any({{DivS1, DivS32}, {{Vcc}, {Vgpr32}, VgprToVccCopy}})
|
|
.Any({{DivS1, DivS64}, {{Vcc}, {Vgpr64}, VgprToVccCopy}});
|
|
|
|
addRulesForGOpcs({G_ZEXT})
|
|
.Any({{UniS16, S1}, {{Sgpr32Trunc}, {Sgpr32AExtBoolInReg}, UniExtToSel}})
|
|
.Any({{UniS32, S1}, {{Sgpr32}, {Sgpr32AExtBoolInReg}, UniExtToSel}})
|
|
.Any({{UniS64, S1}, {{Sgpr64}, {Sgpr32AExtBoolInReg}, UniExtToSel}})
|
|
.Any({{DivS16, S1}, {{Vgpr16}, {Vcc}, VccExtToSel}})
|
|
.Any({{DivS32, S1}, {{Vgpr32}, {Vcc}, VccExtToSel}})
|
|
.Any({{DivS64, S1}, {{Vgpr64}, {Vcc}, VccExtToSel}})
|
|
.Any({{UniS64, S32}, {{Sgpr64}, {Sgpr32}, Ext32To64}})
|
|
.Any({{DivS64, S32}, {{Vgpr64}, {Vgpr32}, Ext32To64}})
|
|
// not extending S16 to S32 is questionable.
|
|
.Any({{UniS64, S16}, {{Sgpr64}, {Sgpr32ZExt}, Ext32To64}})
|
|
.Any({{DivS64, S16}, {{Vgpr64}, {Vgpr32ZExt}, Ext32To64}})
|
|
.Any({{UniS32, S16}, {{Sgpr32}, {Sgpr16}}})
|
|
.Any({{DivS32, S16}, {{Vgpr32}, {Vgpr16}}});
|
|
|
|
addRulesForGOpcs({G_SEXT})
|
|
.Any({{UniS16, S1}, {{Sgpr32Trunc}, {Sgpr32AExtBoolInReg}, UniExtToSel}})
|
|
.Any({{UniS32, S1}, {{Sgpr32}, {Sgpr32AExtBoolInReg}, UniExtToSel}})
|
|
.Any({{UniS64, S1}, {{Sgpr64}, {Sgpr32AExtBoolInReg}, UniExtToSel}})
|
|
.Any({{DivS16, S1}, {{Vgpr16}, {Vcc}, VccExtToSel}})
|
|
.Any({{DivS32, S1}, {{Vgpr32}, {Vcc}, VccExtToSel}})
|
|
.Any({{DivS64, S1}, {{Vgpr64}, {Vcc}, VccExtToSel}})
|
|
.Any({{UniS64, S32}, {{Sgpr64}, {Sgpr32}, Ext32To64}})
|
|
.Any({{DivS64, S32}, {{Vgpr64}, {Vgpr32}, Ext32To64}})
|
|
// not extending S16 to S32 is questionable.
|
|
.Any({{UniS64, S16}, {{Sgpr64}, {Sgpr32SExt}, Ext32To64}})
|
|
.Any({{DivS64, S16}, {{Vgpr64}, {Vgpr32SExt}, Ext32To64}})
|
|
.Any({{UniS32, S16}, {{Sgpr32}, {Sgpr16}}})
|
|
.Any({{DivS32, S16}, {{Vgpr32}, {Vgpr16}}});
|
|
|
|
addRulesForGOpcs({G_SEXT_INREG})
|
|
.Any({{UniS32, S32}, {{Sgpr32}, {Sgpr32}}})
|
|
.Any({{DivS32, S32}, {{Vgpr32}, {Vgpr32}}})
|
|
.Any({{UniS64, S64}, {{Sgpr64}, {Sgpr64}}})
|
|
.Any({{DivS64, S64}, {{Vgpr64}, {Vgpr64}, SplitTo32SExtInReg}});
|
|
|
|
bool hasUnalignedLoads = ST->getGeneration() >= AMDGPUSubtarget::GFX12;
|
|
bool hasSMRDSmall = ST->hasScalarSubwordLoads();
|
|
|
|
Predicate isAlign16([](const MachineInstr &MI) -> bool {
|
|
return (*MI.memoperands_begin())->getAlign() >= Align(16);
|
|
});
|
|
|
|
Predicate isAlign4([](const MachineInstr &MI) -> bool {
|
|
return (*MI.memoperands_begin())->getAlign() >= Align(4);
|
|
});
|
|
|
|
Predicate isAtomicMMO([](const MachineInstr &MI) -> bool {
|
|
return (*MI.memoperands_begin())->isAtomic();
|
|
});
|
|
|
|
Predicate isUniMMO([](const MachineInstr &MI) -> bool {
|
|
return AMDGPUInstrInfo::isUniformMMO(*MI.memoperands_begin());
|
|
});
|
|
|
|
Predicate isConst([](const MachineInstr &MI) -> bool {
|
|
// Address space in MMO be different then address space on pointer.
