Files
clang-p2996/libc/utils/FPUtil/NearestIntegerOperations.h
Siva Chandra Reddy dba14814a6 [libc][NFC] Make few maths functions buildable outside of LLVM libc build.
Few math functions manipulate errno. They assumed that LLVM libc's errno
is available. However, that might not be the case when these functions
are used in a libc which does not use LLVM libc's errno. This change
switches such uses of LLVM libc's errno to the normal public errno macro.
This does not affect LLVM libc's build because the include order ensures
we get LLVM libc's errno. Also, the header check rule ensures we are only
including LLVM libc's errno.h.
2021-02-16 09:14:29 -08:00

304 lines
8.6 KiB
C++

//===-- Nearest integer floating-point operations ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_NEAREST_INTEGER_OPERATIONS_H
#define LLVM_LIBC_UTILS_FPUTIL_NEAREST_INTEGER_OPERATIONS_H
#include "FEnv.h"
#include "FPBits.h"
#include "utils/CPP/TypeTraits.h"
#include <math.h>
#if math_errhandling & MATH_ERRNO
#include <errno.h>
#endif
namespace __llvm_libc {
namespace fputil {
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T trunc(T x) {
FPBits<T> bits(x);
// If x is infinity or NaN, return it.
// If it is zero also we should return it as is, but the logic
// later in this function takes care of it. But not doing a zero
// check, we improve the run time of non-zero values.
if (bits.isInfOrNaN())
return x;
int exponent = bits.getExponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(MantissaWidth<T>::value))
return x;
// If the exponent is such that abs(x) is less than 1, then return 0.
if (exponent <= -1) {
if (bits.sign)
return T(-0.0);
else
return T(0.0);
}
int trimSize = MantissaWidth<T>::value - exponent;
bits.mantissa = (bits.mantissa >> trimSize) << trimSize;
return bits;
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T ceil(T x) {
FPBits<T> bits(x);
// If x is infinity NaN or zero, return it.
if (bits.isInfOrNaN() || bits.isZero())
return x;
bool isNeg = bits.sign;
int exponent = bits.getExponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(MantissaWidth<T>::value))
return x;
if (exponent <= -1) {
if (isNeg)
return T(-0.0);
else
return T(1.0);
}
uint32_t trimSize = MantissaWidth<T>::value - exponent;
bits.mantissa = (bits.mantissa >> trimSize) << trimSize;
T truncValue = T(bits);
// If x is already an integer, return it.
if (truncValue == x)
return x;
// If x is negative, the ceil operation is equivalent to the trunc operation.
if (isNeg)
return truncValue;
return truncValue + T(1.0);
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T floor(T x) {
FPBits<T> bits(x);
if (bits.sign) {
return -ceil(-x);
} else {
return trunc(x);
}
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T round(T x) {
using UIntType = typename FPBits<T>::UIntType;
FPBits<T> bits(x);
// If x is infinity NaN or zero, return it.
if (bits.isInfOrNaN() || bits.isZero())
return x;
bool isNeg = bits.sign;
int exponent = bits.getExponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(MantissaWidth<T>::value))
return x;
if (exponent == -1) {
// Absolute value of x is greater than equal to 0.5 but less than 1.
if (isNeg)
return T(-1.0);
else
return T(1.0);
}
if (exponent <= -2) {
// Absolute value of x is less than 0.5.
if (isNeg)
return T(-0.0);
else
return T(0.0);
}
uint32_t trimSize = MantissaWidth<T>::value - exponent;
bool halfBitSet = bits.mantissa & (UIntType(1) << (trimSize - 1));
bits.mantissa = (bits.mantissa >> trimSize) << trimSize;
T truncValue = T(bits);
// If x is already an integer, return it.
if (truncValue == x)
return x;
if (!halfBitSet) {
// Franctional part is less than 0.5 so round value is the
// same as the trunc value.
return truncValue;
} else {
return isNeg ? truncValue - T(1.0) : truncValue + T(1.0);
}
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T roundUsingCurrentRoundingMode(T x) {
using UIntType = typename FPBits<T>::UIntType;
FPBits<T> bits(x);
// If x is infinity NaN or zero, return it.
