The current implementation of getBackwardSlice will crash if an operation in the dependency chain is defined by an operation with multiple regions or blocks. Crashing is bad (and forbids many analyses from using getBackwardSlice, as well as causing existing users of getBackwardSlice to fail for IR with this property). This PR instead causes the analysis to return a failure, rather than crash in the cases it cannot compute the full slice --------- Co-authored-by: Oleksandr "Alex" Zinenko <git@ozinenko.com>
1189 lines
45 KiB
C++
1189 lines
45 KiB
C++
//===- RegionUtils.cpp - Region-related transformation utilities ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
|
|
#include "mlir/Analysis/SliceAnalysis.h"
|
|
#include "mlir/Analysis/TopologicalSortUtils.h"
|
|
#include "mlir/IR/Block.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/RegionGraphTraits.h"
|
|
#include "mlir/IR/Value.h"
|
|
#include "mlir/Interfaces/ControlFlowInterfaces.h"
|
|
#include "mlir/Interfaces/SideEffectInterfaces.h"
|
|
#include "mlir/Support/LogicalResult.h"
|
|
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
|
|
#include <deque>
|
|
#include <iterator>
|
|
|
|
using namespace mlir;
|
|
|
|
void mlir::replaceAllUsesInRegionWith(Value orig, Value replacement,
|
|
Region ®ion) {
|
|
for (auto &use : llvm::make_early_inc_range(orig.getUses())) {
|
|
if (region.isAncestor(use.getOwner()->getParentRegion()))
|
|
use.set(replacement);
|
|
}
|
|
}
|
|
|
|
void mlir::visitUsedValuesDefinedAbove(
|
|
Region ®ion, Region &limit, function_ref<void(OpOperand *)> callback) {
|
|
assert(limit.isAncestor(®ion) &&
|
|
"expected isolation limit to be an ancestor of the given region");
|
|
|
|
// Collect proper ancestors of `limit` upfront to avoid traversing the region
|
|
// tree for every value.
|
|
SmallPtrSet<Region *, 4> properAncestors;
|
|
for (auto *reg = limit.getParentRegion(); reg != nullptr;
|
|
reg = reg->getParentRegion()) {
|
|
properAncestors.insert(reg);
|
|
}
|
|
|
|
region.walk([callback, &properAncestors](Operation *op) {
|
|
for (OpOperand &operand : op->getOpOperands())
|
|
// Callback on values defined in a proper ancestor of region.
|
|
if (properAncestors.count(operand.get().getParentRegion()))
|
|
callback(&operand);
|
|
});
|
|
}
|
|
|
|
void mlir::visitUsedValuesDefinedAbove(
|
|
MutableArrayRef<Region> regions, function_ref<void(OpOperand *)> callback) {
|
|
for (Region ®ion : regions)
|
|
visitUsedValuesDefinedAbove(region, region, callback);
|
|
}
|
|
|
|
void mlir::getUsedValuesDefinedAbove(Region ®ion, Region &limit,
|
|
SetVector<Value> &values) {
|
|
visitUsedValuesDefinedAbove(region, limit, [&](OpOperand *operand) {
|
|
values.insert(operand->get());
|
|
});
|
|
}
|
|
|
|
void mlir::getUsedValuesDefinedAbove(MutableArrayRef<Region> regions,
|
|
SetVector<Value> &values) {
|
|
for (Region ®ion : regions)
|
|
getUsedValuesDefinedAbove(region, region, values);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Make block isolated from above.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SmallVector<Value> mlir::makeRegionIsolatedFromAbove(
|
|
RewriterBase &rewriter, Region ®ion,
|
|
llvm::function_ref<bool(Operation *)> cloneOperationIntoRegion) {
|
|
|
|
// Get initial list of values used within region but defined above.
|
|
llvm::SetVector<Value> initialCapturedValues;
|
|
mlir::getUsedValuesDefinedAbove(region, initialCapturedValues);
|
|
|
|
std::deque<Value> worklist(initialCapturedValues.begin(),
|
|
initialCapturedValues.end());
|
|
llvm::DenseSet<Value> visited;
|
|
llvm::DenseSet<Operation *> visitedOps;
|
|
|
|
llvm::SetVector<Value> finalCapturedValues;
|
|
SmallVector<Operation *> clonedOperations;
|
|
while (!worklist.empty()) {
|
|
Value currValue = worklist.front();
|
|
worklist.pop_front();
|
|
if (visited.count(currValue))
|
|
continue;
|
|
visited.insert(currValue);
|
|
|
|
Operation *definingOp = currValue.getDefiningOp();
|
|
if (!definingOp || visitedOps.count(definingOp)) {
|
|
finalCapturedValues.insert(currValue);
|
|
continue;
|
|
}
|
|
visitedOps.insert(definingOp);
|
|
|
|
if (!cloneOperationIntoRegion(definingOp)) {
|
|
// Defining operation isnt cloned, so add the current value to final
|
|
// captured values list.
|
|
finalCapturedValues.insert(currValue);
|
|
continue;
|
|
}
|
|
|
|
// Add all operands of the operation to the worklist and mark the op as to
|
|
// be cloned.
|
|
for (Value operand : definingOp->getOperands()) {
|
|
if (visited.count(operand))
|
|
continue;
|
|
worklist.push_back(operand);
|
|
}
|
|
clonedOperations.push_back(definingOp);
|
|
}
|
|
|
|
// The operations to be cloned need to be ordered in topological order
|
|
// so that they can be cloned into the region without violating use-def
|
|
// chains.
|
|
mlir::computeTopologicalSorting(clonedOperations);
|
|
|
|
OpBuilder::InsertionGuard g(rewriter);
|
|
// Collect types of existing block
|
|
Block *entryBlock = ®ion.front();
|
|
SmallVector<Type> newArgTypes =
|
|
llvm::to_vector(entryBlock->getArgumentTypes());
|
|
SmallVector<Location> newArgLocs = llvm::to_vector(llvm::map_range(
|
|
entryBlock->getArguments(), [](BlockArgument b) { return b.getLoc(); }));
|
|
|
|
// Append the types of the captured values.
|
|
for (auto value : finalCapturedValues) {
|
|
newArgTypes.push_back(value.getType());
|
|
newArgLocs.push_back(value.getLoc());
|
|
}
|
|
|
|
// Create a new entry block.
|
|
Block *newEntryBlock =
|
|
rewriter.createBlock(®ion, region.begin(), newArgTypes, newArgLocs);
|
|
auto newEntryBlockArgs = newEntryBlock->getArguments();
|
|
|
|
// Create a mapping between the captured values and the new arguments added.
