Files
clang-p2996/lldb/test/functionalities/data-formatter/data-formatter-objc/CFString.py
Enrico Granata 6fd87d5d33 APIs to GetValueAsSigned/Unsigned() in SBValue now also accept an SBError parameter to give more info about any problem
The synthetic children providers now use the new (safer) APIs to get the values of objects
As a side effect, fixed an issue in ValueObject where ResolveValue() was not always updating the value before reading it

llvm-svn: 136861
2011-08-04 01:41:02 +00:00

239 lines
7.9 KiB
Python

# synthetic children provider for CFString
# (and related NSString class)
import lldb
class CFStringSynthProvider:
def __init__(self,valobj,dict):
self.valobj = valobj;
self.update()
# children other than "content" are for debugging only and must not be used in production code
def num_children(self):
if self.invalid:
return 0;
return 6;
def read_unicode(self, pointer):
process = self.valobj.GetTarget().GetProcess()
error = lldb.SBError()
pystr = u''
# cannot do the read at once because the length value has
# a weird encoding. better play it safe here
while True:
content = process.ReadMemory(pointer, 2, error)
new_bytes = bytearray(content)
b0 = new_bytes[0]
b1 = new_bytes[1]
pointer = pointer + 2
if b0 == 0 and b1 == 0:
break
# rearrange bytes depending on endianness
# (do we really need this or is Cocoa going to
# use Windows-compatible little-endian even
# if the target is big endian?)
if self.is_little:
value = b1 * 256 + b0
else:
value = b0 * 256 + b1
pystr = pystr + unichr(value)
return pystr
# handle the special case strings
# only use the custom code for the tested LP64 case
def handle_special(self):
if self.lp64 == False:
# for 32bit targets, use safe ObjC code
return self.handle_unicode_string_safe()
offset = 12
pointer = self.valobj.GetValueAsUnsigned(0) + offset
pystr = self.read_unicode(pointer)
return self.valobj.CreateValueFromExpression("content",
"(char*)\"" + pystr.encode('utf-8') + "\"")
# last resort call, use ObjC code to read; the final aim is to
# be able to strip this call away entirely and only do the read
# ourselves
def handle_unicode_string_safe(self):
return self.valobj.CreateValueFromExpression("content",
"(char*)\"" + self.valobj.GetObjectDescription() + "\"");
def handle_unicode_string(self):
# step 1: find offset
if self.inline:
pointer = self.valobj.GetValueAsUnsigned(0) + self.size_of_cfruntime_base();
if self.explicit == False:
# untested, use the safe code path
return self.handle_unicode_string_safe();
else:
# not sure why 8 bytes are skipped here
# (lldb) mem read -c 50 0x00000001001154f0
# 0x1001154f0: 98 1a 85 71 ff 7f 00 00 90 07 00 00 01 00 00 00 ...q?...........
# 0x100115500: 03 00 00 00 00 00 00 00 *c3 03 78 00 78 00 00 00 ........?.x.x...
# 0x100115510: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
# 0x100115520: 00 00 ..
# content begins at * (i.e. 8 bytes into variants, skipping void* buffer in
# __notInlineImmutable1 entirely, while the length byte is correctly located
# for an inline string)
pointer = pointer + 8;
else:
pointer = self.valobj.GetValueAsUnsigned(0) + self.size_of_cfruntime_base();
# read 8 bytes here and make an address out of them
vopointer = self.valobj.CreateChildAtOffset("dummy",
pointer,self.valobj.GetType().GetBasicType(lldb.eBasicTypeChar).GetPointerType());
pointer = vopointer.GetValueAsUnsigned(0)
# step 2: read Unicode data at pointer
pystr = self.read_unicode(pointer)
# step 3: return it
return self.valobj.CreateValueFromExpression("content",
"(char*)\"" + pystr.encode('utf-8') + "\"")
# we read at "the right place" into the __CFString object instead of running code
# we are replicating the functionality of __CFStrContents in CFString.c here
def handle_UTF8_inline(self):
offset = int(self.valobj.GetValue(), 0) + self.size_of_cfruntime_base();
if self.explicit == False:
offset = offset + 1;
return self.valobj.CreateValueFromAddress("content",
offset, self.valobj.GetType().GetBasicType(lldb.eBasicTypeChar));
def handle_UTF8_not_inline(self):
