Files
clang-p2996/llvm/lib/Target/ARM64/ARM64TargetTransformInfo.cpp
Juergen Ributzka 6e17aa45a3 [ARM64] Fix the cost model for cheap large constants.
Originally the cost model would give up for large constants and just return the
maximum cost. This is not what we want for constant hoisting, because some of
these constants are large in bitwidth, but are still cheap to materialize.

This commit fixes the cost model to either return TCC_Free if the cost cannot be
determined, or accurately calculate the cost even for large constants
(bitwidth > 128).

This fixes <rdar://problem/16591573>.

llvm-svn: 206100
2014-04-12 02:36:28 +00:00

451 lines
15 KiB
C++

//===-- ARM64TargetTransformInfo.cpp - ARM64 specific TTI pass ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// ARM64 target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arm64tti"
#include "ARM64.h"
#include "ARM64TargetMachine.h"
#include "MCTargetDesc/ARM64AddressingModes.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/CostTable.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;
// Declare the pass initialization routine locally as target-specific passes
// don't havve a target-wide initialization entry point, and so we rely on the
// pass constructor initialization.
namespace llvm {
void initializeARM64TTIPass(PassRegistry &);
}
namespace {
class ARM64TTI final : public ImmutablePass, public TargetTransformInfo {
const ARM64TargetMachine *TM;
const ARM64Subtarget *ST;
const ARM64TargetLowering *TLI;
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the result needs to be inserted and/or extracted from vectors.
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
public:
ARM64TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
llvm_unreachable("This pass cannot be directly constructed");
}
ARM64TTI(const ARM64TargetMachine *TM)
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
TLI(TM->getTargetLowering()) {
initializeARM64TTIPass(*PassRegistry::getPassRegistry());
}
void initializePass() override { pushTTIStack(this); }
void getAnalysisUsage(AnalysisUsage &AU) const override {
TargetTransformInfo::getAnalysisUsage(AU);
}
/// Pass identification.
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
void *getAdjustedAnalysisPointer(const void *ID) override {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo *)this;
return this;
}
/// \name Scalar TTI Implementations
/// @{
unsigned getIntImmCost(int64_t Val) const;
unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Type *Ty) const override;
unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Type *Ty) const override;
PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
/// @}
/// \name Vector TTI Implementations
/// @{
unsigned getNumberOfRegisters(bool Vector) const override {
if (Vector)
return 32;
return 31;
}
unsigned getRegisterBitWidth(bool Vector) const override {
if (Vector)
return 128;
return 64;
}
unsigned getMaximumUnrollFactor() const override { return 2; }
unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const
override;
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const
override;
unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
OperandValueKind Opd1Info = OK_AnyValue,
OperandValueKind Opd2Info = OK_AnyValue) const
override;
unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const override;
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const
override;
unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
unsigned AddressSpace) const override;
/// @}
};
} // end anonymous namespace
INITIALIZE_AG_PASS(ARM64TTI, TargetTransformInfo, "arm64tti",
"ARM64 Target Transform Info", true, true, false)
char ARM64TTI::ID = 0;
ImmutablePass *
llvm::createARM64TargetTransformInfoPass(const ARM64TargetMachine *TM) {
return new ARM64TTI(TM);
}
/// \brief Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
unsigned ARM64TTI::getIntImmCost(int64_t Val) const {
// Check if the immediate can be encoded within an instruction.
if (Val == 0 || ARM64_AM::isLogicalImmediate(Val, 64))
return 0;
if (Val < 0)
Val = ~Val;
// Calculate how many moves we will need to materialize this constant.
unsigned LZ = countLeadingZeros((uint64_t)Val);
return (64 - LZ + 15) / 16;
}
/// \brief Calculate the cost of materializing the given constant.
unsigned ARM64TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0)
return ~0U;
// Sign-extend all constants to a multiple of 64-bit.
APInt ImmVal = Imm;
if (BitSize & 0x3f)
ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
// Split the constant into 64-bit chunks and calculate the cost for each
// chunk.
unsigned Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
int64_t Val = Tmp.getSExtValue();
Cost += getIntImmCost(Val);
}
// We need at least one instruction to materialze the constant.
return std::max(1U, Cost);
}
unsigned ARM64TTI::getIntImmCost(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TCC_Free;
unsigned ImmIdx = ~0U;
switch (Opcode) {
default:
return TCC_Free;
case Instruction::GetElementPtr:
// Always hoist the base address of a GetElementPtr.
if (Idx == 0)
return 2 * TCC_Basic;
return TCC_Free;
case Instruction::Store:
ImmIdx = 0;
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::ICmp:
ImmIdx = 1;
break;
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::IntToPtr:
case Instruction::PtrToInt:
case Instruction::BitCast:
case Instruction::PHI:
case Instruction::Call:
case Instruction::Select:
case Instruction::Ret:
case Instruction::Load:
break;
}
if (Idx == ImmIdx) {
unsigned NumConstants = (BitSize + 63) / 64;
unsigned Cost = ARM64TTI::getIntImmCost(Imm, Ty);