|
|
IRMapping map;
|
|
auto replaceIfFn = [&](OpOperand &use) {
|
|
return use.getOwner()->getBlock()->getParent() == ®ion;
|
|
};
|
|
for (auto [arg, capturedVal] :
|
|
llvm::zip(newEntryBlockArgs.take_back(finalCapturedValues.size()),
|
|
finalCapturedValues)) {
|
|
map.map(capturedVal, arg);
|
|
rewriter.replaceUsesWithIf(capturedVal, arg, replaceIfFn);
|
|
}
|
|
rewriter.setInsertionPointToStart(newEntryBlock);
|
|
for (auto *clonedOp : clonedOperations) {
|
|
Operation *newOp = rewriter.clone(*clonedOp, map);
|
|
rewriter.replaceOpUsesWithIf(clonedOp, newOp->getResults(), replaceIfFn);
|
|
}
|
|
rewriter.mergeBlocks(
|
|
entryBlock, newEntryBlock,
|
|
newEntryBlock->getArguments().take_front(entryBlock->getNumArguments()));
|
|
return llvm::to_vector(finalCapturedValues);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unreachable Block Elimination
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Erase the unreachable blocks within the provided regions. Returns success
|
|
/// if any blocks were erased, failure otherwise.
|
|
// TODO: We could likely merge this with the DCE algorithm below.
|
|
LogicalResult mlir::eraseUnreachableBlocks(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions) {
|
|
// Set of blocks found to be reachable within a given region.
|
|
llvm::df_iterator_default_set<Block *, 16> reachable;
|
|
// If any blocks were found to be dead.
|
|
bool erasedDeadBlocks = false;
|
|
|
|
SmallVector<Region *, 1> worklist;
|
|
worklist.reserve(regions.size());
|
|
for (Region ®ion : regions)
|
|
worklist.push_back(®ion);
|
|
while (!worklist.empty()) {
|
|
Region *region = worklist.pop_back_val();
|
|
if (region->empty())
|
|
continue;
|
|
|
|
// If this is a single block region, just collect the nested regions.
|
|
if (region->hasOneBlock()) {
|
|
for (Operation &op : region->front())
|
|
for (Region ®ion : op.getRegions())
|
|
worklist.push_back(®ion);
|
|
continue;
|
|
}
|
|
|
|
// Mark all reachable blocks.
|
|
reachable.clear();
|
|
for (Block *block : depth_first_ext(®ion->front(), reachable))
|
|
(void)block /* Mark all reachable blocks */;
|
|
|
|
// Collect all of the dead blocks and push the live regions onto the
|
|
// worklist.
|
|
for (Block &block : llvm::make_early_inc_range(*region)) {
|
|
if (!reachable.count(&block)) {
|
|
block.dropAllDefinedValueUses();
|
|
rewriter.eraseBlock(&block);
|
|
erasedDeadBlocks = true;
|
|
continue;
|
|
}
|
|
|
|
// Walk any regions within this block.
|
|
for (Operation &op : block)
|
|
for (Region ®ion : op.getRegions())
|
|
worklist.push_back(®ion);
|
|
}
|
|
}
|
|
|
|
return success(erasedDeadBlocks);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dead Code Elimination
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// Data structure used to track which values have already been proved live.
|
|
///
|
|
/// Because Operation's can have multiple results, this data structure tracks
|
|
/// liveness for both Value's and Operation's to avoid having to look through
|
|
/// all Operation results when analyzing a use.
|
|
///
|
|
/// This data structure essentially tracks the dataflow lattice.
|
|
/// The set of values/ops proved live increases monotonically to a fixed-point.
|
|
class LiveMap {
|
|
public:
|
|
/// Value methods.
|
|
bool wasProvenLive(Value value) {
|
|
// TODO: For results that are removable, e.g. for region based control flow,
|
|
// we could allow for these values to be tracked independently.
|
|
if (OpResult result = dyn_cast<OpResult>(value))
|
|
return wasProvenLive(result.getOwner());
|
|
return wasProvenLive(cast<BlockArgument>(value));
|
|
}
|
|
bool wasProvenLive(BlockArgument arg) { return liveValues.count(arg); }
|
|
void setProvedLive(Value value) {
|
|
// TODO: For results that are removable, e.g. for region based control flow,
|
|
// we could allow for these values to be tracked independently.
|
|
if (OpResult result = dyn_cast<OpResult>(value))
|
|
return setProvedLive(result.getOwner());
|
|
setProvedLive(cast<BlockArgument>(value));
|
|
}
|
|
void setProvedLive(BlockArgument arg) {
|
|
changed |= liveValues.insert(arg).second;
|
|
}
|
|
|
|
/// Operation methods.
|
|
bool wasProvenLive(Operation *op) { return liveOps.count(op); }
|
|
void setProvedLive(Operation *op) { changed |= liveOps.insert(op).second; }
|
|
|
|
/// Methods for tracking if we have reached a fixed-point.
|
|
void resetChanged() { changed = false; }
|
|
bool hasChanged() { return changed; }
|
|
|
|
private:
|
|
bool changed = false;
|
|
DenseSet<Value> liveValues;
|
|
DenseSet<Operation *> liveOps;
|
|
};
|
|
} // namespace
|
|
|
|
static bool isUseSpeciallyKnownDead(OpOperand &use, LiveMap &liveMap) {
|
|
Operation *owner = use.getOwner();
|
|
unsigned operandIndex = use.getOperandNumber();
|
|
// This pass generally treats all uses of an op as live if the op itself is
|
|
// considered live. However, for successor operands to terminators we need a
|
|
// finer-grained notion where we deduce liveness for operands individually.
|
|
// The reason for this is easiest to think about in terms of a classical phi
|
|
// node based SSA IR, where each successor operand is really an operand to a
|
|
// *separate* phi node, rather than all operands to the branch itself as with
|
|
// the block argument representation that MLIR uses.
|
|
//
|
|
// And similarly, because each successor operand is really an operand to a phi
|
|
// node, rather than to the terminator op itself, a terminator op can't e.g.
|
|
// "print" the value of a successor operand.
