Currently when `--icf=safe_thunks` is used, `STABS` entries cannot be generated for ICF'ed functions. This is because if ICF converts a full function into a thunk and then we generate a `STABS` entry for the thunk, `dsymutil` will expect to find the entire function body at the location of the thunk. Because just a thunk will be present at the location of the `STABS` entry - dsymutil will generate invalid debug info for such scenarios. With this change, if `--icf=safe_thunks` is used and `--keep-icf-stabs` is also specified, STABS entries will be created for all functions, even merged ones. However, the STABS entries will point at the actual (full) function body while having the name of the thunk. This way we still get program correctness as well as correct DWARF data. When doing this, the debug data will be identical to the scenario where we're using `--icf=all` and `--keep-icf-stabs`, but the actual program will also contain thunks, which won't show up in the DWARF data.
590 lines
24 KiB
C++
590 lines
24 KiB
C++
//===- ICF.cpp ------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ICF.h"
|
|
#include "ConcatOutputSection.h"
|
|
#include "Config.h"
|
|
#include "InputSection.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "UnwindInfoSection.h"
|
|
|
|
#include "lld/Common/CommonLinkerContext.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/Parallel.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
#include "llvm/Support/xxhash.h"
|
|
|
|
#include <atomic>
|
|
|
|
using namespace llvm;
|
|
using namespace lld;
|
|
using namespace lld::macho;
|
|
|
|
static constexpr bool verboseDiagnostics = false;
|
|
|
|
class ICF {
|
|
public:
|
|
ICF(std::vector<ConcatInputSection *> &inputs);
|
|
void run();
|
|
|
|
using EqualsFn = bool (ICF::*)(const ConcatInputSection *,
|
|
const ConcatInputSection *);
|
|
void segregate(size_t begin, size_t end, EqualsFn);
|
|
size_t findBoundary(size_t begin, size_t end);
|
|
void forEachClassRange(size_t begin, size_t end,
|
|
llvm::function_ref<void(size_t, size_t)> func);
|
|
void forEachClass(llvm::function_ref<void(size_t, size_t)> func);
|
|
|
|
bool equalsConstant(const ConcatInputSection *ia,
|
|
const ConcatInputSection *ib);
|
|
bool equalsVariable(const ConcatInputSection *ia,
|
|
const ConcatInputSection *ib);
|
|
void applySafeThunksToRange(size_t begin, size_t end);
|
|
|
|
// ICF needs a copy of the inputs vector because its equivalence-class
|
|
// segregation algorithm destroys the proper sequence.
|
|
std::vector<ConcatInputSection *> icfInputs;
|
|
|
|
unsigned icfPass = 0;
|
|
std::atomic<bool> icfRepeat{false};
|
|
std::atomic<uint64_t> equalsConstantCount{0};
|
|
std::atomic<uint64_t> equalsVariableCount{0};
|
|
};
|
|
|
|
ICF::ICF(std::vector<ConcatInputSection *> &inputs) {
|
|
icfInputs.assign(inputs.begin(), inputs.end());
|
|
}
|
|
|
|
// ICF = Identical Code Folding
|
|
//
|
|
// We only fold __TEXT,__text, so this is really "code" folding, and not
|
|
// "COMDAT" folding. String and scalar constant literals are deduplicated
|
|
// elsewhere.
|
|
//
|
|
// Summary of segments & sections:
|
|
//
|
|
// The __TEXT segment is readonly at the MMU. Some sections are already
|
|
// deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are
|
|
// synthetic and inherently free of duplicates (__TEXT,__stubs &
|
|
// __TEXT,__unwind_info). Note that we don't yet run ICF on __TEXT,__const,
|
|
// because doing so induces many test failures.
|
|
//
|
|
// The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and
|
|
// thus ineligible for ICF.
|
|
//
|
|
// The __DATA_CONST segment is read/write at the MMU, but is logically const to
|
|
// the application after dyld applies fixups to pointer data. We currently
|
|
// fold only the __DATA_CONST,__cfstring section.
|
|
//
|
|
// The __DATA segment is read/write at the MMU, and as application-writeable
|
|
// data, none of its sections are eligible for ICF.
