Files
clang-p2996/llvm/utils/TableGen/DAGISelMatcherEmitter.cpp
Brandon Wu a4c6ebeb20 [MVT][TableGen] Extend Machine Value Type to uint16_t (#99657)
RFC:
https://discourse.llvm.org/t/rfc-extend-machine-value-type-from-uint8-t-to-uint16-t/80274
compile-time-tracker:
https://llvm-compile-time-tracker.com/compare.php?from=4b9fab591916eec9fd1942f37afe3b137b564089&to=177d28247efe5a4d59a8d8150b4daf01e4f57d74&stat=wall-time

Currently 208 out of 256 MVTs are used, it will be run out soon, so
ultimately we need to extend the original `MVT::SimpleValueType` from
`uint8_t` to `uint16_t` to accomodate more types.
The `MatcherTable` uses `unsigned char` for encoding the matcher code,
so the extended MVTs are no longer fit into the table, thus we need to
use VBR to encode them as we do on others that are wider than 8 bits.

The statistics below shows the difference of "Total Array size" of the
matcher table that appears in every files:
```
Table                       Before     After     Change(%)
WebAssemblyGenDAGISel.inc   23576      23775     0.844
NVPTXGenDAGISel.inc         173498     173498    0
RISCVGenDAGISel.inc         2179121    2369929   8.756
AVRGenDAGISel.inc           2754       2754      0
PPCGenDAGISel.inc           163315     163617    0.185
MipsGenDAGISel.inc          47280      47447     0.353
SystemZGenDAGISel.inc       56243      56461     0.388
AArch64GenDAGISel.inc       467893     487830    4.261
MSP430GenDAGISel.inc        8069       8069      0
LoongArchGenDAGISel.inc     78928      79131     0.257
XCoreGenDAGISel.inc         3432       3432      0
BPFGenDAGISel.inc           3733       3733      0
VEGenDAGISel.inc            65174      66456     1.967
LanaiGenDAGISel.inc         2067       2067      0
X86GenDAGISel.inc           628787     636987    1.304
ARMGenDAGISel.inc           170968     171036    0.040
HexagonGenDAGISel.inc       155764     155764    0
SparcGenDAGISel.inc         5762       5798      0.625
AMDGPUGenDAGISel.inc        504356     504463    0.021
R600GenDAGISel.inc          29785      29785     0
```

The statistics below shows the runtime peak memory usage by compiling a
simple C program:
`/bin/time -v clang -target $TARGET -O3 -c test.c`
```
  int test(int a) {
    return a * 3;
  }
```
```
Target        Before(kbytes)    After(kbytes)    Change(%)
wasm64        110172            110088           -0.076
nvptx64       109784            109980            0.179
riscv64       114020            113656           -0.319
avr           110352            110068           -0.257
ppc64         112612            112476           -0.120
mips64        113588            113668            0.070
systemz       110860            110760           -0.090
aarch64       113704            113432           -0.239
msp430        110284            110200           -0.076
loongarch64   111052            110756           -0.267
xcore         108340            108020           -0.295
bpf           110620            110708            0.080
ve            110960            110920           -0.036
lanai         110180            109960           -0.200
x86_64        113640            113304           -0.296
arm64         113540            113172           -0.324
hexagon       114620            114684            0.056
sparc         110412            110136           -0.250
amdgcn        118164            117144           -0.863
r600          111200            110508           -0.622
```
2024-08-01 01:19:14 +08:00

1418 lines
46 KiB
C++

//===- DAGISelMatcherEmitter.cpp - Matcher Emitter ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains code to generate C++ code for a matcher.
//
//===----------------------------------------------------------------------===//
#include "Basic/SDNodeProperties.h"
#include "Common/CodeGenDAGPatterns.h"
#include "Common/CodeGenInstruction.h"
#include "Common/CodeGenRegisters.h"
#include "Common/CodeGenTarget.h"
#include "Common/DAGISelMatcher.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
using namespace llvm;
enum {
IndexWidth = 6,
FullIndexWidth = IndexWidth + 4,
HistOpcWidth = 40,
};
cl::OptionCategory DAGISelCat("Options for -gen-dag-isel");
// To reduce generated source code size.
static cl::opt<bool> OmitComments("omit-comments",
cl::desc("Do not generate comments"),
cl::init(false), cl::cat(DAGISelCat));
static cl::opt<bool> InstrumentCoverage(
"instrument-coverage",
cl::desc("Generates tables to help identify patterns matched"),
cl::init(false), cl::cat(DAGISelCat));
namespace {
class MatcherTableEmitter {
const CodeGenDAGPatterns &CGP;
SmallVector<unsigned, Matcher::HighestKind + 1> OpcodeCounts;
std::vector<TreePattern *> NodePredicates;
std::vector<TreePattern *> NodePredicatesWithOperands;
// We de-duplicate the predicates by code string, and use this map to track
// all the patterns with "identical" predicates.