|
|
if (owner->hasTrait<OpTrait::IsTerminator>()) {
|
|
if (BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(owner))
|
|
if (auto arg = branchInterface.getSuccessorBlockArgument(operandIndex))
|
|
return !liveMap.wasProvenLive(*arg);
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void processValue(Value value, LiveMap &liveMap) {
|
|
bool provedLive = llvm::any_of(value.getUses(), [&](OpOperand &use) {
|
|
if (isUseSpeciallyKnownDead(use, liveMap))
|
|
return false;
|
|
return liveMap.wasProvenLive(use.getOwner());
|
|
});
|
|
if (provedLive)
|
|
liveMap.setProvedLive(value);
|
|
}
|
|
|
|
static void propagateLiveness(Region ®ion, LiveMap &liveMap);
|
|
|
|
static void propagateTerminatorLiveness(Operation *op, LiveMap &liveMap) {
|
|
// Terminators are always live.
|
|
liveMap.setProvedLive(op);
|
|
|
|
// Check to see if we can reason about the successor operands and mutate them.
|
|
BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(op);
|
|
if (!branchInterface) {
|
|
for (Block *successor : op->getSuccessors())
|
|
for (BlockArgument arg : successor->getArguments())
|
|
liveMap.setProvedLive(arg);
|
|
return;
|
|
}
|
|
|
|
// If we can't reason about the operand to a successor, conservatively mark
|
|
// it as live.
|
|
for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
|
|
SuccessorOperands successorOperands =
|
|
branchInterface.getSuccessorOperands(i);
|
|
for (unsigned opI = 0, opE = successorOperands.getProducedOperandCount();
|
|
opI != opE; ++opI)
|
|
liveMap.setProvedLive(op->getSuccessor(i)->getArgument(opI));
|
|
}
|
|
}
|
|
|
|
static void propagateLiveness(Operation *op, LiveMap &liveMap) {
|
|
// Recurse on any regions the op has.
|
|
for (Region ®ion : op->getRegions())
|
|
propagateLiveness(region, liveMap);
|
|
|
|
// Process terminator operations.
|
|
if (op->hasTrait<OpTrait::IsTerminator>())
|
|
return propagateTerminatorLiveness(op, liveMap);
|
|
|
|
// Don't reprocess live operations.
|
|
if (liveMap.wasProvenLive(op))
|
|
return;
|
|
|
|
// Process the op itself.
|
|
if (!wouldOpBeTriviallyDead(op))
|
|
return liveMap.setProvedLive(op);
|
|
|
|
// If the op isn't intrinsically alive, check it's results.
|
|
for (Value value : op->getResults())
|
|
processValue(value, liveMap);
|
|
}
|
|
|
|
static void propagateLiveness(Region ®ion, LiveMap &liveMap) {
|
|
if (region.empty())
|
|
return;
|
|
|
|
for (Block *block : llvm::post_order(®ion.front())) {
|
|
// We process block arguments after the ops in the block, to promote
|
|
// faster convergence to a fixed point (we try to visit uses before defs).
|
|
for (Operation &op : llvm::reverse(block->getOperations()))
|
|
propagateLiveness(&op, liveMap);
|
|
|
|
// We currently do not remove entry block arguments, so there is no need to
|
|
// track their liveness.
|
|
// TODO: We could track these and enable removing dead operands/arguments
|
|
// from region control flow operations.
|
|
if (block->isEntryBlock())
|
|
continue;
|
|
|
|
for (Value value : block->getArguments()) {
|
|
if (!liveMap.wasProvenLive(value))
|
|
processValue(value, liveMap);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void eraseTerminatorSuccessorOperands(Operation *terminator,
|
|
LiveMap &liveMap) {
|
|
BranchOpInterface branchOp = dyn_cast<BranchOpInterface>(terminator);
|
|
if (!branchOp)
|
|
return;
|
|
|
|
for (unsigned succI = 0, succE = terminator->getNumSuccessors();
|
|
succI < succE; succI++) {
|
|
// Iterating successors in reverse is not strictly needed, since we
|
|
// aren't erasing any successors. But it is slightly more efficient
|
|
// since it will promote later operands of the terminator being erased
|
|
// first, reducing the quadratic-ness.
|
|
unsigned succ = succE - succI - 1;
|
|
SuccessorOperands succOperands = branchOp.getSuccessorOperands(succ);
|
|
Block *successor = terminator->getSuccessor(succ);
|
|
|
|
for (unsigned argI = 0, argE = succOperands.size(); argI < argE; ++argI) {
|
|
// Iterating args in reverse is needed for correctness, to avoid
|
|
// shifting later args when earlier args are erased.
|
|
unsigned arg = argE - argI - 1;
|
|
if (!liveMap.wasProvenLive(successor->getArgument(arg)))
|
|
succOperands.erase(arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static LogicalResult deleteDeadness(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions,
|
|
LiveMap &liveMap) {
|
|
bool erasedAnything = false;
|
|
for (Region ®ion : regions) {
|
|
if (region.empty())
|
|
continue;
|
|
bool hasSingleBlock = llvm::hasSingleElement(region);
|
|
|
|
// Delete every operation that is not live. Graph regions may have cycles
|
|
// in the use-def graph, so we must explicitly dropAllUses() from each
|
|
// operation as we erase it. Visiting the operations in post-order
|
|
// guarantees that in SSA CFG regions value uses are removed before defs,
|
|
// which makes dropAllUses() a no-op.
|
|
for (Block *block : llvm::post_order(®ion.front())) {
|
|
if (!hasSingleBlock)
|
|
eraseTerminatorSuccessorOperands(block->getTerminator(), liveMap);
|
|
for (Operation &childOp :
|
|
llvm::make_early_inc_range(llvm::reverse(block->getOperations()))) {
|
|
if (!liveMap.wasProvenLive(&childOp)) {
|
|
erasedAnything = true;
|
|
childOp.dropAllUses();
|
|
rewriter.eraseOp(&childOp);
|
|
} else {
|
|
erasedAnything |= succeeded(
|
|
deleteDeadness(rewriter, childOp.getRegions(), liveMap));
|
|
}
|
|
}
|
|
}
|
|
// Delete block arguments.
|
|
// The entry block has an unknown contract with their enclosing block, so
|
|
// skip it.
|
|
for (Block &block : llvm::drop_begin(region.getBlocks(), 1)) {
|
|
block.eraseArguments(
|
|
[&](BlockArgument arg) { return !liveMap.wasProvenLive(arg); });
|
|
}
|
|
}
|
|
return success(erasedAnything);
|
|
}
|
|
|
|
// This function performs a simple dead code elimination algorithm over the
|
|
// given regions.
|
|
//
|
|
// The overall goal is to prove that Values are dead, which allows deleting ops
|
|
// and block arguments.
