Files
clang-p2996/mlir/test/python/dialects/sparse_tensor/dialect.py
wren romano 76647fce13 [mlir][sparse] Combining dimOrdering+higherOrdering fields into dimToLvl
This is a major step along the way towards the new STEA design.  While a great deal of this patch is simple renaming, there are several significant changes as well.  I've done my best to ensure that this patch retains the previous behavior and error-conditions, even though those are at odds with the eventual intended semantics of the `dimToLvl` mapping.  Since the majority of the compiler does not yet support non-permutations, I've also added explicit assertions in places that previously had implicitly assumed it was dealing with permutations.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D151505
2023-05-30 15:19:50 -07:00

109 lines
3.8 KiB
Python

# RUN: %PYTHON %s | FileCheck %s
from mlir.ir import *
from mlir.dialects import sparse_tensor as st
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: testEncodingAttr1D
@run
def testEncodingAttr1D():
with Context() as ctx:
parsed = Attribute.parse(
"#sparse_tensor.encoding<{"
' lvlTypes = [ "compressed" ],'
" posWidth = 16,"
" crdWidth = 32"
"}>"
)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ], posWidth = 16, crdWidth = 32 }>
print(parsed)
casted = st.EncodingAttr(parsed)
# CHECK: equal: True
print(f"equal: {casted == parsed}")
# CHECK: lvl_types: [<DimLevelType.compressed: 8>]
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: None
print(f"dim_to_lvl: {casted.dim_to_lvl}")
# CHECK: pos_width: 16
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
created = st.EncodingAttr.get(casted.lvl_types, None, 0, 0)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }>
print(created)
# CHECK: created_equal: False
print(f"created_equal: {created == casted}")
# Verify that the factory creates an instance of the proper type.
# CHECK: is_proper_instance: True
print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}")
# CHECK: created_pos_width: 0
print(f"created_pos_width: {created.pos_width}")
# CHECK-LABEL: TEST: testEncodingAttr2D
@run
def testEncodingAttr2D():
with Context() as ctx:
parsed = Attribute.parse(
"#sparse_tensor.encoding<{"
' lvlTypes = [ "dense", "compressed" ],'
" dimToLvl = affine_map<(d0, d1) -> (d1, d0)>,"
" posWidth = 8,"
" crdWidth = 32"
"}>"
)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)>, posWidth = 8, crdWidth = 32 }>
print(parsed)
casted = st.EncodingAttr(parsed)
# CHECK: equal: True
print(f"equal: {casted == parsed}")
# CHECK: lvl_types: [<DimLevelType.dense: 4>, <DimLevelType.compressed: 8>]
print(f"lvl_types: {casted.lvl_types}")
# CHECK: dim_to_lvl: (d0, d1) -> (d1, d0)
print(f"dim_to_lvl: {casted.dim_to_lvl}")
# CHECK: pos_width: 8
print(f"pos_width: {casted.pos_width}")
# CHECK: crd_width: 32
print(f"crd_width: {casted.crd_width}")
created = st.EncodingAttr.get(
casted.lvl_types, casted.dim_to_lvl, 8, 32
)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimToLvl = affine_map<(d0, d1) -> (d1, d0)>, posWidth = 8, crdWidth = 32 }>
print(created)
# CHECK: created_equal: True
print(f"created_equal: {created == casted}")
# CHECK-LABEL: TEST: testEncodingAttrOnTensorType
@run
def testEncodingAttrOnTensorType():
with Context() as ctx, Location.unknown():
encoding = st.EncodingAttr(
Attribute.parse(
"#sparse_tensor.encoding<{"
' lvlTypes = [ "compressed" ], '
" posWidth = 64,"
" crdWidth = 32"
"}>"
)
)
tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding)
# CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ], posWidth = 64, crdWidth = 32 }>>
print(tt)
# CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ], posWidth = 64, crdWidth = 32 }>
print(tt.encoding)
assert tt.encoding == encoding