MapVector<std::string, TinyPtrVector<TreePattern *>, StringMap<unsigned>>
NodePredicatesByCodeToRun;
std::vector<std::string> PatternPredicates;
std::vector<const ComplexPattern *> ComplexPatterns;
DenseMap<Record *, unsigned> NodeXFormMap;
std::vector<Record *> NodeXForms;
std::vector<std::string> VecIncludeStrings;
MapVector<std::string, unsigned, StringMap<unsigned>> VecPatterns;
unsigned getPatternIdxFromTable(std::string &&P, std::string &&include_loc) {
const auto It = VecPatterns.find(P);
if (It == VecPatterns.end()) {
VecPatterns.insert(std::pair(std::move(P), VecPatterns.size()));
VecIncludeStrings.push_back(std::move(include_loc));
return VecIncludeStrings.size() - 1;
}
return It->second;
}
public:
MatcherTableEmitter(const Matcher *TheMatcher, const CodeGenDAGPatterns &cgp)
: CGP(cgp), OpcodeCounts(Matcher::HighestKind + 1, 0) {
// Record the usage of ComplexPattern.
MapVector<const ComplexPattern *, unsigned> ComplexPatternUsage;
// Record the usage of PatternPredicate.
MapVector<StringRef, unsigned> PatternPredicateUsage;
// Record the usage of Predicate.
MapVector<TreePattern *, unsigned> PredicateUsage;
// Iterate the whole MatcherTable once and do some statistics.
std::function<void(const Matcher *)> Statistic = [&](const Matcher *N) {
while (N) {
if (auto *SM = dyn_cast<ScopeMatcher>(N))
for (unsigned I = 0; I < SM->getNumChildren(); I++)
Statistic(SM->getChild(I));
else if (auto *SOM = dyn_cast<SwitchOpcodeMatcher>(N))
for (unsigned I = 0; I < SOM->getNumCases(); I++)
Statistic(SOM->getCaseMatcher(I));
else if (auto *STM = dyn_cast<SwitchTypeMatcher>(N))
for (unsigned I = 0; I < STM->getNumCases(); I++)
Statistic(STM->getCaseMatcher(I));
else if (auto *CPM = dyn_cast<CheckComplexPatMatcher>(N))
++ComplexPatternUsage[&CPM->getPattern()];
else if (auto *CPPM = dyn_cast<CheckPatternPredicateMatcher>(N))
++PatternPredicateUsage[CPPM->getPredicate()];
else if (auto *PM = dyn_cast<CheckPredicateMatcher>(N))
++PredicateUsage[PM->getPredicate().getOrigPatFragRecord()];
N = N->getNext();
}
};
Statistic(TheMatcher);
// Sort ComplexPatterns by usage.
std::vector<std::pair<const ComplexPattern *, unsigned>> ComplexPatternList(
ComplexPatternUsage.begin(), ComplexPatternUsage.end());
stable_sort(ComplexPatternList, [](const auto &A, const auto &B) {
return A.second > B.second;
});
for (const auto &ComplexPattern : ComplexPatternList)
ComplexPatterns.push_back(ComplexPattern.first);
// Sort PatternPredicates by usage.
std::vector<std::pair<std::string, unsigned>> PatternPredicateList(
PatternPredicateUsage.begin(), PatternPredicateUsage.end());
stable_sort(PatternPredicateList, [](const auto &A, const auto &B) {
return A.second > B.second;
});
for (const auto &PatternPredicate : PatternPredicateList)
PatternPredicates.push_back(PatternPredicate.first);
// Sort Predicates by usage.
// Merge predicates with same code.
for (const auto &Usage : PredicateUsage) {
TreePattern *TP = Usage.first;
TreePredicateFn Pred(TP);
NodePredicatesByCodeToRun[Pred.getCodeToRunOnSDNode()].push_back(TP);
}
std::vector<std::pair<TreePattern *, unsigned>> PredicateList;
// Sum the usage.
for (auto &Predicate : NodePredicatesByCodeToRun) {
TinyPtrVector<TreePattern *> &TPs = Predicate.second;
stable_sort(TPs, [](const auto *A, const auto *B) {
return A->getRecord()->getName() < B->getRecord()->getName();
});
unsigned Uses = 0;
for (TreePattern *TP : TPs)
Uses += PredicateUsage[TP];
// We only add the first predicate here since they are with the same code.