|
|
//
|
|
// This uses an optimistic algorithm that assumes everything is dead until
|
|
// proved otherwise, allowing it to delete recursively dead cycles.
|
|
//
|
|
// This is a simple fixed-point dataflow analysis algorithm on a lattice
|
|
// {Dead,Alive}. Because liveness flows backward, we generally try to
|
|
// iterate everything backward to speed up convergence to the fixed-point. This
|
|
// allows for being able to delete recursively dead cycles of the use-def graph,
|
|
// including block arguments.
|
|
//
|
|
// This function returns success if any operations or arguments were deleted,
|
|
// failure otherwise.
|
|
LogicalResult mlir::runRegionDCE(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions) {
|
|
LiveMap liveMap;
|
|
do {
|
|
liveMap.resetChanged();
|
|
|
|
for (Region ®ion : regions)
|
|
propagateLiveness(region, liveMap);
|
|
} while (liveMap.hasChanged());
|
|
|
|
return deleteDeadness(rewriter, regions, liveMap);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Block Merging
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BlockEquivalenceData
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class contains the information for comparing the equivalencies of two
|
|
/// blocks. Blocks are considered equivalent if they contain the same operations
|
|
/// in the same order. The only allowed divergence is for operands that come
|
|
/// from sources outside of the parent block, i.e. the uses of values produced
|
|
/// within the block must be equivalent.
|
|
/// e.g.,
|
|
/// Equivalent:
|
|
/// ^bb1(%arg0: i32)
|
|
/// return %arg0, %foo : i32, i32
|
|
/// ^bb2(%arg1: i32)
|
|
/// return %arg1, %bar : i32, i32
|
|
/// Not Equivalent:
|
|
/// ^bb1(%arg0: i32)
|
|
/// return %foo, %arg0 : i32, i32
|
|
/// ^bb2(%arg1: i32)
|
|
/// return %arg1, %bar : i32, i32
|
|
struct BlockEquivalenceData {
|
|
BlockEquivalenceData(Block *block);
|
|
|
|
/// Return the order index for the given value that is within the block of
|
|
/// this data.
|
|
unsigned getOrderOf(Value value) const;
|
|
|
|
/// The block this data refers to.
|
|
Block *block;
|
|
/// A hash value for this block.
|
|
llvm::hash_code hash;
|
|
/// A map of result producing operations to their relative orders within this
|
|
/// block. The order of an operation is the number of defined values that are
|
|
/// produced within the block before this operation.
|
|
DenseMap<Operation *, unsigned> opOrderIndex;
|
|
};
|
|
} // namespace
|
|
|
|
BlockEquivalenceData::BlockEquivalenceData(Block *block)
|
|
: block(block), hash(0) {
|
|
unsigned orderIt = block->getNumArguments();
|
|
for (Operation &op : *block) {
|
|
if (unsigned numResults = op.getNumResults()) {
|
|
opOrderIndex.try_emplace(&op, orderIt);
|
|
orderIt += numResults;
|
|
}
|
|
auto opHash = OperationEquivalence::computeHash(
|
|
&op, OperationEquivalence::ignoreHashValue,
|
|
OperationEquivalence::ignoreHashValue,
|
|
OperationEquivalence::IgnoreLocations);
|
|
hash = llvm::hash_combine(hash, opHash);
|
|
}
|
|
}
|
|
|
|
unsigned BlockEquivalenceData::getOrderOf(Value value) const {
|
|
assert(value.getParentBlock() == block && "expected value of this block");
|
|
|
|
// Arguments use the argument number as the order index.
|
|
if (BlockArgument arg = dyn_cast<BlockArgument>(value))
|
|
return arg.getArgNumber();
|
|
|
|
// Otherwise, the result order is offset from the parent op's order.
|
|
OpResult result = cast<OpResult>(value);
|
|
auto opOrderIt = opOrderIndex.find(result.getDefiningOp());
|
|
assert(opOrderIt != opOrderIndex.end() && "expected op to have an order");
|
|
return opOrderIt->second + result.getResultNumber();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BlockMergeCluster
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// This class represents a cluster of blocks to be merged together.
|
|
class BlockMergeCluster {
|
|
public:
|
|
BlockMergeCluster(BlockEquivalenceData &&leaderData)
|
|
: leaderData(std::move(leaderData)) {}
|
|
|
|
/// Attempt to add the given block to this cluster. Returns success if the
|
|
/// block was merged, failure otherwise.
|
|
LogicalResult addToCluster(BlockEquivalenceData &blockData);
|
|
|
|
/// Try to merge all of the blocks within this cluster into the leader block.
|
|
LogicalResult merge(RewriterBase &rewriter);
|
|
|
|
private:
|
|
/// The equivalence data for the leader of the cluster.
|
|
BlockEquivalenceData leaderData;
|
|
|
|
/// The set of blocks that can be merged into the leader.
|
|
llvm::SmallSetVector<Block *, 1> blocksToMerge;
|
|
|
|
/// A set of operand+index pairs that correspond to operands that need to be
|
|
/// replaced by arguments when the cluster gets merged.
|
|
std::set<std::pair<int, int>> operandsToMerge;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult BlockMergeCluster::addToCluster(BlockEquivalenceData &blockData) {
|
|
if (leaderData.hash != blockData.hash)
|
|
return failure();
|
|
Block *leaderBlock = leaderData.block, *mergeBlock = blockData.block;
|
|
if (leaderBlock->getArgumentTypes() != mergeBlock->getArgumentTypes())
|
|
return failure();
|
|
|
|
// A set of operands that mismatch between the leader and the new block.
|
|
SmallVector<std::pair<int, int>, 8> mismatchedOperands;
|
|
auto lhsIt = leaderBlock->begin(), lhsE = leaderBlock->end();
|
|
auto rhsIt = blockData.block->begin(), rhsE = blockData.block->end();
|
|
for (int opI = 0; lhsIt != lhsE && rhsIt != rhsE; ++lhsIt, ++rhsIt, ++opI) {
|
|
// Check that the operations are equivalent.
|
|
if (!OperationEquivalence::isEquivalentTo(
|
|
&*lhsIt, &*rhsIt, OperationEquivalence::ignoreValueEquivalence,
|
|
/*markEquivalent=*/nullptr,
|
|
OperationEquivalence::Flags::IgnoreLocations))
|
|
return failure();
|
|
|
|
// Compare the operands of the two operations. If the operand is within
|
|
// the block, it must refer to the same operation.