|
|
//
|
|
// Please see the large block comment in lld/ELF/ICF.cpp for an explanation
|
|
// of the segregation algorithm.
|
|
//
|
|
// FIXME(gkm): implement keep-unique attributes
|
|
// FIXME(gkm): implement address-significance tables for MachO object files
|
|
|
|
// Compare "non-moving" parts of two ConcatInputSections, namely everything
|
|
// except references to other ConcatInputSections.
|
|
bool ICF::equalsConstant(const ConcatInputSection *ia,
|
|
const ConcatInputSection *ib) {
|
|
if (verboseDiagnostics)
|
|
++equalsConstantCount;
|
|
// We can only fold within the same OutputSection.
|
|
if (ia->parent != ib->parent)
|
|
return false;
|
|
if (ia->data.size() != ib->data.size())
|
|
return false;
|
|
if (ia->data != ib->data)
|
|
return false;
|
|
if (ia->relocs.size() != ib->relocs.size())
|
|
return false;
|
|
auto f = [](const Reloc &ra, const Reloc &rb) {
|
|
if (ra.type != rb.type)
|
|
return false;
|
|
if (ra.pcrel != rb.pcrel)
|
|
return false;
|
|
if (ra.length != rb.length)
|
|
return false;
|
|
if (ra.offset != rb.offset)
|
|
return false;
|
|
if (ra.referent.is<Symbol *>() != rb.referent.is<Symbol *>())
|
|
return false;
|
|
|
|
InputSection *isecA, *isecB;
|
|
|
|
uint64_t valueA = 0;
|
|
uint64_t valueB = 0;
|
|
if (ra.referent.is<Symbol *>()) {
|
|
const auto *sa = ra.referent.get<Symbol *>();
|
|
const auto *sb = rb.referent.get<Symbol *>();
|
|
if (sa->kind() != sb->kind())
|
|
return false;
|
|
// ICF runs before Undefineds are treated (and potentially converted into
|
|
// DylibSymbols).
|
|
if (isa<DylibSymbol>(sa) || isa<Undefined>(sa))
|
|
return sa == sb && ra.addend == rb.addend;
|
|
assert(isa<Defined>(sa));
|
|
const auto *da = cast<Defined>(sa);
|
|
const auto *db = cast<Defined>(sb);
|
|
if (!da->isec() || !db->isec()) {
|
|
assert(da->isAbsolute() && db->isAbsolute());
|
|
return da->value + ra.addend == db->value + rb.addend;
|
|
}
|
|
isecA = da->isec();
|
|
valueA = da->value;
|
|
isecB = db->isec();
|
|
valueB = db->value;
|
|
} else {
|
|
isecA = ra.referent.get<InputSection *>();
|
|
isecB = rb.referent.get<InputSection *>();
|
|
}
|
|
|
|
// Typically, we should not encounter sections marked with `keepUnique` at
|
|
// this point as they would have resulted in different hashes and therefore
|
|
// no need for a full comparison.
|
|
// However, in `safe_thunks` mode, it's possible for two different
|
|
// relocations to reference identical `keepUnique` functions that will be
|
|
// distinguished later via thunks - so we need to handle this case
|
|
// explicitly.
|
|
if ((isecA != isecB) && ((isecA->keepUnique && isCodeSection(isecA)) ||
|
|
(isecB->keepUnique && isCodeSection(isecB))))
|
|
return false;
|
|
|
|
if (isecA->parent != isecB->parent)
|
|
return false;
|
|
// Sections with identical parents should be of the same kind.
|
|
assert(isecA->kind() == isecB->kind());
|
|
// We will compare ConcatInputSection contents in equalsVariable.
|
|
if (isa<ConcatInputSection>(isecA))
|
|
return ra.addend == rb.addend;
|
|
// Else we have two literal sections. References to them are equal iff their
|
|
// offsets in the output section are equal.
|
|
if (ra.referent.is<Symbol *>())
|
|
// For symbol relocs, we compare the contents at the symbol address. We
|
|
// don't do `getOffset(value + addend)` because value + addend may not be
|
|
// a valid offset in the literal section.