PredicateList.push_back({TPs[0], Uses});
}
stable_sort(PredicateList, [](const auto &A, const auto &B) {
return A.second > B.second;
});
for (const auto &Predicate : PredicateList) {
TreePattern *TP = Predicate.first;
if (TreePredicateFn(TP).usesOperands())
NodePredicatesWithOperands.push_back(TP);
else
NodePredicates.push_back(TP);
}
}
unsigned EmitMatcherList(const Matcher *N, const unsigned Indent,
unsigned StartIdx, raw_ostream &OS);
unsigned SizeMatcherList(Matcher *N, raw_ostream &OS);
void EmitPredicateFunctions(raw_ostream &OS);
void EmitHistogram(const Matcher *N, raw_ostream &OS);
void EmitPatternMatchTable(raw_ostream &OS);
private:
void EmitNodePredicatesFunction(const std::vector<TreePattern *> &Preds,
StringRef Decl, raw_ostream &OS);
unsigned SizeMatcher(Matcher *N, raw_ostream &OS);
unsigned EmitMatcher(const Matcher *N, const unsigned Indent,
unsigned CurrentIdx, raw_ostream &OS);
unsigned getNodePredicate(TreePredicateFn Pred) {
// We use the first predicate.
TreePattern *PredPat =
NodePredicatesByCodeToRun[Pred.getCodeToRunOnSDNode()][0];
return Pred.usesOperands()
? llvm::find(NodePredicatesWithOperands, PredPat) -
NodePredicatesWithOperands.begin()
: llvm::find(NodePredicates, PredPat) - NodePredicates.begin();
}
unsigned getPatternPredicate(StringRef PredName) {
return llvm::find(PatternPredicates, PredName) - PatternPredicates.begin();
}
unsigned getComplexPat(const ComplexPattern &P) {
return llvm::find(ComplexPatterns, &P) - ComplexPatterns.begin();
}
unsigned getNodeXFormID(Record *Rec) {
unsigned &Entry = NodeXFormMap[Rec];
if (Entry == 0) {
NodeXForms.push_back(Rec);
Entry = NodeXForms.size();
}
return Entry - 1;
}
};
} // end anonymous namespace.
static std::string GetPatFromTreePatternNode(const TreePatternNode &N) {
std::string str;
raw_string_ostream Stream(str);
Stream << N;
return str;
}
static unsigned GetVBRSize(unsigned Val) {
if (Val <= 127)
return 1;
unsigned NumBytes = 0;
while (Val >= 128) {
Val >>= 7;
++NumBytes;
}
return NumBytes + 1;
}
/// EmitVBRValue - Emit the specified value as a VBR, returning the number of
/// bytes emitted.
static unsigned EmitVBRValue(uint64_t Val, raw_ostream &OS) {
if (Val <= 127) {
OS << Val << ", ";
return 1;
}
uint64_t InVal = Val;
unsigned NumBytes = 0;
while (Val >= 128) {
OS << (Val & 127) << "|128,";
Val >>= 7;
++NumBytes;
}
OS << Val;
if (!OmitComments)
OS << "/*" << InVal << "*/";
OS << ", ";
return NumBytes + 1;
}
/// Emit the specified signed value as a VBR. To improve compression we encode
/// positive numbers shifted left by 1 and negative numbers negated and shifted
/// left by 1 with bit 0 set.
static unsigned EmitSignedVBRValue(uint64_t Val, raw_ostream &OS) {
if ((int64_t)Val >= 0)
Val = Val << 1;
else
Val = (-Val << 1) | 1;
return EmitVBRValue(Val, OS);
}
// This is expensive and slow.
static std::string getIncludePath(const Record *R) {
std::string str;
raw_string_ostream Stream(str);
auto Locs = R->getLoc();
SMLoc L;
if (Locs.size() > 1) {
// Get where the pattern prototype was instantiated
L = Locs[1];
} else if (Locs.size() == 1) {
L = Locs[0];
}
unsigned CurBuf = SrcMgr.FindBufferContainingLoc(L);
assert(CurBuf && "Invalid or unspecified location!");
Stream << SrcMgr.getBufferInfo(CurBuf).Buffer->getBufferIdentifier() << ":"
<< SrcMgr.FindLineNumber(L, CurBuf);
return str;
}
/// This function traverses the matcher tree and sizes all the nodes
/// that are children of the three kinds of nodes that have them.
unsigned MatcherTableEmitter::SizeMatcherList(Matcher *N, raw_ostream &OS) {
unsigned Size = 0;
while (N) {
Size += SizeMatcher(N, OS);
N = N->getNext();
}
return Size;
}
/// This function sizes the children of the three kinds of nodes that
/// have them. It does so by using special cases for those three
/// nodes, but sharing the code in EmitMatcher() for the other kinds.
unsigned MatcherTableEmitter::SizeMatcher(Matcher *N, raw_ostream &OS) {
unsigned Idx = 0;
++OpcodeCounts[N->getKind()];
switch (N->getKind()) {
// The Scope matcher has its kind, a series of child size + child,
// and a trailing zero.
case Matcher::Scope: {
ScopeMatcher *SM = cast<ScopeMatcher>(N);
assert(SM->getNext() == nullptr && "Scope matcher should not have next");
unsigned Size = 1; // Count the kind.
for (unsigned i = 0, e = SM->getNumChildren(); i != e; ++i) {
const unsigned ChildSize = SizeMatcherList(SM->getChild(i), OS);
assert(ChildSize != 0 && "Matcher cannot have child of size 0");
SM->getChild(i)->setSize(ChildSize);
Size += GetVBRSize(ChildSize) + ChildSize; // Count VBR and child size.