|
|
auto lhsOperands = lhsIt->getOperands(), rhsOperands = rhsIt->getOperands();
|
|
for (int operand : llvm::seq<int>(0, lhsIt->getNumOperands())) {
|
|
Value lhsOperand = lhsOperands[operand];
|
|
Value rhsOperand = rhsOperands[operand];
|
|
if (lhsOperand == rhsOperand)
|
|
continue;
|
|
// Check that the types of the operands match.
|
|
if (lhsOperand.getType() != rhsOperand.getType())
|
|
return failure();
|
|
|
|
// Check that these uses are both external, or both internal.
|
|
bool lhsIsInBlock = lhsOperand.getParentBlock() == leaderBlock;
|
|
bool rhsIsInBlock = rhsOperand.getParentBlock() == mergeBlock;
|
|
if (lhsIsInBlock != rhsIsInBlock)
|
|
return failure();
|
|
// Let the operands differ if they are defined in a different block. These
|
|
// will become new arguments if the blocks get merged.
|
|
if (!lhsIsInBlock) {
|
|
|
|
// Check whether the operands aren't the result of an immediate
|
|
// predecessors terminator. In that case we are not able to use it as a
|
|
// successor operand when branching to the merged block as it does not
|
|
// dominate its producing operation.
|
|
auto isValidSuccessorArg = [](Block *block, Value operand) {
|
|
if (operand.getDefiningOp() !=
|
|
operand.getParentBlock()->getTerminator())
|
|
return true;
|
|
return !llvm::is_contained(block->getPredecessors(),
|
|
operand.getParentBlock());
|
|
};
|
|
|
|
if (!isValidSuccessorArg(leaderBlock, lhsOperand) ||
|
|
!isValidSuccessorArg(mergeBlock, rhsOperand))
|
|
return failure();
|
|
|
|
mismatchedOperands.emplace_back(opI, operand);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, these operands must have the same logical order within the
|
|
// parent block.
|
|
if (leaderData.getOrderOf(lhsOperand) != blockData.getOrderOf(rhsOperand))
|
|
return failure();
|
|
}
|
|
|
|
// If the lhs or rhs has external uses, the blocks cannot be merged as the
|
|
// merged version of this operation will not be either the lhs or rhs
|
|
// alone (thus semantically incorrect), but some mix dependending on which
|
|
// block preceeded this.
|
|
// TODO allow merging of operations when one block does not dominate the
|
|
// other
|
|
if (rhsIt->isUsedOutsideOfBlock(mergeBlock) ||
|
|
lhsIt->isUsedOutsideOfBlock(leaderBlock)) {
|
|
return failure();
|
|
}
|
|
}
|
|
// Make sure that the block sizes are equivalent.
|
|
if (lhsIt != lhsE || rhsIt != rhsE)
|
|
return failure();
|
|
|
|
// If we get here, the blocks are equivalent and can be merged.
|
|
operandsToMerge.insert(mismatchedOperands.begin(), mismatchedOperands.end());
|
|
blocksToMerge.insert(blockData.block);
|
|
return success();
|
|
}
|
|
|
|
/// Returns true if the predecessor terminators of the given block can not have
|
|
/// their operands updated.
|
|
static bool ableToUpdatePredOperands(Block *block) {
|
|
for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
|
|
if (!isa<BranchOpInterface>((*it)->getTerminator()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Prunes the redundant list of new arguments. E.g., if we are passing an
|
|
/// argument list like [x, y, z, x] this would return [x, y, z] and it would
|
|
/// update the `block` (to whom the argument are passed to) accordingly. The new
|
|
/// arguments are passed as arguments at the back of the block, hence we need to
|
|
/// know how many `numOldArguments` were before, in order to correctly replace
|
|
/// the new arguments in the block
|
|
static SmallVector<SmallVector<Value, 8>, 2> pruneRedundantArguments(
|
|
const SmallVector<SmallVector<Value, 8>, 2> &newArguments,
|
|
RewriterBase &rewriter, unsigned numOldArguments, Block *block) {
|
|
|
|
SmallVector<SmallVector<Value, 8>, 2> newArgumentsPruned(
|
|
newArguments.size(), SmallVector<Value, 8>());
|
|
|
|
if (newArguments.empty())
|
|
return newArguments;
|
|
|
|
// `newArguments` is a 2D array of size `numLists` x `numArgs`
|
|
unsigned numLists = newArguments.size();
|
|
unsigned numArgs = newArguments[0].size();
|
|
|
|
// Map that for each arg index contains the index that we can use in place of
|
|
// the original index. E.g., if we have newArgs = [x, y, z, x], we will have
|
|
// idxToReplacement[3] = 0
|
|
llvm::DenseMap<unsigned, unsigned> idxToReplacement;
|
|
|
|
// This is a useful data structure to track the first appearance of a Value
|
|
// on a given list of arguments
|
|
DenseMap<Value, unsigned> firstValueToIdx;
|
|
for (unsigned j = 0; j < numArgs; ++j) {
|
|
Value newArg = newArguments[0][j];
|
|
firstValueToIdx.try_emplace(newArg, j);
|
|
}
|
|
|
|
// Go through the first list of arguments (list 0).
|
|
for (unsigned j = 0; j < numArgs; ++j) {
|
|
// Look back to see if there are possible redundancies in list 0. Please
|
|
// note that we are using a map to annotate when an argument was seen first
|
|
// to avoid a O(N^2) algorithm. This has the drawback that if we have two
|
|
// lists like:
|
|
// list0: [%a, %a, %a]
|
|
// list1: [%c, %b, %b]
|
|
// We cannot simplify it, because firstValueToIdx[%a] = 0, but we cannot
|
|
// point list1[1](==%b) or list1[2](==%b) to list1[0](==%c). However, since
|
|
// the number of arguments can be potentially unbounded we cannot afford a
|
|
// O(N^2) algorithm (to search to all the possible pairs) and we need to
|
|
// accept the trade-off.
|
|
unsigned k = firstValueToIdx[newArguments[0][j]];
|
|
if (k == j)
|
|
continue;
|
|
|
|
bool shouldReplaceJ = true;
|
|
unsigned replacement = k;
|
|
// If a possible redundancy is found, then scan the other lists: we
|
|
// can prune the arguments if and only if they are redundant in every
|
|
// list.
|
|
for (unsigned i = 1; i < numLists; ++i)
|
|
shouldReplaceJ =
|
|
shouldReplaceJ && (newArguments[i][k] == newArguments[i][j]);
|
|
// Save the replacement.