|
|
const MachineMemOperand *MMO = *MI.memoperands_begin();
|
|
const unsigned AS = MMO->getAddrSpace();
|
|
return AS == AMDGPUAS::CONSTANT_ADDRESS ||
|
|
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
|
|
});
|
|
|
|
Predicate isVolatileMMO([](const MachineInstr &MI) -> bool {
|
|
return (*MI.memoperands_begin())->isVolatile();
|
|
});
|
|
|
|
Predicate isInvMMO([](const MachineInstr &MI) -> bool {
|
|
return (*MI.memoperands_begin())->isInvariant();
|
|
});
|
|
|
|
Predicate isNoClobberMMO([](const MachineInstr &MI) -> bool {
|
|
return (*MI.memoperands_begin())->getFlags() & MONoClobber;
|
|
});
|
|
|
|
Predicate isNaturalAlignedSmall([](const MachineInstr &MI) -> bool {
|
|
const MachineMemOperand *MMO = *MI.memoperands_begin();
|
|
const unsigned MemSize = 8 * MMO->getSize().getValue();
|
|
return (MemSize == 16 && MMO->getAlign() >= Align(2)) ||
|
|
(MemSize == 8 && MMO->getAlign() >= Align(1));
|
|
});
|
|
|
|
auto isUL = !isAtomicMMO && isUniMMO && (isConst || !isVolatileMMO) &&
|
|
(isConst || isInvMMO || isNoClobberMMO);
|
|
|
|
// clang-format off
|
|
addRulesForGOpcs({G_LOAD})
|
|
.Any({{DivB32, DivP0}, {{VgprB32}, {VgprP0}}})
|
|
|
|
.Any({{DivB32, DivP1}, {{VgprB32}, {VgprP1}}})
|
|
.Any({{{UniB256, UniP1}, isAlign4 && isUL}, {{SgprB256}, {SgprP1}}})
|
|
.Any({{{UniB512, UniP1}, isAlign4 && isUL}, {{SgprB512}, {SgprP1}}})
|
|
.Any({{{UniB32, UniP1}, !isAlign4 || !isUL}, {{UniInVgprB32}, {SgprP1}}})
|
|
.Any({{{UniB256, UniP1}, !isAlign4 || !isUL}, {{UniInVgprB256}, {VgprP1}, SplitLoad}})
|
|
.Any({{{UniB512, UniP1}, !isAlign4 || !isUL}, {{UniInVgprB512}, {VgprP1}, SplitLoad}})
|
|
|
|
.Any({{DivB32, UniP3}, {{VgprB32}, {VgprP3}}})
|
|
.Any({{{UniB32, UniP3}, isAlign4 && isUL}, {{SgprB32}, {SgprP3}}})
|
|
.Any({{{UniB32, UniP3}, !isAlign4 || !isUL}, {{UniInVgprB32}, {VgprP3}}})
|
|
|
|
.Any({{{DivB256, DivP4}}, {{VgprB256}, {VgprP4}, SplitLoad}})
|
|
.Any({{{UniB32, UniP4}, isNaturalAlignedSmall && isUL}, {{SgprB32}, {SgprP4}}}, hasSMRDSmall) // i8 and i16 load
|
|
.Any({{{UniB32, UniP4}, isAlign4 && isUL}, {{SgprB32}, {SgprP4}}})
|
|
.Any({{{UniB96, UniP4}, isAlign16 && isUL}, {{SgprB96}, {SgprP4}, WidenLoad}}, !hasUnalignedLoads)
|
|
.Any({{{UniB96, UniP4}, isAlign4 && !isAlign16 && isUL}, {{SgprB96}, {SgprP4}, SplitLoad}}, !hasUnalignedLoads)
|
|
.Any({{{UniB96, UniP4}, isAlign4 && isUL}, {{SgprB96}, {SgprP4}}}, hasUnalignedLoads)
|
|
.Any({{{UniB256, UniP4}, isAlign4 && isUL}, {{SgprB256}, {SgprP4}}})
|
|
.Any({{{UniB512, UniP4}, isAlign4 && isUL}, {{SgprB512}, {SgprP4}}})
|
|
.Any({{{UniB32, UniP4}, !isNaturalAlignedSmall || !isUL}, {{UniInVgprB32}, {VgprP4}}}, hasSMRDSmall) // i8 and i16 load
|
|
.Any({{{UniB32, UniP4}, !isAlign4 || !isUL}, {{UniInVgprB32}, {VgprP4}}})
|
|
.Any({{{UniB256, UniP4}, !isAlign4 || !isUL}, {{UniInVgprB256}, {VgprP4}, SplitLoad}})
|
|