}
++Size; // Count the zero sentinel.
return Size;
}
// SwitchOpcode and SwitchType have their kind, a series of child size +
// opcode/type + child, and a trailing zero.
case Matcher::SwitchOpcode:
case Matcher::SwitchType: {
unsigned Size = 1; // Count the kind.
unsigned NumCases;
if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N))
NumCases = SOM->getNumCases();
else
NumCases = cast<SwitchTypeMatcher>(N)->getNumCases();
for (unsigned i = 0, e = NumCases; i != e; ++i) {
Matcher *Child;
if (SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) {
Child = SOM->getCaseMatcher(i);
Size += 2; // Count the child's opcode.
} else {
Child = cast<SwitchTypeMatcher>(N)->getCaseMatcher(i);
Size += GetVBRSize(cast<SwitchTypeMatcher>(N)->getCaseType(
i)); // Count the child's type.
}
const unsigned ChildSize = SizeMatcherList(Child, OS);
assert(ChildSize != 0 && "Matcher cannot have child of size 0");
Child->setSize(ChildSize);
Size += GetVBRSize(ChildSize) + ChildSize; // Count VBR and child size.
}
++Size; // Count the zero sentinel.
return Size;
}
default:
// Employ the matcher emitter to size other matchers.
return EmitMatcher(N, 0, Idx, OS);
}
llvm_unreachable("Unreachable");
}
static void BeginEmitFunction(raw_ostream &OS, StringRef RetType,
StringRef Decl, bool AddOverride) {
OS << "#ifdef GET_DAGISEL_DECL\n";
OS << RetType << ' ' << Decl;
if (AddOverride)
OS << " override";
OS << ";\n"
"#endif\n"
"#if defined(GET_DAGISEL_BODY) || DAGISEL_INLINE\n";
OS << RetType << " DAGISEL_CLASS_COLONCOLON " << Decl << "\n";
if (AddOverride) {
OS << "#if DAGISEL_INLINE\n"
" override\n"
"#endif\n";
}
}
static void EndEmitFunction(raw_ostream &OS) {
OS << "#endif // GET_DAGISEL_BODY\n\n";
}
void MatcherTableEmitter::EmitPatternMatchTable(raw_ostream &OS) {
assert(isUInt<16>(VecPatterns.size()) &&
"Using only 16 bits to encode offset into Pattern Table");
assert(VecPatterns.size() == VecIncludeStrings.size() &&
"The sizes of Pattern and include vectors should be the same");
BeginEmitFunction(OS, "StringRef", "getPatternForIndex(unsigned Index)",
true /*AddOverride*/);
OS << "{\n";
OS << "static const char *PATTERN_MATCH_TABLE[] = {\n";
for (const auto &It : VecPatterns) {
OS << "\"" << It.first << "\",\n";
}
OS << "\n};";
OS << "\nreturn StringRef(PATTERN_MATCH_TABLE[Index]);";
OS << "\n}\n";
EndEmitFunction(OS);
BeginEmitFunction(OS, "StringRef", "getIncludePathForIndex(unsigned Index)",
true /*AddOverride*/);
OS << "{\n";
OS << "static const char *INCLUDE_PATH_TABLE[] = {\n";
for (const auto &It : VecIncludeStrings) {
OS << "\"" << It << "\",\n";
}
OS << "\n};";
OS << "\nreturn StringRef(INCLUDE_PATH_TABLE[Index]);";
OS << "\n}\n";
EndEmitFunction(OS);
}
/// EmitMatcher - Emit bytes for the specified matcher and return
/// the number of bytes emitted.
unsigned MatcherTableEmitter::EmitMatcher(const Matcher *N,
const unsigned Indent,
unsigned CurrentIdx,
raw_ostream &OS) {
OS.indent(Indent);
switch (N->getKind()) {
case Matcher::Scope: {
const ScopeMatcher *SM = cast<ScopeMatcher>(N);
unsigned StartIdx = CurrentIdx;
// Emit all of the children.