|
|
if (shouldReplaceJ)
|
|
idxToReplacement[j] = replacement;
|
|
}
|
|
|
|
// Populate the pruned argument list.
|
|
for (unsigned i = 0; i < numLists; ++i)
|
|
for (unsigned j = 0; j < numArgs; ++j)
|
|
if (!idxToReplacement.contains(j))
|
|
newArgumentsPruned[i].push_back(newArguments[i][j]);
|
|
|
|
// Replace the block's redundant arguments.
|
|
SmallVector<unsigned> toErase;
|
|
for (auto [idx, arg] : llvm::enumerate(block->getArguments())) {
|
|
if (idxToReplacement.contains(idx)) {
|
|
Value oldArg = block->getArgument(numOldArguments + idx);
|
|
Value newArg =
|
|
block->getArgument(numOldArguments + idxToReplacement[idx]);
|
|
rewriter.replaceAllUsesWith(oldArg, newArg);
|
|
toErase.push_back(numOldArguments + idx);
|
|
}
|
|
}
|
|
|
|
// Erase the block's redundant arguments.
|
|
for (unsigned idxToErase : llvm::reverse(toErase))
|
|
block->eraseArgument(idxToErase);
|
|
return newArgumentsPruned;
|
|
}
|
|
|
|
LogicalResult BlockMergeCluster::merge(RewriterBase &rewriter) {
|
|
// Don't consider clusters that don't have blocks to merge.
|
|
if (blocksToMerge.empty())
|
|
return failure();
|
|
|
|
Block *leaderBlock = leaderData.block;
|
|
if (!operandsToMerge.empty()) {
|
|
// If the cluster has operands to merge, verify that the predecessor
|
|
// terminators of each of the blocks can have their successor operands
|
|
// updated.
|
|
// TODO: We could try and sub-partition this cluster if only some blocks
|
|
// cause the mismatch.
|
|
if (!ableToUpdatePredOperands(leaderBlock) ||
|
|
!llvm::all_of(blocksToMerge, ableToUpdatePredOperands))
|
|
return failure();
|
|
|
|
// Collect the iterators for each of the blocks to merge. We will walk all
|
|
// of the iterators at once to avoid operand index invalidation.
|
|
SmallVector<Block::iterator, 2> blockIterators;
|
|
blockIterators.reserve(blocksToMerge.size() + 1);
|
|
blockIterators.push_back(leaderBlock->begin());
|
|
for (Block *mergeBlock : blocksToMerge)
|
|
blockIterators.push_back(mergeBlock->begin());
|
|
|
|
// Update each of the predecessor terminators with the new arguments.
|
|
SmallVector<SmallVector<Value, 8>, 2> newArguments(
|
|
1 + blocksToMerge.size(),
|
|
SmallVector<Value, 8>(operandsToMerge.size()));
|
|
unsigned curOpIndex = 0;
|
|
unsigned numOldArguments = leaderBlock->getNumArguments();
|
|
for (const auto &it : llvm::enumerate(operandsToMerge)) {
|
|
unsigned nextOpOffset = it.value().first - curOpIndex;
|
|
curOpIndex = it.value().first;
|
|
|
|
// Process the operand for each of the block iterators.
|
|
for (unsigned i = 0, e = blockIterators.size(); i != e; ++i) {
|
|
Block::iterator &blockIter = blockIterators[i];
|
|
std::advance(blockIter, nextOpOffset);
|
|
auto &operand = blockIter->getOpOperand(it.value().second);
|
|
newArguments[i][it.index()] = operand.get();
|
|
|
|
// Update the operand and insert an argument if this is the leader.
|
|
if (i == 0) {
|
|
Value operandVal = operand.get();
|
|
operand.set(leaderBlock->addArgument(operandVal.getType(),
|
|
operandVal.getLoc()));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prune redundant arguments and update the leader block argument list
|
|
newArguments = pruneRedundantArguments(newArguments, rewriter,
|
|
numOldArguments, leaderBlock);
|
|
|
|
// Update the predecessors for each of the blocks.
|
|
auto updatePredecessors = [&](Block *block, unsigned clusterIndex) {
|
|
for (auto predIt = block->pred_begin(), predE = block->pred_end();
|
|
predIt != predE; ++predIt) {
|
|
auto branch = cast<BranchOpInterface>((*predIt)->getTerminator());
|
|
unsigned succIndex = predIt.getSuccessorIndex();
|
|
branch.getSuccessorOperands(succIndex).append(
|
|
newArguments[clusterIndex]);
|
|
}
|
|
};
|
|
updatePredecessors(leaderBlock, /*clusterIndex=*/0);
|
|
for (unsigned i = 0, e = blocksToMerge.size(); i != e; ++i)
|
|
updatePredecessors(blocksToMerge[i], /*clusterIndex=*/i + 1);
|
|
}
|
|
|
|
// Replace all uses of the merged blocks with the leader and erase them.
|
|
for (Block *block : blocksToMerge) {
|
|
block->replaceAllUsesWith(leaderBlock);
|
|
rewriter.eraseBlock(block);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Identify identical blocks within the given region and merge them, inserting
|
|
/// new block arguments as necessary. Returns success if any blocks were merged,
|
|
/// failure otherwise.
|
|
static LogicalResult mergeIdenticalBlocks(RewriterBase &rewriter,
|
|
Region ®ion) {
|
|
if (region.empty() || llvm::hasSingleElement(region))
|
|
return failure();
|
|
|
|
// Identify sets of blocks, other than the entry block, that branch to the
|
|
// same successors. We will use these groups to create clusters of equivalent
|
|
// blocks.
|
|
DenseMap<SuccessorRange, SmallVector<Block *, 1>> matchingSuccessors;
|
|
for (Block &block : llvm::drop_begin(region, 1))
|
|
matchingSuccessors[block.getSuccessors()].push_back(&block);
|
|
|
|
bool mergedAnyBlocks = false;
|
|
for (ArrayRef<Block *> blocks : llvm::make_second_range(matchingSuccessors)) {
|
|
if (blocks.size() == 1)
|
|
continue;
|
|
|
|
SmallVector<BlockMergeCluster, 1> clusters;
|
|
for (Block *block : blocks) {
|
|
BlockEquivalenceData data(block);
|
|
|
|
// Don't allow merging if this block has any regions.
|
|
// TODO: Add support for regions if necessary.