|
|
return isecA->getOffset(valueA) == isecB->getOffset(valueB) &&
|
|
ra.addend == rb.addend;
|
|
else {
|
|
assert(valueA == 0 && valueB == 0);
|
|
// For section relocs, we compare the content at the section offset.
|
|
return isecA->getOffset(ra.addend) == isecB->getOffset(rb.addend);
|
|
}
|
|
};
|
|
return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(),
|
|
f);
|
|
}
|
|
|
|
// Compare the "moving" parts of two ConcatInputSections -- i.e. everything not
|
|
// handled by equalsConstant().
|
|
bool ICF::equalsVariable(const ConcatInputSection *ia,
|
|
const ConcatInputSection *ib) {
|
|
if (verboseDiagnostics)
|
|
++equalsVariableCount;
|
|
assert(ia->relocs.size() == ib->relocs.size());
|
|
auto f = [this](const Reloc &ra, const Reloc &rb) {
|
|
// We already filtered out mismatching values/addends in equalsConstant.
|
|
if (ra.referent == rb.referent)
|
|
return true;
|
|
const ConcatInputSection *isecA, *isecB;
|
|
if (ra.referent.is<Symbol *>()) {
|
|
// Matching DylibSymbols are already filtered out by the
|
|
// identical-referent check above. Non-matching DylibSymbols were filtered
|
|
// out in equalsConstant(). So we can safely cast to Defined here.
|
|
const auto *da = cast<Defined>(ra.referent.get<Symbol *>());
|
|
const auto *db = cast<Defined>(rb.referent.get<Symbol *>());
|
|
if (da->isAbsolute())
|
|
return true;
|
|
isecA = dyn_cast<ConcatInputSection>(da->isec());
|
|
if (!isecA)
|
|
return true; // literal sections were checked in equalsConstant.
|
|
isecB = cast<ConcatInputSection>(db->isec());
|
|
} else {
|
|
const auto *sa = ra.referent.get<InputSection *>();
|
|
const auto *sb = rb.referent.get<InputSection *>();
|
|
isecA = dyn_cast<ConcatInputSection>(sa);
|
|
if (!isecA)
|
|
return true;
|
|
isecB = cast<ConcatInputSection>(sb);
|
|
}
|
|
return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2];
|
|
};
|
|
if (!std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(), f))
|
|
return false;
|
|
|
|
// If there are symbols with associated unwind info, check that the unwind
|
|
// info matches. For simplicity, we only handle the case where there are only
|
|
// symbols at offset zero within the section (which is typically the case with
|
|
// .subsections_via_symbols.)
|
|
auto hasUnwind = [](Defined *d) { return d->unwindEntry() != nullptr; };
|
|
const auto *itA = llvm::find_if(ia->symbols, hasUnwind);
|
|
const auto *itB = llvm::find_if(ib->symbols, hasUnwind);
|
|
if (itA == ia->symbols.end())
|
|
return itB == ib->symbols.end();
|
|
if (itB == ib->symbols.end())
|
|
return false;
|
|
const Defined *da = *itA;
|
|
const Defined *db = *itB;
|
|
if (da->unwindEntry()->icfEqClass[icfPass % 2] !=
|
|
db->unwindEntry()->icfEqClass[icfPass % 2] ||
|
|
da->value != 0 || db->value != 0)
|
|
return false;
|
|
auto isZero = [](Defined *d) { return d->value == 0; };
|
|
return std::find_if_not(std::next(itA), ia->symbols.end(), isZero) ==
|
|
ia->symbols.end() &&
|
|
std::find_if_not(std::next(itB), ib->symbols.end(), isZero) ==
|
|
ib->symbols.end();
|
|
}
|
|
|
|
// Find the first InputSection after BEGIN whose equivalence class differs
|
|
size_t ICF::findBoundary(size_t begin, size_t end) {
|
|
uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2];
|
|
for (size_t i = begin + 1; i < end; ++i)
|
|
if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2])
|
|
return i;
|
|
return end;
|
|
}
|
|
|
|
// Invoke FUNC on subranges with matching equivalence class
|
|
void ICF::forEachClassRange(size_t begin, size_t end,
|
|
llvm::function_ref<void(size_t, size_t)> func) {
|
|
while (begin < end) {
|
|
size_t mid = findBoundary(begin, end);
|
|
func(begin, mid);
|
|
begin = mid;
|
|
}
|
|
}
|
|
|
|
// Given a range of identical icfInputs, replace address significant functions
|
|
// with a thunk that is just a direct branch to the first function in the
|
|
// series. This way we keep only one main body of the function but we still
|
|
// retain the address uniqueness of relevant functions by having them be a
|
|
// direct branch thunk rather than containing a full copy of the actual function
|
|
// body.