return (Cost <= NumConstants * TCC_Basic)
? static_cast<unsigned>(TCC_Free) : Cost;
}
return ARM64TTI::getIntImmCost(Imm, Ty);
}
unsigned ARM64TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
// There is no cost model for constants with a bit size of 0. Return TCC_Free
// here, so that constant hoisting will ignore this constant.
if (BitSize == 0)
return TCC_Free;
switch (IID) {
default:
return TCC_Free;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
if (Idx == 1) {
unsigned NumConstants = (BitSize + 63) / 64;
unsigned Cost = ARM64TTI::getIntImmCost(Imm, Ty);
return (Cost <= NumConstants * TCC_Basic)
? static_cast<unsigned>(TCC_Free) : Cost;
}
break;
case Intrinsic::experimental_stackmap:
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TCC_Free;
break;
case Intrinsic::experimental_patchpoint_void:
case Intrinsic::experimental_patchpoint_i64:
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
return TCC_Free;
break;
}
return ARM64TTI::getIntImmCost(Imm, Ty);
}
ARM64TTI::PopcntSupportKind ARM64TTI::getPopcntSupport(unsigned TyWidth) const {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
if (TyWidth == 32 || TyWidth == 64)
return PSK_FastHardware;
// TODO: ARM64TargetLowering::LowerCTPOP() supports 128bit popcount.
return PSK_Software;
}
unsigned ARM64TTI::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
EVT SrcTy = TLI->getValueType(Src);
EVT DstTy = TLI->getValueType(Dst);
if (!SrcTy.isSimple() || !DstTy.isSimple())
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
// LowerVectorINT_TO_FP:
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 1 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 1 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
// LowerVectorFP_TO_INT
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 1 },
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 1 },
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 4 },
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 4 },
};
int Idx = ConvertCostTableLookup<MVT>(
ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
SrcTy.getSimpleVT());
if (Idx != -1)
return ConversionTbl[Idx].Cost;
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
}
unsigned ARM64TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
assert(Val->isVectorTy() && "This must be a vector type");
if (Index != -1U) {
// Legalize the type.
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
// This type is legalized to a scalar type.
if (!LT.second.isVector())
return 0;
// The type may be split. Normalize the index to the new type.
unsigned Width = LT.second.getVectorNumElements();
Index = Index % Width;
// The element at index zero is already inside the vector.
if (Index == 0)
return 0;
}
// All other insert/extracts cost this much.
return 2;
}
unsigned ARM64TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
OperandValueKind Opd1Info,
OperandValueKind Opd2Info) const {
// Legalize the type.
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
switch (ISD) {
default:
return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Opd1Info,
Opd2Info);
case ISD::ADD:
case ISD::MUL:
case ISD::XOR:
case ISD::OR:
case ISD::AND:
// These nodes are marked as 'custom' for combining purposes only.
// We know that they are legal. See LowerAdd in ISelLowering.
return 1 * LT.first;
}
}
unsigned ARM64TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
// Address computations in vectorized code with non-consecutive addresses will
// likely result in more instructions compared to scalar code where the
// computation can more often be merged into the index mode. The resulting
// extra micro-ops can significantly decrease throughput.
unsigned NumVectorInstToHideOverhead = 10;
if (Ty->isVectorTy() && IsComplex)
return NumVectorInstToHideOverhead;
// In many cases the address computation is not merged into the instruction
// addressing mode.
return 1;
}
unsigned ARM64TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// We don't lower vector selects well that are wider than the register width.
if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
// We would need this many instructions to hide the scalarization happening.
unsigned AmortizationCost = 20;
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
VectorSelectTbl[] = {
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
};
EVT SelCondTy = TLI->getValueType(CondTy);
EVT SelValTy = TLI->getValueType(ValTy);
if (SelCondTy.isSimple() && SelValTy.isSimple()) {
int Idx =
ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
SelValTy.getSimpleVT());
if (Idx != -1)
return VectorSelectTbl[Idx].Cost;
}
}
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
}
unsigned ARM64TTI::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
Src->getVectorElementType()->isIntegerTy(64)) {
// Unaligned stores are extremely inefficient. We don't split
// unaligned v2i64 stores because the negative impact that has shown in
// practice on inlined memcpy code.
// We make v2i64 stores expensive so that we will only vectorize if there
// are 6 other instructions getting vectorized.
unsigned AmortizationCost = 6;
return LT.first * 2 * AmortizationCost;
}
if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
Src->getVectorNumElements() < 8) {
// We scalarize the loads/stores because there is not v.4b register and we
// have to promote the elements to v.4h.
unsigned NumVecElts = Src->getVectorNumElements();
unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
// We generate 2 instructions per vector element.
return NumVectorizableInstsToAmortize * NumVecElts * 2;
}
return LT.first;
}