offset = self.size_of_cfruntime_base();
return self.valobj.CreateChildAtOffset("content",
offset,self.valobj.GetType().GetBasicType(lldb.eBasicTypeChar).GetPointerType());
def get_child_at_index(self,index):
if index == 0:
return self.valobj.CreateValueFromExpression("mutable",
str(int(self.mutable)));
if index == 1:
return self.valobj.CreateValueFromExpression("inline",
str(int(self.inline)));
if index == 2:
return self.valobj.CreateValueFromExpression("explicit",
str(int(self.explicit)));
if index == 3:
return self.valobj.CreateValueFromExpression("unicode",
str(int(self.unicode)));
if index == 4:
return self.valobj.CreateValueFromExpression("special",
str(int(self.special)));
if index == 5:
if self.unicode == True:
return self.handle_unicode_string();
elif self.special == True:
return self.handle_special();
elif self.inline == True:
return self.handle_UTF8_inline();
else:
return self.handle_UTF8_not_inline();
def get_child_index(self,name):
if name == "content":
return self.num_children() - 1;
if name == "mutable":
return 0;
if name == "inline":
return 1;
if name == "explicit":
return 2;
if name == "unicode":
return 3;
if name == "special":
return 4;
def is_64bit(self):
return self.valobj.GetTarget().GetProcess().GetAddressByteSize() == 8
def is_little_endian(self):
return self.valobj.GetTarget().GetProcess().GetByteOrder() == lldb.eByteOrderLittle
# CFRuntimeBase is defined as having an additional
# 4 bytes (padding?) on LP64 architectures
# to get its size we add up sizeof(pointer)+4
# and then add 4 more bytes if we are on a 64bit system
def size_of_cfruntime_base(self):
if self.lp64 == True:
return 8+4+4;
else:
return 4+4;
# the info bits are part of the CFRuntimeBase structure
# to get at them we have to skip a uintptr_t and then get
# at the least-significant byte of a 4 byte array. If we are
# on big-endian this means going to byte 3, if we are on
# little endian (OSX & iOS), this means reading byte 0
def offset_of_info_bits(self):
if self.lp64 == True:
offset = 8;
else:
offset = 4;
if self.is_little == False:
offset = offset + 3;
return offset;
def read_info_bits(self):
cfinfo = self.valobj.CreateChildAtOffset("cfinfo",
self.offset_of_info_bits(),
self.valobj.GetType().GetBasicType(lldb.eBasicTypeChar));
cfinfo.SetFormat(11)
info = cfinfo.GetValue();
if info != None:
self.invalid = False;
return int(info,0);
else:
self.invalid = True;
return None;
# calculating internal flag bits of the CFString object
# this stuff is defined and discussed in CFString.c
def is_mutable(self):
return (self.info_bits & 1) == 1;
def is_inline(self):
return (self.info_bits & 0x60) == 0;
# this flag's name is ambiguous, it turns out
# we must skip a length byte to get at the data
# when this flag is False
def has_explicit_length(self):
return (self.info_bits & (1 | 4)) != 4;
# probably a subclass of NSString. obtained this from [str pathExtension]
# here info_bits = 0 and Unicode data at the start of the padding word
# in the long run using the isa value might be safer as a way to identify this
# instead of reading the info_bits
def is_special_case(self):
return self.info_bits == 0;
def is_unicode(self):
return (self.info_bits & 0x10) == 0x10;
# preparing ourselves to read into memory
# by adjusting architecture-specific info
def adjust_for_architecture(self):
self.lp64 = self.is_64bit();
self.is_little = self.is_little_endian();
# reading info bits out of the CFString and computing
# useful values to get at the real data
def compute_flags(self):
self.info_bits = self.read_info_bits();
if self.info_bits == None:
return;
self.mutable = self.is_mutable();
self.inline = self.is_inline();
self.explicit = self.has_explicit_length();
self.unicode = self.is_unicode();
self.special = self.is_special_case();
def update(self):
self.adjust_for_architecture();
self.compute_flags();
def CFString_SummaryProvider (valobj,dict):
provider = CFStringSynthProvider(valobj,dict);
if provider.invalid == False:
return provider.get_child_at_index(provider.get_child_index("content")).GetSummary();
return ''