Files
clang-p2996/mlir/test/python/lib/PythonTestModule.cpp
max bfb1ba7526 [MLIR][python bindings] Add TypeCaster for returning refined types from python APIs
depends on D150839

This diff uses `MlirTypeID` to register `TypeCaster`s (i.e., `[](PyType pyType) -> DerivedTy { return pyType; }`) for all concrete types (i.e., `PyConcrete<...>`) that are then queried for (by `MlirTypeID`) and called in `struct type_caster<MlirType>::cast`. The result is that anywhere an `MlirType mlirType` is returned from a python binding, that `mlirType` is automatically cast to the correct concrete type. For example:

```
      c0 = arith.ConstantOp(f32, 0.0)
      # CHECK: F32Type(f32)
      print(repr(c0.result.type))

      unranked_tensor_type = UnrankedTensorType.get(f32)
      unranked_tensor = tensor.FromElementsOp(unranked_tensor_type, [c0]).result

      # CHECK: UnrankedTensorType
      print(type(unranked_tensor.type).__name__)
      # CHECK: UnrankedTensorType(tensor<*xf32>)
      print(repr(unranked_tensor.type))
```

This functionality immediately extends to typed attributes (i.e., `attr.type`).

The diff also implements similar functionality for `mlir_type_subclass`es but in a slightly different way - for such types (which have no cpp corresponding `class` or `struct`) the user must provide a type caster in python (similar to how `AttrBuilder` works) or in cpp as a `py::cpp_function`.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D150927
2023-05-26 11:02:05 -05:00

81 lines
3.2 KiB
C++

//===- PythonTestModule.cpp - Python extension for the PythonTest dialect -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PythonTestCAPI.h"
#include "mlir-c/BuiltinAttributes.h"
#include "mlir-c/BuiltinTypes.h"
#include "mlir-c/IR.h"
#include "mlir/Bindings/Python/PybindAdaptors.h"
namespace py = pybind11;
using namespace mlir::python::adaptors;
using namespace pybind11::literals;
static bool mlirTypeIsARankedIntegerTensor(MlirType t) {
return mlirTypeIsARankedTensor(t) &&
mlirTypeIsAInteger(mlirShapedTypeGetElementType(t));
}
PYBIND11_MODULE(_mlirPythonTest, m) {
m.def(
"register_python_test_dialect",
[](MlirContext context, bool load) {
MlirDialectHandle pythonTestDialect =
mlirGetDialectHandle__python_test__();
mlirDialectHandleRegisterDialect(pythonTestDialect, context);
if (load) {
mlirDialectHandleLoadDialect(pythonTestDialect, context);
}
},
py::arg("context"), py::arg("load") = true);
mlir_attribute_subclass(m, "TestAttr",
mlirAttributeIsAPythonTestTestAttribute)
.def_classmethod(
"get",
[](py::object cls, MlirContext ctx) {
return cls(mlirPythonTestTestAttributeGet(ctx));
},
py::arg("cls"), py::arg("context") = py::none());
mlir_type_subclass(m, "TestType", mlirTypeIsAPythonTestTestType,
mlirPythonTestTestTypeGetTypeID)
.def_classmethod(
"get",
[](py::object cls, MlirContext ctx) {
return cls(mlirPythonTestTestTypeGet(ctx));
},
py::arg("cls"), py::arg("context") = py::none());
auto cls =
mlir_type_subclass(m, "TestIntegerRankedTensorType",
mlirTypeIsARankedIntegerTensor,
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr("RankedTensorType"))
.def_classmethod(
"get",
[](const py::object &cls, std::vector<int64_t> shape,
unsigned width, MlirContext ctx) {
MlirAttribute encoding = mlirAttributeGetNull();
return cls(mlirRankedTensorTypeGet(
shape.size(), shape.data(), mlirIntegerTypeGet(ctx, width),
encoding));
},
"cls"_a, "shape"_a, "width"_a, "context"_a = py::none());
assert(py::hasattr(cls.get_class(), "static_typeid") &&
"TestIntegerRankedTensorType has no static_typeid");
MlirTypeID mlirTypeID = mlirRankedTensorTypeGetTypeID();
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
.attr(MLIR_PYTHON_CAPI_TYPE_CASTER_REGISTER_ATTR)(
mlirTypeID, pybind11::cpp_function([cls](const py::object &mlirType) {
return cls.get_class()(mlirType);
}),
/*replace=*/true);
mlir_value_subclass(m, "TestTensorValue",
mlirTypeIsAPythonTestTestTensorValue)
.def("is_null", [](MlirValue &self) { return mlirValueIsNull(self); });
}