for (unsigned i = 0, e = SM->getNumChildren(); i != e; ++i) {
if (i == 0) {
OS << "OPC_Scope, ";
++CurrentIdx;
} else {
if (!OmitComments) {
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
OS.indent(Indent) << "/*Scope*/ ";
} else
OS.indent(Indent);
}
unsigned ChildSize = SM->getChild(i)->getSize();
unsigned VBRSize = EmitVBRValue(ChildSize, OS);
if (!OmitComments) {
OS << "/*->" << CurrentIdx + VBRSize + ChildSize << "*/";
if (i == 0)
OS << " // " << SM->getNumChildren() << " children in Scope";
}
OS << '\n';
ChildSize = EmitMatcherList(SM->getChild(i), Indent + 1,
CurrentIdx + VBRSize, OS);
assert(ChildSize == SM->getChild(i)->getSize() &&
"Emitted child size does not match calculated size");
CurrentIdx += VBRSize + ChildSize;
}
// Emit a zero as a sentinel indicating end of 'Scope'.
if (!OmitComments)
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
OS.indent(Indent) << "0, ";
if (!OmitComments)
OS << "/*End of Scope*/";
OS << '\n';
return CurrentIdx - StartIdx + 1;
}
case Matcher::RecordNode:
OS << "OPC_RecordNode,";
if (!OmitComments)
OS << " // #" << cast<RecordMatcher>(N)->getResultNo() << " = "
<< cast<RecordMatcher>(N)->getWhatFor();
OS << '\n';
return 1;
case Matcher::RecordChild:
OS << "OPC_RecordChild" << cast<RecordChildMatcher>(N)->getChildNo() << ',';
if (!OmitComments)
OS << " // #" << cast<RecordChildMatcher>(N)->getResultNo() << " = "
<< cast<RecordChildMatcher>(N)->getWhatFor();
OS << '\n';
return 1;
case Matcher::RecordMemRef:
OS << "OPC_RecordMemRef,\n";
return 1;
case Matcher::CaptureGlueInput:
OS << "OPC_CaptureGlueInput,\n";
return 1;
case Matcher::MoveChild: {
const auto *MCM = cast<MoveChildMatcher>(N);
OS << "OPC_MoveChild";
// Handle the specialized forms.
if (MCM->getChildNo() >= 8)
OS << ", ";
OS << MCM->getChildNo() << ",\n";
return (MCM->getChildNo() >= 8) ? 2 : 1;
}
case Matcher::MoveSibling: {
const auto *MSM = cast<MoveSiblingMatcher>(N);
OS << "OPC_MoveSibling";
// Handle the specialized forms.
if (MSM->getSiblingNo() >= 8)
OS << ", ";
OS << MSM->getSiblingNo() << ",\n";
return (MSM->getSiblingNo() >= 8) ? 2 : 1;
}
case Matcher::MoveParent:
OS << "OPC_MoveParent,\n";
return 1;
case Matcher::CheckSame:
OS << "OPC_CheckSame, " << cast<CheckSameMatcher>(N)->getMatchNumber()
<< ",\n";
return 2;
case Matcher::CheckChildSame:
OS << "OPC_CheckChild" << cast<CheckChildSameMatcher>(N)->getChildNo()
<< "Same, " << cast<CheckChildSameMatcher>(N)->getMatchNumber() << ",\n";
return 2;
case Matcher::CheckPatternPredicate: {
StringRef Pred = cast<CheckPatternPredicateMatcher>(N)->getPredicate();
unsigned PredNo = getPatternPredicate(Pred);
if (PredNo > 255)
OS << "OPC_CheckPatternPredicateTwoByte, TARGET_VAL(" << PredNo << "),";
else if (PredNo < 8)
OS << "OPC_CheckPatternPredicate" << PredNo << ',';
else
OS << "OPC_CheckPatternPredicate, " << PredNo << ',';
if (!OmitComments)
OS << " // " << Pred;
OS << '\n';
return 2 + (PredNo > 255) - (PredNo < 8);
}
case Matcher::CheckPredicate: {
TreePredicateFn Pred = cast<CheckPredicateMatcher>(N)->getPredicate();
unsigned OperandBytes = 0;
unsigned PredNo = getNodePredicate(Pred);
if (Pred.usesOperands()) {
unsigned NumOps = cast<CheckPredicateMatcher>(N)->getNumOperands();
OS << "OPC_CheckPredicateWithOperands, " << NumOps << "/*#Ops*/, ";
for (unsigned i = 0; i < NumOps; ++i)
OS << cast<CheckPredicateMatcher>(N)->getOperandNo(i) << ", ";
OperandBytes = 1 + NumOps;
} else {
if (PredNo < 8) {
OperandBytes = -1;
OS << "OPC_CheckPredicate" << PredNo << ", ";
} else
OS << "OPC_CheckPredicate, ";
}
if (PredNo >= 8 || Pred.usesOperands())
OS << PredNo << ',';
if (!OmitComments)
OS << " // " << Pred.getFnName();
OS << '\n';
return 2 + OperandBytes;
}
case Matcher::CheckOpcode:
OS << "OPC_CheckOpcode, TARGET_VAL("
<< cast<CheckOpcodeMatcher>(N)->getOpcode().getEnumName() << "),\n";
return 3;
case Matcher::SwitchOpcode:
case Matcher::SwitchType: {
unsigned StartIdx = CurrentIdx;
unsigned NumCases;
if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) {
OS << "OPC_SwitchOpcode ";
NumCases = SOM->getNumCases();
} else {
OS << "OPC_SwitchType ";
NumCases = cast<SwitchTypeMatcher>(N)->getNumCases();
}
if (!OmitComments)
OS << "/*" << NumCases << " cases */";
OS << ", ";
++CurrentIdx;
// For each case we emit the size, then the opcode, then the matcher.