|
|
void ICF::applySafeThunksToRange(size_t begin, size_t end) {
|
|
// If the functions we're dealing with are smaller than the thunk size, then
|
|
// just leave them all as-is - creating thunks would be a net loss.
|
|
uint32_t thunkSize = target->getICFSafeThunkSize();
|
|
if (icfInputs[begin]->data.size() <= thunkSize)
|
|
return;
|
|
|
|
// When creating a unique ICF thunk, use the first section as the section that
|
|
// all thunks will branch to.
|
|
ConcatInputSection *masterIsec = icfInputs[begin];
|
|
|
|
for (size_t i = begin + 1; i < end; ++i) {
|
|
ConcatInputSection *isec = icfInputs[i];
|
|
// When we're done processing keepUnique entries, we can stop. Sorting
|
|
// guaratees that all keepUnique will be at the front.
|
|
if (!isec->keepUnique)
|
|
break;
|
|
|
|
ConcatInputSection *thunk =
|
|
makeSyntheticInputSection(isec->getSegName(), isec->getName());
|
|
addInputSection(thunk);
|
|
|
|
target->initICFSafeThunkBody(thunk, masterIsec);
|
|
thunk->foldIdentical(isec, Symbol::ICFFoldKind::Thunk);
|
|
|
|
// Since we're folding the target function into a thunk, we need to adjust
|
|
// the symbols that now got relocated from the target function to the thunk.
|
|
// Since the thunk is only one branch, we move all symbols to offset 0 and
|
|
// make sure that the size of all non-zero-size symbols is equal to the size
|
|
// of the branch.
|
|
for (auto *sym : thunk->symbols) {
|
|
sym->value = 0;
|
|
if (sym->size != 0)
|
|
sym->size = thunkSize;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Split icfInputs into shards, then parallelize invocation of FUNC on subranges
|
|
// with matching equivalence class
|
|
void ICF::forEachClass(llvm::function_ref<void(size_t, size_t)> func) {
|
|
// Only use threads when the benefits outweigh the overhead.
|
|
const size_t threadingThreshold = 1024;
|
|
if (icfInputs.size() < threadingThreshold) {
|
|
forEachClassRange(0, icfInputs.size(), func);
|
|
++icfPass;
|
|
return;
|
|
}
|
|
|
|
// Shard into non-overlapping intervals, and call FUNC in parallel. The
|
|
// sharding must be completed before any calls to FUNC are made so that FUNC
|
|
// can modify the InputSection in its shard without causing data races.
|
|
const size_t shards = 256;
|
|
size_t step = icfInputs.size() / shards;
|
|
size_t boundaries[shards + 1];
|
|
boundaries[0] = 0;
|
|
boundaries[shards] = icfInputs.size();
|
|
parallelFor(1, shards, [&](size_t i) {
|
|
boundaries[i] = findBoundary((i - 1) * step, icfInputs.size());
|
|
});
|
|
parallelFor(1, shards + 1, [&](size_t i) {
|
|
if (boundaries[i - 1] < boundaries[i]) {
|
|
forEachClassRange(boundaries[i - 1], boundaries[i], func);
|
|
}
|
|
});
|
|
++icfPass;
|
|
}
|
|
|
|
void ICF::run() {
|
|
// Into each origin-section hash, combine all reloc referent section hashes.
