depends on D150839
This diff uses `MlirTypeID` to register `TypeCaster`s (i.e., `[](PyType pyType) -> DerivedTy { return pyType; }`) for all concrete types (i.e., `PyConcrete<...>`) that are then queried for (by `MlirTypeID`) and called in `struct type_caster<MlirType>::cast`. The result is that anywhere an `MlirType mlirType` is returned from a python binding, that `mlirType` is automatically cast to the correct concrete type. For example:
```
c0 = arith.ConstantOp(f32, 0.0)
# CHECK: F32Type(f32)
print(repr(c0.result.type))
unranked_tensor_type = UnrankedTensorType.get(f32)
unranked_tensor = tensor.FromElementsOp(unranked_tensor_type, [c0]).result
# CHECK: UnrankedTensorType
print(type(unranked_tensor.type).__name__)
# CHECK: UnrankedTensorType(tensor<*xf32>)
print(repr(unranked_tensor.type))
```
This functionality immediately extends to typed attributes (i.e., `attr.type`).
The diff also implements similar functionality for `mlir_type_subclass`es but in a slightly different way - for such types (which have no cpp corresponding `class` or `struct`) the user must provide a type caster in python (similar to how `AttrBuilder` works) or in cpp as a `py::cpp_function`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D150927
81 lines
3.2 KiB
C++
81 lines
3.2 KiB
C++
//===- PythonTestModule.cpp - Python extension for the PythonTest dialect -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PythonTestCAPI.h"
|
|
#include "mlir-c/BuiltinAttributes.h"
|
|
#include "mlir-c/BuiltinTypes.h"
|
|
#include "mlir-c/IR.h"
|
|
#include "mlir/Bindings/Python/PybindAdaptors.h"
|
|
|
|
namespace py = pybind11;
|
|
using namespace mlir::python::adaptors;
|
|
using namespace pybind11::literals;
|
|
|
|
static bool mlirTypeIsARankedIntegerTensor(MlirType t) {
|
|
return mlirTypeIsARankedTensor(t) &&
|
|
mlirTypeIsAInteger(mlirShapedTypeGetElementType(t));
|
|
}
|
|
|
|
PYBIND11_MODULE(_mlirPythonTest, m) {
|
|
m.def(
|
|
"register_python_test_dialect",
|
|
[](MlirContext context, bool load) {
|
|
MlirDialectHandle pythonTestDialect =
|
|
mlirGetDialectHandle__python_test__();
|
|
mlirDialectHandleRegisterDialect(pythonTestDialect, context);
|
|
if (load) {
|
|
mlirDialectHandleLoadDialect(pythonTestDialect, context);
|
|
}
|
|
},
|
|
py::arg("context"), py::arg("load") = true);
|
|
|
|
mlir_attribute_subclass(m, "TestAttr",
|
|
mlirAttributeIsAPythonTestTestAttribute)
|
|
.def_classmethod(
|
|
"get",
|
|
[](py::object cls, MlirContext ctx) {
|
|
return cls(mlirPythonTestTestAttributeGet(ctx));
|
|
},
|
|
py::arg("cls"), py::arg("context") = py::none());
|
|
mlir_type_subclass(m, "TestType", mlirTypeIsAPythonTestTestType,
|
|
mlirPythonTestTestTypeGetTypeID)
|
|
.def_classmethod(
|
|
"get",
|
|
[](py::object cls, MlirContext ctx) {
|
|
return cls(mlirPythonTestTestTypeGet(ctx));
|
|
},
|
|
py::arg("cls"), py::arg("context") = py::none());
|
|
auto cls =
|
|
mlir_type_subclass(m, "TestIntegerRankedTensorType",
|
|
mlirTypeIsARankedIntegerTensor,
|
|
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
|
|
.attr("RankedTensorType"))
|
|
.def_classmethod(
|
|
"get",
|
|
[](const py::object &cls, std::vector<int64_t> shape,
|
|
unsigned width, MlirContext ctx) {
|
|
MlirAttribute encoding = mlirAttributeGetNull();
|
|
return cls(mlirRankedTensorTypeGet(
|
|
shape.size(), shape.data(), mlirIntegerTypeGet(ctx, width),
|
|
encoding));
|
|
},
|
|
"cls"_a, "shape"_a, "width"_a, "context"_a = py::none());
|
|
assert(py::hasattr(cls.get_class(), "static_typeid") &&
|
|
"TestIntegerRankedTensorType has no static_typeid");
|
|
MlirTypeID mlirTypeID = mlirRankedTensorTypeGetTypeID();
|
|
py::module::import(MAKE_MLIR_PYTHON_QUALNAME("ir"))
|
|
.attr(MLIR_PYTHON_CAPI_TYPE_CASTER_REGISTER_ATTR)(
|
|
mlirTypeID, pybind11::cpp_function([cls](const py::object &mlirType) {
|
|
return cls.get_class()(mlirType);
|
|
}),
|
|
/*replace=*/true);
|
|
mlir_value_subclass(m, "TestTensorValue",
|
|
mlirTypeIsAPythonTestTestTensorValue)
|
|
.def("is_null", [](MlirValue &self) { return mlirValueIsNull(self); });
|
|
}
|