for (unsigned i = 0, e = NumCases; i != e; ++i) {
const Matcher *Child;
unsigned IdxSize;
if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N)) {
Child = SOM->getCaseMatcher(i);
IdxSize = 2; // size of opcode in table is 2 bytes.
} else {
Child = cast<SwitchTypeMatcher>(N)->getCaseMatcher(i);
IdxSize = GetVBRSize(cast<SwitchTypeMatcher>(N)->getCaseType(
i)); // size of type in table is sizeof(VBR(MVT)) byte.
}
if (i != 0) {
if (!OmitComments)
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
OS.indent(Indent);
if (!OmitComments)
OS << (isa<SwitchOpcodeMatcher>(N) ? "/*SwitchOpcode*/ "
: "/*SwitchType*/ ");
}
unsigned ChildSize = Child->getSize();
CurrentIdx += EmitVBRValue(ChildSize, OS) + IdxSize;
if (const SwitchOpcodeMatcher *SOM = dyn_cast<SwitchOpcodeMatcher>(N))
OS << "TARGET_VAL(" << SOM->getCaseOpcode(i).getEnumName() << "),";
else {
if (!OmitComments)
OS << "/*" << getEnumName(cast<SwitchTypeMatcher>(N)->getCaseType(i))
<< "*/";
EmitVBRValue(cast<SwitchTypeMatcher>(N)->getCaseType(i),
OS);
}
if (!OmitComments)
OS << "// ->" << CurrentIdx + ChildSize;
OS << '\n';
ChildSize = EmitMatcherList(Child, Indent + 1, CurrentIdx, OS);
assert(ChildSize == Child->getSize() &&
"Emitted child size does not match calculated size");
CurrentIdx += ChildSize;
}
// Emit the final zero to terminate the switch.
if (!OmitComments)
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
OS.indent(Indent) << "0,";
if (!OmitComments)
OS << (isa<SwitchOpcodeMatcher>(N) ? " // EndSwitchOpcode"
: " // EndSwitchType");
OS << '\n';
return CurrentIdx - StartIdx + 1;
}
case Matcher::CheckType: {
if (cast<CheckTypeMatcher>(N)->getResNo() == 0) {
MVT::SimpleValueType VT = cast<CheckTypeMatcher>(N)->getType();
switch (VT) {
case MVT::i32:
case MVT::i64:
OS << "OPC_CheckTypeI" << MVT(VT).getSizeInBits() << ",\n";
return 1;
default:
OS << "OPC_CheckType, ";
if (!OmitComments)
OS << "/*" << getEnumName(VT) << "*/";
unsigned NumBytes = EmitVBRValue(VT, OS);
OS << "\n";
return NumBytes + 1;
}
}
OS << "OPC_CheckTypeRes, " << cast<CheckTypeMatcher>(N)->getResNo() << ", ";
if (!OmitComments)
OS << "/*" << getEnumName(cast<CheckTypeMatcher>(N)->getType()) << "*/";
unsigned NumBytes = EmitVBRValue(cast<CheckTypeMatcher>(N)->getType(), OS);
OS << "\n";
return NumBytes + 2;
}
case Matcher::CheckChildType: {
MVT::SimpleValueType VT = cast<CheckChildTypeMatcher>(N)->getType();
switch (VT) {
case MVT::i32:
case MVT::i64:
OS << "OPC_CheckChild" << cast<CheckChildTypeMatcher>(N)->getChildNo()
<< "TypeI" << MVT(VT).getSizeInBits() << ",\n";
return 1;
default:
OS << "OPC_CheckChild" << cast<CheckChildTypeMatcher>(N)->getChildNo()
<< "Type, ";
if (!OmitComments)
OS << "/*" << getEnumName(VT) << "*/";
unsigned NumBytes = EmitVBRValue(VT, OS);
OS << "\n";
return NumBytes + 1;
}
}
case Matcher::CheckInteger: {
OS << "OPC_CheckInteger, ";
unsigned Bytes =
1 + EmitSignedVBRValue(cast<CheckIntegerMatcher>(N)->getValue(), OS);