|
|
for (icfPass = 0; icfPass < 2; ++icfPass) {
|
|
parallelForEach(icfInputs, [&](ConcatInputSection *isec) {
|
|
uint32_t hash = isec->icfEqClass[icfPass % 2];
|
|
for (const Reloc &r : isec->relocs) {
|
|
if (auto *sym = r.referent.dyn_cast<Symbol *>()) {
|
|
if (auto *defined = dyn_cast<Defined>(sym)) {
|
|
if (defined->isec()) {
|
|
if (auto *referentIsec =
|
|
dyn_cast<ConcatInputSection>(defined->isec()))
|
|
hash += defined->value + referentIsec->icfEqClass[icfPass % 2];
|
|
else
|
|
hash += defined->isec()->kind() +
|
|
defined->isec()->getOffset(defined->value);
|
|
} else {
|
|
hash += defined->value;
|
|
}
|
|
} else {
|
|
// ICF runs before Undefined diags
|
|
assert(isa<Undefined>(sym) || isa<DylibSymbol>(sym));
|
|
}
|
|
}
|
|
}
|
|
// Set MSB to 1 to avoid collisions with non-hashed classes.
|
|
isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 31);
|
|
});
|
|
}
|
|
|
|
llvm::stable_sort(
|
|
icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) {
|
|
// When using safe_thunks, ensure that we first sort by icfEqClass and
|
|
// then by keepUnique (descending). This guarantees that within an
|
|
// equivalence class, the keepUnique inputs are always first.
|
|
if (config->icfLevel == ICFLevel::safe_thunks)
|
|
if (a->icfEqClass[0] == b->icfEqClass[0])
|
|
return a->keepUnique > b->keepUnique;
|
|
return a->icfEqClass[0] < b->icfEqClass[0];
|
|
});
|
|
forEachClass([&](size_t begin, size_t end) {
|
|
segregate(begin, end, &ICF::equalsConstant);
|
|
});
|
|
|
|
// Split equivalence groups by comparing relocations until convergence
|
|
do {
|
|
icfRepeat = false;
|
|
forEachClass([&](size_t begin, size_t end) {
|
|
segregate(begin, end, &ICF::equalsVariable);
|
|
});
|
|
} while (icfRepeat);
|
|
log("ICF needed " + Twine(icfPass) + " iterations");
|
|
if (verboseDiagnostics) {
|
|
log("equalsConstant() called " + Twine(equalsConstantCount) + " times");
|
|
log("equalsVariable() called " + Twine(equalsVariableCount) + " times");
|
|
}
|
|
|
|
// When using safe_thunks, we need to create thunks for all keepUnique
|
|
// functions that can be deduplicated. Since we're creating / adding new
|
|
// InputSections, we can't paralellize this.
|
|
if (config->icfLevel == ICFLevel::safe_thunks)
|
|
forEachClassRange(0, icfInputs.size(), [&](size_t begin, size_t end) {
|
|
applySafeThunksToRange(begin, end);
|
|
});
|
|
|
|
// Fold sections within equivalence classes
|
|
forEachClass([&](size_t begin, size_t end) {
|
|
if (end - begin < 2)
|
|
return;
|
|
bool useSafeThunks = config->icfLevel == ICFLevel::safe_thunks;
|
|
|
|
// For ICF level safe_thunks, replace keepUnique function bodies with
|
|
// thunks. For all other ICF levles, directly merge the functions.
|
|
|
|
ConcatInputSection *beginIsec = icfInputs[begin];
|
|
for (size_t i = begin + 1; i < end; ++i) {
|
|
// Skip keepUnique inputs when using safe_thunks (already handeled above)
|
|
if (useSafeThunks && icfInputs[i]->keepUnique) {
|
|
// Assert keepUnique sections are either small or replaced with thunks.
|
|
assert(!icfInputs[i]->live ||
|
|
icfInputs[i]->data.size() <= target->getICFSafeThunkSize());
|
|
assert(!icfInputs[i]->replacement ||
|
|
icfInputs[i]->replacement->data.size() ==
|
|
target->getICFSafeThunkSize());
|
|
continue;
|
|
}
|
|
beginIsec->foldIdentical(icfInputs[i]);
|
|
}
|
|
});
|
|
}
|
|
|
|
// Split an equivalence class into smaller classes.