|
|
bool hasNonEmptyRegion = llvm::any_of(*block, [](Operation &op) {
|
|
return llvm::any_of(op.getRegions(),
|
|
[](Region ®ion) { return !region.empty(); });
|
|
});
|
|
if (hasNonEmptyRegion)
|
|
continue;
|
|
|
|
// Don't allow merging if this block's arguments are used outside of the
|
|
// original block.
|
|
bool argHasExternalUsers = llvm::any_of(
|
|
block->getArguments(), [block](mlir::BlockArgument &arg) {
|
|
return arg.isUsedOutsideOfBlock(block);
|
|
});
|
|
if (argHasExternalUsers)
|
|
continue;
|
|
|
|
// Try to add this block to an existing cluster.
|
|
bool addedToCluster = false;
|
|
for (auto &cluster : clusters)
|
|
if ((addedToCluster = succeeded(cluster.addToCluster(data))))
|
|
break;
|
|
if (!addedToCluster)
|
|
clusters.emplace_back(std::move(data));
|
|
}
|
|
for (auto &cluster : clusters)
|
|
mergedAnyBlocks |= succeeded(cluster.merge(rewriter));
|
|
}
|
|
|
|
return success(mergedAnyBlocks);
|
|
}
|
|
|
|
/// Identify identical blocks within the given regions and merge them, inserting
|
|
/// new block arguments as necessary.
|
|
static LogicalResult mergeIdenticalBlocks(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions) {
|
|
llvm::SmallSetVector<Region *, 1> worklist;
|
|
for (auto ®ion : regions)
|
|
worklist.insert(®ion);
|
|
bool anyChanged = false;
|
|
while (!worklist.empty()) {
|
|
Region *region = worklist.pop_back_val();
|
|
if (succeeded(mergeIdenticalBlocks(rewriter, *region))) {
|
|
worklist.insert(region);
|
|
anyChanged = true;
|
|
}
|
|
|
|
// Add any nested regions to the worklist.
|
|
for (Block &block : *region)
|
|
for (auto &op : block)
|
|
for (auto &nestedRegion : op.getRegions())
|
|
worklist.insert(&nestedRegion);
|
|
}
|
|
|
|
return success(anyChanged);
|
|
}
|
|
|
|
/// If a block's argument is always the same across different invocations, then
|
|
/// drop the argument and use the value directly inside the block
|
|
static LogicalResult dropRedundantArguments(RewriterBase &rewriter,
|
|
Block &block) {
|
|
SmallVector<size_t> argsToErase;
|
|
|
|
// Go through the arguments of the block.
|
|
for (auto [argIdx, blockOperand] : llvm::enumerate(block.getArguments())) {
|
|
bool sameArg = true;
|
|
Value commonValue;
|
|
|
|
// Go through the block predecessor and flag if they pass to the block
|
|
// different values for the same argument.
|
|
for (Block::pred_iterator predIt = block.pred_begin(),
|
|
predE = block.pred_end();
|
|
predIt != predE; ++predIt) {
|
|
auto branch = dyn_cast<BranchOpInterface>((*predIt)->getTerminator());
|
|
if (!branch) {
|
|
sameArg = false;
|
|
break;
|
|
}
|
|
unsigned succIndex = predIt.getSuccessorIndex();
|
|
SuccessorOperands succOperands = branch.getSuccessorOperands(succIndex);
|
|
auto branchOperands = succOperands.getForwardedOperands();
|
|
if (!commonValue) {
|
|
commonValue = branchOperands[argIdx];
|
|
continue;
|
|
}
|
|
if (branchOperands[argIdx] != commonValue) {
|
|
sameArg = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If they are passing the same value, drop the argument.
|
|
if (commonValue && sameArg) {
|
|
argsToErase.push_back(argIdx);
|
|
|
|
// Remove the argument from the block.
|
|
rewriter.replaceAllUsesWith(blockOperand, commonValue);
|
|
}
|
|
}
|
|
|
|
// Remove the arguments.
|
|
for (size_t argIdx : llvm::reverse(argsToErase)) {
|
|
block.eraseArgument(argIdx);
|
|
|
|
// Remove the argument from the branch ops.
|
|
for (auto predIt = block.pred_begin(), predE = block.pred_end();
|
|
predIt != predE; ++predIt) {
|
|
auto branch = cast<BranchOpInterface>((*predIt)->getTerminator());
|
|
unsigned succIndex = predIt.getSuccessorIndex();
|
|
SuccessorOperands succOperands = branch.getSuccessorOperands(succIndex);
|
|
succOperands.erase(argIdx);
|
|
}
|
|
}
|
|
return success(!argsToErase.empty());
|
|
}
|
|
|
|
/// This optimization drops redundant argument to blocks. I.e., if a given
|
|
/// argument to a block receives the same value from each of the block
|
|
/// predecessors, we can remove the argument from the block and use directly the
|
|
/// original value. This is a simple example:
|
|
///
|
|
/// %cond = llvm.call @rand() : () -> i1
|
|
/// %val0 = llvm.mlir.constant(1 : i64) : i64
|
|
/// %val1 = llvm.mlir.constant(2 : i64) : i64
|
|
/// %val2 = llvm.mlir.constant(3 : i64) : i64
|
|
/// llvm.cond_br %cond, ^bb1(%val0 : i64, %val1 : i64), ^bb2(%val0 : i64, %val2
|
|
/// : i64)
|
|
///
|
|
/// ^bb1(%arg0 : i64, %arg1 : i64):
|
|
/// llvm.call @foo(%arg0, %arg1)
|
|
///
|
|
/// The previous IR can be rewritten as:
|
|
/// %cond = llvm.call @rand() : () -> i1
|
|
/// %val0 = llvm.mlir.constant(1 : i64) : i64
|
|
/// %val1 = llvm.mlir.constant(2 : i64) : i64
|
|
/// %val2 = llvm.mlir.constant(3 : i64) : i64
|
|
/// llvm.cond_br %cond, ^bb1(%val1 : i64), ^bb2(%val2 : i64)
|
|
///
|
|
/// ^bb1(%arg0 : i64):
|
|
/// llvm.call @foo(%val0, %arg0)
|
|
///
|
|
static LogicalResult dropRedundantArguments(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions) {
|
|
llvm::SmallSetVector<Region *, 1> worklist;
|
|
for (Region ®ion : regions)
|
|
worklist.insert(®ion);
|
|
bool anyChanged = false;
|
|
while (!worklist.empty()) {
|
|
Region *region = worklist.pop_back_val();
|
|
|
|
// Add any nested regions to the worklist.