OS << '\n';
return Bytes;
}
case Matcher::CheckChildInteger: {
OS << "OPC_CheckChild" << cast<CheckChildIntegerMatcher>(N)->getChildNo()
<< "Integer, ";
unsigned Bytes = 1 + EmitSignedVBRValue(
cast<CheckChildIntegerMatcher>(N)->getValue(), OS);
OS << '\n';
return Bytes;
}
case Matcher::CheckCondCode:
OS << "OPC_CheckCondCode, ISD::"
<< cast<CheckCondCodeMatcher>(N)->getCondCodeName() << ",\n";
return 2;
case Matcher::CheckChild2CondCode:
OS << "OPC_CheckChild2CondCode, ISD::"
<< cast<CheckChild2CondCodeMatcher>(N)->getCondCodeName() << ",\n";
return 2;
case Matcher::CheckValueType: {
OS << "OPC_CheckValueType, ";
if (!OmitComments)
OS << "/*" << getEnumName(cast<CheckValueTypeMatcher>(N)->getVT())
<< "*/";
unsigned NumBytes =
EmitVBRValue(cast<CheckValueTypeMatcher>(N)->getVT(), OS);
OS << "\n";
return NumBytes + 1;
}
case Matcher::CheckComplexPat: {
const CheckComplexPatMatcher *CCPM = cast<CheckComplexPatMatcher>(N);
const ComplexPattern &Pattern = CCPM->getPattern();
unsigned PatternNo = getComplexPat(Pattern);
if (PatternNo < 8)
OS << "OPC_CheckComplexPat" << PatternNo << ", /*#*/"
<< CCPM->getMatchNumber() << ',';
else
OS << "OPC_CheckComplexPat, /*CP*/" << PatternNo << ", /*#*/"
<< CCPM->getMatchNumber() << ',';
if (!OmitComments) {
OS << " // " << Pattern.getSelectFunc();
OS << ":$" << CCPM->getName();
for (unsigned i = 0, e = Pattern.getNumOperands(); i != e; ++i)
OS << " #" << CCPM->getFirstResult() + i;
if (Pattern.hasProperty(SDNPHasChain))
OS << " + chain result";
}
OS << '\n';
return PatternNo < 8 ? 2 : 3;
}
case Matcher::CheckAndImm: {
OS << "OPC_CheckAndImm, ";
unsigned Bytes =
1 + EmitVBRValue(cast<CheckAndImmMatcher>(N)->getValue(), OS);
OS << '\n';
return Bytes;
}
case Matcher::CheckOrImm: {
OS << "OPC_CheckOrImm, ";
unsigned Bytes =
1 + EmitVBRValue(cast<CheckOrImmMatcher>(N)->getValue(), OS);
OS << '\n';
return Bytes;
}
case Matcher::CheckFoldableChainNode:
OS << "OPC_CheckFoldableChainNode,\n";
return 1;
case Matcher::CheckImmAllOnesV:
OS << "OPC_CheckImmAllOnesV,\n";
return 1;
case Matcher::CheckImmAllZerosV:
OS << "OPC_CheckImmAllZerosV,\n";
return 1;
case Matcher::EmitInteger: {
int64_t Val = cast<EmitIntegerMatcher>(N)->getValue();
MVT::SimpleValueType VT = cast<EmitIntegerMatcher>(N)->getVT();
unsigned OpBytes;
switch (VT) {
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::i64:
OpBytes = 1;
OS << "OPC_EmitInteger" << MVT(VT).getSizeInBits() << ", ";
break;
default:
OS << "OPC_EmitInteger, ";
if (!OmitComments)
OS << "/*" << getEnumName(VT) << "*/";
OpBytes = EmitVBRValue(VT, OS) + 1;
break;
}
unsigned Bytes = OpBytes + EmitSignedVBRValue(Val, OS);
OS << '\n';
return Bytes;
}
case Matcher::EmitStringInteger: {
const std::string &Val = cast<EmitStringIntegerMatcher>(N)->getValue();
MVT::SimpleValueType VT = cast<EmitStringIntegerMatcher>(N)->getVT();
// These should always fit into 7 bits.