|
|
void ICF::segregate(size_t begin, size_t end, EqualsFn equals) {
|
|
while (begin < end) {
|
|
// Divide [begin, end) into two. Let mid be the start index of the
|
|
// second group.
|
|
auto bound = std::stable_partition(
|
|
icfInputs.begin() + begin + 1, icfInputs.begin() + end,
|
|
[&](ConcatInputSection *isec) {
|
|
return (this->*equals)(icfInputs[begin], isec);
|
|
});
|
|
size_t mid = bound - icfInputs.begin();
|
|
|
|
// Split [begin, end) into [begin, mid) and [mid, end). We use mid as an
|
|
// equivalence class ID because every group ends with a unique index.
|
|
for (size_t i = begin; i < mid; ++i)
|
|
icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid;
|
|
|
|
// If we created a group, we need to iterate the main loop again.
|
|
if (mid != end)
|
|
icfRepeat = true;
|
|
|
|
begin = mid;
|
|
}
|
|
}
|
|
|
|
void macho::markSymAsAddrSig(Symbol *s) {
|
|
if (auto *d = dyn_cast_or_null<Defined>(s))
|
|
if (d->isec())
|
|
d->isec()->keepUnique = true;
|
|
}
|
|
|
|
void macho::markAddrSigSymbols() {
|
|
TimeTraceScope timeScope("Mark addrsig symbols");
|
|
for (InputFile *file : inputFiles) {
|
|
ObjFile *obj = dyn_cast<ObjFile>(file);
|
|
if (!obj)
|
|
continue;
|
|
|
|
Section *addrSigSection = obj->addrSigSection;
|
|
if (!addrSigSection)
|
|
continue;
|
|
assert(addrSigSection->subsections.size() == 1);
|
|
|
|
const InputSection *isec = addrSigSection->subsections[0].isec;
|
|
|
|
for (const Reloc &r : isec->relocs) {
|
|
if (auto *sym = r.referent.dyn_cast<Symbol *>())
|
|
markSymAsAddrSig(sym);
|
|
else
|
|
error(toString(isec) + ": unexpected section relocation");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Given a symbol that was folded into a thunk, return the symbol pointing to
|
|
// the actual body of the function. We use this approach rather than storing the
|
|
// needed info in the Defined itself in order to minimize memory usage.
|
|
Defined *macho::getBodyForThunkFoldedSym(Defined *foldedSym) {
|
|
assert(isa<ConcatInputSection>(foldedSym->originalIsec) &&
|
|
"thunk-folded ICF symbol expected to be on a ConcatInputSection");
|
|
// foldedSec is the InputSection that was marked as deleted upon fold
|
|
ConcatInputSection *foldedSec =
|
|
cast<ConcatInputSection>(foldedSym->originalIsec);
|
|
|
|
// thunkBody is the actual live thunk, containing the code that branches to
|
|
// the actual body of the function.
|
|
InputSection *thunkBody = foldedSec->replacement;
|
|
|
|
// The actual (merged) body of the function that the thunk jumps to. This will
|
|
// end up in the final binary.
|
|
InputSection *functionBody = target->getThunkBranchTarget(thunkBody);
|
|
|
|
for (Symbol *sym : functionBody->symbols) {
|
|
Defined *d = dyn_cast<Defined>(sym);
|
|
// The symbol needs to be at the start of the InputSection
|
|
if (d && d->value == 0)
|
|
return d;
|
|
}
|
|
|
|
llvm_unreachable("could not find body symbol for ICF-generated thunk");
|
|
}
|
|
void macho::foldIdenticalSections(bool onlyCfStrings) {
|
|
TimeTraceScope timeScope("Fold Identical Code Sections");
|
|
// The ICF equivalence-class segregation algorithm relies on pre-computed
|
|
// hashes of InputSection::data for the ConcatOutputSection::inputs and all
|
|
// sections referenced by their relocs. We could recursively traverse the
|
|
// relocs to find every referenced InputSection, but that precludes easy
|
|
// parallelization. Therefore, we hash every InputSection here where we have
|
|
// them all accessible as simple vectors.