.Any({{{UniB512, UniP4}, !isAlign4 || !isUL}, {{UniInVgprB512}, {VgprP4}, SplitLoad}})
|
|
|
|
.Any({{DivB32, P5}, {{VgprB32}, {VgprP5}}});
|
|
|
|
addRulesForGOpcs({G_ZEXTLOAD}) // i8 and i16 zero-extending loads
|
|
.Any({{{UniB32, UniP3}, !isAlign4 || !isUL}, {{UniInVgprB32}, {VgprP3}}})
|
|
.Any({{{UniB32, UniP4}, !isAlign4 || !isUL}, {{UniInVgprB32}, {VgprP4}}});
|
|
// clang-format on
|
|
|
|
addRulesForGOpcs({G_AMDGPU_BUFFER_LOAD}, Vector)
|
|
.Div(S32, {{Vgpr32}, {SgprV4S32, Vgpr32, Vgpr32, Sgpr32}})
|
|
.Uni(S32, {{UniInVgprS32}, {SgprV4S32, Vgpr32, Vgpr32, Sgpr32}})
|
|
.Div(V4S32, {{VgprV4S32}, {SgprV4S32, Vgpr32, Vgpr32, Sgpr32}})
|
|
.Uni(V4S32, {{UniInVgprV4S32}, {SgprV4S32, Vgpr32, Vgpr32, Sgpr32}});
|
|
|
|
addRulesForGOpcs({G_STORE})
|
|
.Any({{S32, P0}, {{}, {Vgpr32, VgprP0}}})
|
|
.Any({{S32, P1}, {{}, {Vgpr32, VgprP1}}})
|
|
.Any({{S64, P1}, {{}, {Vgpr64, VgprP1}}})
|
|
.Any({{V4S32, P1}, {{}, {VgprV4S32, VgprP1}}});
|
|
|
|
addRulesForGOpcs({G_AMDGPU_BUFFER_STORE})
|
|
.Any({{S32}, {{}, {Vgpr32, SgprV4S32, Vgpr32, Vgpr32, Sgpr32}}});
|
|
|
|
addRulesForGOpcs({G_PTR_ADD})
|
|
.Any({{UniP1}, {{SgprP1}, {SgprP1, Sgpr64}}})
|
|
.Any({{DivP1}, {{VgprP1}, {VgprP1, Vgpr64}}})
|
|
.Any({{DivP0}, {{VgprP0}, {VgprP0, Vgpr64}}});
|
|
|
|
addRulesForGOpcs({G_INTTOPTR}).Any({{UniP4}, {{SgprP4}, {Sgpr64}}});
|
|
|
|
addRulesForGOpcs({G_ABS}, Standard).Uni(S16, {{Sgpr32Trunc}, {Sgpr32SExt}});
|
|
|
|
bool hasSALUFloat = ST->hasSALUFloatInsts();
|
|
|
|
addRulesForGOpcs({G_FADD}, Standard)
|
|
.Uni(S32, {{Sgpr32}, {Sgpr32, Sgpr32}}, hasSALUFloat)
|
|
.Uni(S32, {{UniInVgprS32}, {Vgpr32, Vgpr32}}, !hasSALUFloat)
|
|
.Div(S32, {{Vgpr32}, {Vgpr32, Vgpr32}});
|
|
|
|
addRulesForGOpcs({G_FPTOUI})
|
|
.Any({{UniS32, S32}, {{Sgpr32}, {Sgpr32}}}, hasSALUFloat)
|
|
.Any({{UniS32, S32}, {{UniInVgprS32}, {Vgpr32}}}, !hasSALUFloat);
|
|
|
|
addRulesForGOpcs({G_UITOFP})
|
|
.Any({{DivS32, S32}, {{Vgpr32}, {Vgpr32}}})
|
|
.Any({{UniS32, S32}, {{Sgpr32}, {Sgpr32}}}, hasSALUFloat)
|
|
.Any({{UniS32, S32}, {{UniInVgprS32}, {Vgpr32}}}, !hasSALUFloat);
|
|
|
|
using namespace Intrinsic;
|
|
|
|
addRulesForIOpcs({amdgcn_s_getpc}).Any({{UniS64, _}, {{Sgpr64}, {None}}});
|
|
|
|
// This is "intrinsic lane mask" it was set to i32/i64 in llvm-ir.
|
|
addRulesForIOpcs({amdgcn_end_cf}).Any({{_, S32}, {{}, {None, Sgpr32}}});
|
|
|
|
addRulesForIOpcs({amdgcn_if_break}, Standard)
|
|
.Uni(S32, {{Sgpr32}, {IntrId, Vcc, Sgpr32}});
|
|
|
|
addRulesForIOpcs({amdgcn_mbcnt_lo, amdgcn_mbcnt_hi}, Standard)
|
|
.Div(S32, {{}, {Vgpr32, None, Vgpr32, Vgpr32}});
|
|
|
|
addRulesForIOpcs({amdgcn_readfirstlane})
|
|
.Any({{UniS32, _, DivS32}, {{}, {Sgpr32, None, Vgpr32}}})
|
|
// this should not exist in the first place, it is from call lowering
|
|
// readfirstlaning just in case register is not in sgpr.
|
|
.Any({{UniS32, _, UniS32}, {{}, {Sgpr32, None, Vgpr32}}});
|
|
|
|
} // end initialize rules
|