|
|
for (Block &block : *region) {
|
|
anyChanged =
|
|
succeeded(dropRedundantArguments(rewriter, block)) || anyChanged;
|
|
|
|
for (Operation &op : block)
|
|
for (Region &nestedRegion : op.getRegions())
|
|
worklist.insert(&nestedRegion);
|
|
}
|
|
}
|
|
return success(anyChanged);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Region Simplification
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Run a set of structural simplifications over the given regions. This
|
|
/// includes transformations like unreachable block elimination, dead argument
|
|
/// elimination, as well as some other DCE. This function returns success if any
|
|
/// of the regions were simplified, failure otherwise.
|
|
LogicalResult mlir::simplifyRegions(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions,
|
|
bool mergeBlocks) {
|
|
bool eliminatedBlocks = succeeded(eraseUnreachableBlocks(rewriter, regions));
|
|
bool eliminatedOpsOrArgs = succeeded(runRegionDCE(rewriter, regions));
|
|
bool mergedIdenticalBlocks = false;
|
|
bool droppedRedundantArguments = false;
|
|
if (mergeBlocks) {
|
|
mergedIdenticalBlocks = succeeded(mergeIdenticalBlocks(rewriter, regions));
|
|
droppedRedundantArguments =
|
|
succeeded(dropRedundantArguments(rewriter, regions));
|
|
}
|
|
return success(eliminatedBlocks || eliminatedOpsOrArgs ||
|
|
mergedIdenticalBlocks || droppedRedundantArguments);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
// Move operation dependencies
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
LogicalResult mlir::moveOperationDependencies(RewriterBase &rewriter,
|
|
Operation *op,
|
|
Operation *insertionPoint,
|
|
DominanceInfo &dominance) {
|
|
// Currently unsupported case where the op and insertion point are
|
|
// in different basic blocks.
|
|
if (op->getBlock() != insertionPoint->getBlock()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unsupported case where operation and insertion point are not in "
|
|
"the same basic block");
|
|
}
|
|
// If `insertionPoint` does not dominate `op`, do nothing
|
|
if (!dominance.properlyDominates(insertionPoint, op)) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"insertion point does not dominate op");
|
|
}
|
|
|
|
// Find the backward slice of operation for each `Value` the operation
|
|
// depends on. Prune the slice to only include operations not already
|
|
// dominated by the `insertionPoint`
|
|
BackwardSliceOptions options;
|
|
options.inclusive = false;
|
|
options.omitUsesFromAbove = false;
|
|
// Since current support is to only move within a same basic block,
|
|
// the slices dont need to look past block arguments.
|
|
options.omitBlockArguments = true;
|
|
options.filter = [&](Operation *sliceBoundaryOp) {
|
|
return !dominance.properlyDominates(sliceBoundaryOp, insertionPoint);
|
|
};
|
|
llvm::SetVector<Operation *> slice;
|
|
LogicalResult result = getBackwardSlice(op, &slice, options);
|
|
assert(result.succeeded() && "expected a backward slice");
|
|
|
|
// If the slice contains `insertionPoint` cannot move the dependencies.
|
|
if (slice.contains(insertionPoint)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op,
|
|
"cannot move dependencies before operation in backward slice of op");
|
|
}
|
|
|
|
// We should move the slice in topological order, but `getBackwardSlice`
|
|
// already does that. So no need to sort again.
|
|
for (Operation *op : slice) {
|
|
rewriter.moveOpBefore(op, insertionPoint);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult mlir::moveOperationDependencies(RewriterBase &rewriter,
|
|
Operation *op,
|
|
Operation *insertionPoint) {
|
|
DominanceInfo dominance(op);
|
|
return moveOperationDependencies(rewriter, op, insertionPoint, dominance);
|
|
}
|
|
|
|
LogicalResult mlir::moveValueDefinitions(RewriterBase &rewriter,
|
|
ValueRange values,
|
|
Operation *insertionPoint,
|
|
DominanceInfo &dominance) {
|
|
// Remove the values that already dominate the insertion point.
|
|
SmallVector<Value> prunedValues;
|
|
for (auto value : values) {
|
|
if (dominance.properlyDominates(value, insertionPoint)) {
|
|
continue;
|
|
}
|
|
// Block arguments are not supported.
|
|
if (isa<BlockArgument>(value)) {
|
|
return rewriter.notifyMatchFailure(
|
|
insertionPoint,
|
|
"unsupported case of moving block argument before insertion point");
|
|
}
|
|
// Check for currently unsupported case if the insertion point is in a
|
|
// different block.
|
|
if (value.getDefiningOp()->getBlock() != insertionPoint->getBlock()) {
|
|
return rewriter.notifyMatchFailure(
|
|
insertionPoint,
|
|
"unsupported case of moving definition of value before an insertion "
|
|
"point in a different basic block");
|
|
}
|
|
prunedValues.push_back(value);
|
|
}
|
|
|
|
// Find the backward slice of operation for each `Value` the operation
|
|
// depends on. Prune the slice to only include operations not already
|
|
// dominated by the `insertionPoint`
|
|
BackwardSliceOptions options;
|
|
options.inclusive = true;
|
|
options.omitUsesFromAbove = false;
|
|
// Since current support is to only move within a same basic block,
|
|
// the slices dont need to look past block arguments.
|
|
options.omitBlockArguments = true;
|
|
options.filter = [&](Operation *sliceBoundaryOp) {
|
|
return !dominance.properlyDominates(sliceBoundaryOp, insertionPoint);
|
|
};
|
|
llvm::SetVector<Operation *> slice;
|
|
for (auto value : prunedValues) {
|
|
LogicalResult result = getBackwardSlice(value, &slice, options);
|
|
assert(result.succeeded() && "expected a backward slice");
|
|
}
|
|
|
|
// If the slice contains `insertionPoint` cannot move the dependencies.
|
|
if (slice.contains(insertionPoint)) {
|
|
return rewriter.notifyMatchFailure(
|
|
insertionPoint,
|
|
"cannot move dependencies before operation in backward slice of op");
|
|
}
|
|
|
|
// Sort operations topologically before moving.
|
|
mlir::topologicalSort(slice);
|
|
|
|
for (Operation *op : slice) {
|
|
rewriter.moveOpBefore(op, insertionPoint);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult mlir::moveValueDefinitions(RewriterBase &rewriter,
|
|
ValueRange values,
|
|
Operation *insertionPoint) {
|
|
DominanceInfo dominance(insertionPoint);
|
|
return moveValueDefinitions(rewriter, values, insertionPoint, dominance);
|
|
}
|