|
|
|
|
// If an InputSection is ineligible for ICF, we give it a unique ID to force
|
|
// it into an unfoldable singleton equivalence class. Begin the unique-ID
|
|
// space at inputSections.size(), so that it will never intersect with
|
|
// equivalence-class IDs which begin at 0. Since hashes & unique IDs never
|
|
// coexist with equivalence-class IDs, this is not necessary, but might help
|
|
// someone keep the numbers straight in case we ever need to debug the
|
|
// ICF::segregate()
|
|
std::vector<ConcatInputSection *> foldable;
|
|
uint64_t icfUniqueID = inputSections.size();
|
|
for (ConcatInputSection *isec : inputSections) {
|
|
bool isFoldableWithAddendsRemoved = isCfStringSection(isec) ||
|
|
isClassRefsSection(isec) ||
|
|
isSelRefsSection(isec);
|
|
// NOTE: __objc_selrefs is typically marked as no_dead_strip by MC, but we
|
|
// can still fold it.
|
|
bool hasFoldableFlags = (isSelRefsSection(isec) ||
|
|
sectionType(isec->getFlags()) == MachO::S_REGULAR);
|
|
|
|
bool isCodeSec = isCodeSection(isec);
|
|
|
|
// When keepUnique is true, the section is not foldable. Unless we are at
|
|
// icf level safe_thunks, in which case we still want to fold code sections.
|
|
// When using safe_thunks we'll apply the safe_thunks logic at merge time
|
|
// based on the 'keepUnique' flag.
|
|
bool noUniqueRequirement =
|
|
!isec->keepUnique ||
|
|
((config->icfLevel == ICFLevel::safe_thunks) && isCodeSec);
|
|
|
|
// FIXME: consider non-code __text sections as foldable?
|
|
bool isFoldable = (!onlyCfStrings || isCfStringSection(isec)) &&
|
|
(isCodeSec || isFoldableWithAddendsRemoved ||
|
|
isGccExceptTabSection(isec)) &&
|
|
noUniqueRequirement && !isec->hasAltEntry &&
|
|
!isec->shouldOmitFromOutput() && hasFoldableFlags;
|
|
if (isFoldable) {
|
|
foldable.push_back(isec);
|
|
for (Defined *d : isec->symbols)
|
|
if (d->unwindEntry())
|
|
foldable.push_back(d->unwindEntry());
|
|
|
|
// Some sections have embedded addends that foil ICF's hashing / equality
|
|
// checks. (We can ignore embedded addends when doing ICF because the same
|
|
// information gets recorded in our Reloc structs.) We therefore create a
|
|
// mutable copy of the section data and zero out the embedded addends
|
|
// before performing any hashing / equality checks.
|
|
if (isFoldableWithAddendsRemoved) {
|
|
// We have to do this copying serially as the BumpPtrAllocator is not
|
|
// thread-safe. FIXME: Make a thread-safe allocator.
|
|
MutableArrayRef<uint8_t> copy = isec->data.copy(bAlloc());
|
|
for (const Reloc &r : isec->relocs)
|
|
target->relocateOne(copy.data() + r.offset, r, /*va=*/0,
|
|
/*relocVA=*/0);
|
|
isec->data = copy;
|
|
}
|
|
} else if (!isEhFrameSection(isec)) {
|
|
// EH frames are gathered as foldables from unwindEntry above; give a
|
|
// unique ID to everything else.
|
|
isec->icfEqClass[0] = ++icfUniqueID;
|
|
}
|
|
}
|
|
parallelForEach(foldable, [](ConcatInputSection *isec) {
|
|
assert(isec->icfEqClass[0] == 0); // don't overwrite a unique ID!
|
|
// Turn-on the top bit to guarantee that valid hashes have no collisions
|
|
// with the small-integer unique IDs for ICF-ineligible sections
|
|
isec->icfEqClass[0] = xxh3_64bits(isec->data) | (1ull << 31);
|
|
});
|
|
// Now that every input section is either hashed or marked as unique, run the
|
|
// segregation algorithm to detect foldable subsections.
|
|
ICF(foldable).run();
|
|
}
|