if (bits.isInfOrNaN() || bits.isZero())
return x;
bool isNeg = bits.sign;
int exponent = bits.getExponent();
int roundingMode = getRound();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(MantissaWidth<T>::value))
return x;
if (exponent <= -1) {
switch (roundingMode) {
case FE_DOWNWARD:
return isNeg ? T(-1.0) : T(0.0);
case FE_UPWARD:
return isNeg ? T(-0.0) : T(1.0);
case FE_TOWARDZERO:
return isNeg ? T(-0.0) : T(0.0);
case FE_TONEAREST:
if (exponent <= -2 || bits.mantissa == 0)
return isNeg ? T(-0.0) : T(0.0); // abs(x) <= 0.5
else
return isNeg ? T(-1.0) : T(1.0); // abs(x) > 0.5
default:
__builtin_unreachable();
}
}
uint32_t trimSize = MantissaWidth<T>::value - exponent;
FPBits<T> newBits = bits;
newBits.mantissa = (bits.mantissa >> trimSize) << trimSize;
T truncValue = T(newBits);
// If x is already an integer, return it.
if (truncValue == x)
return x;
UIntType trimValue = bits.mantissa & ((UIntType(1) << trimSize) - 1);
UIntType halfValue = (UIntType(1) << (trimSize - 1));
// If exponent is 0, trimSize will be equal to the mantissa width, and
// truncIsOdd` will not be correct. So, we handle it as a special case
// below.
UIntType truncIsOdd = newBits.mantissa & (UIntType(1) << trimSize);
switch (roundingMode) {
case FE_DOWNWARD:
return isNeg ? truncValue - T(1.0) : truncValue;
case FE_UPWARD:
return isNeg ? truncValue : truncValue + T(1.0);
case FE_TOWARDZERO:
return truncValue;
case FE_TONEAREST:
if (trimValue > halfValue) {
return isNeg ? truncValue - T(1.0) : truncValue + T(1.0);
} else if (trimValue == halfValue) {
if (exponent == 0)
return isNeg ? T(-2.0) : T(2.0);
if (truncIsOdd)
return isNeg ? truncValue - T(1.0) : truncValue + T(1.0);
else
return truncValue;
} else {
return truncValue;
}
default:
__builtin_unreachable();
}
}
namespace internal {
template <typename F, typename I,
cpp::EnableIfType<cpp::IsFloatingPointType<F>::Value &&
cpp::IsIntegral<I>::Value,
int> = 0>
static inline I roundedFloatToSignedInteger(F x) {
constexpr I IntegerMin = (I(1) << (sizeof(I) * 8 - 1));
constexpr I IntegerMax = -(IntegerMin + 1);
FPBits<F> bits(x);
auto setDomainErrorAndRaiseInvalid = []() {
#if math_errhandling & MATH_ERRNO
errno = EDOM; // NOLINT
#endif
#if math_errhandling & MATH_ERREXCEPT
raiseExcept(FE_INVALID);
#endif
};
if (bits.isInfOrNaN()) {
setDomainErrorAndRaiseInvalid();
return bits.sign ? IntegerMin : IntegerMax;
}
int exponent = bits.getExponent();
constexpr int exponentLimit = sizeof(I) * 8 - 1;
if (exponent > exponentLimit) {
setDomainErrorAndRaiseInvalid();
return bits.sign ? IntegerMin : IntegerMax;
} else if (exponent == exponentLimit) {
if (bits.sign == 0 || bits.mantissa != 0) {
setDomainErrorAndRaiseInvalid();
return bits.sign ? IntegerMin : IntegerMax;
}
// If the control reaches here, then it means that the rounded
// value is the most negative number for the signed integer type I.
}
// For all other cases, if `x` can fit in the integer type `I`,
// we just return `x`. Implicit conversion will convert the
// floating point value to the exact integer value.
return x;
}
} // namespace internal
template <typename F, typename I,
cpp::EnableIfType<cpp::IsFloatingPointType<F>::Value &&
cpp::IsIntegral<I>::Value,
int> = 0>
static inline I roundToSignedInteger(F x) {
return internal::roundedFloatToSignedInteger<F, I>(round(x));
}
template <typename F, typename I,
cpp::EnableIfType<cpp::IsFloatingPointType<F>::Value &&
cpp::IsIntegral<I>::Value,
int> = 0>
static inline I roundToSignedIntegerUsingCurrentRoundingMode(F x) {
return internal::roundedFloatToSignedInteger<F, I>(
roundUsingCurrentRoundingMode(x));
}
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_UTILS_FPUTIL_NEAREST_INTEGER_OPERATIONS_H