unsigned OpBytes;
switch (VT) {
case MVT::i32:
OpBytes = 1;
OS << "OPC_EmitStringInteger" << MVT(VT).getSizeInBits() << ", ";
break;
default:
OS << "OPC_EmitStringInteger, ";
if (!OmitComments)
OS << "/*" << getEnumName(VT) << "*/";
OpBytes = EmitVBRValue(VT, OS) + 1;
break;
}
OS << Val << ",\n";
return OpBytes + 1;
}
case Matcher::EmitRegister: {
const EmitRegisterMatcher *Matcher = cast<EmitRegisterMatcher>(N);
const CodeGenRegister *Reg = Matcher->getReg();
MVT::SimpleValueType VT = Matcher->getVT();
unsigned OpBytes;
// If the enum value of the register is larger than one byte can handle,
// use EmitRegister2.
if (Reg && Reg->EnumValue > 255) {
OS << "OPC_EmitRegister2, ";
if (!OmitComments)
OS << "/*" << getEnumName(VT) << "*/";
OpBytes = EmitVBRValue(VT, OS);
OS << "TARGET_VAL(" << getQualifiedName(Reg->TheDef) << "),\n";
return OpBytes + 3;
}
switch (VT) {
case MVT::i32:
case MVT::i64:
OpBytes = 1;
OS << "OPC_EmitRegisterI" << MVT(VT).getSizeInBits() << ", ";
break;
default:
OS << "OPC_EmitRegister, ";
if (!OmitComments)
OS << "/*" << getEnumName(VT) << "*/";
OpBytes = EmitVBRValue(VT, OS) + 1;
break;
}
if (Reg) {
OS << getQualifiedName(Reg->TheDef) << ",\n";
} else {
OS << "0 ";
if (!OmitComments)
OS << "/*zero_reg*/";
OS << ",\n";
}
return OpBytes + 1;
}
case Matcher::EmitConvertToTarget: {
unsigned Slot = cast<EmitConvertToTargetMatcher>(N)->getSlot();
if (Slot < 8) {
OS << "OPC_EmitConvertToTarget" << Slot << ",\n";
return 1;
}
OS << "OPC_EmitConvertToTarget, " << Slot << ",\n";
return 2;
}
case Matcher::EmitMergeInputChains: {
const EmitMergeInputChainsMatcher *MN =
cast<EmitMergeInputChainsMatcher>(N);
// Handle the specialized forms OPC_EmitMergeInputChains1_0, 1_1, and 1_2.
if (MN->getNumNodes() == 1 && MN->getNode(0) < 3) {
OS << "OPC_EmitMergeInputChains1_" << MN->getNode(0) << ",\n";
return 1;
}
OS << "OPC_EmitMergeInputChains, " << MN->getNumNodes() << ", ";
for (unsigned i = 0, e = MN->getNumNodes(); i != e; ++i)
OS << MN->getNode(i) << ", ";
OS << '\n';
return 2 + MN->getNumNodes();
}
case Matcher::EmitCopyToReg: {
const auto *C2RMatcher = cast<EmitCopyToRegMatcher>(N);
int Bytes = 3;
const CodeGenRegister *Reg = C2RMatcher->getDestPhysReg();
unsigned Slot = C2RMatcher->getSrcSlot();
if (Reg->EnumValue > 255) {
assert(isUInt<16>(Reg->EnumValue) && "not handled");
OS << "OPC_EmitCopyToRegTwoByte, " << Slot << ", "
<< "TARGET_VAL(" << getQualifiedName(Reg->TheDef) << "),\n";
++Bytes;
} else {
if (Slot < 8) {
OS << "OPC_EmitCopyToReg" << Slot << ", "
<< getQualifiedName(Reg->TheDef) << ",\n";
--Bytes;
} else
OS << "OPC_EmitCopyToReg, " << Slot << ", "
<< getQualifiedName(Reg->TheDef) << ",\n";
}
return Bytes;
}
case Matcher::EmitNodeXForm: {
const EmitNodeXFormMatcher *XF = cast<EmitNodeXFormMatcher>(N);
OS << "OPC_EmitNodeXForm, " << getNodeXFormID(XF->getNodeXForm()) << ", "
<< XF->getSlot() << ',';
if (!OmitComments)
OS << " // " << XF->getNodeXForm()->getName();
OS << '\n';
return 3;
}
case Matcher::EmitNode:
case Matcher::MorphNodeTo: {
auto NumCoveredBytes = 0;
if (InstrumentCoverage) {
if (const MorphNodeToMatcher *SNT = dyn_cast<MorphNodeToMatcher>(N)) {
NumCoveredBytes = 3;
OS << "OPC_Coverage, ";
std::string src =
GetPatFromTreePatternNode(SNT->getPattern().getSrcPattern());
std::string dst =
GetPatFromTreePatternNode(SNT->getPattern().getDstPattern());
Record *PatRecord = SNT->getPattern().getSrcRecord();
std::string include_src = getIncludePath(PatRecord);
unsigned Offset =
getPatternIdxFromTable(src + " -> " + dst, std::move(include_src));
OS << "TARGET_VAL(" << Offset << "),\n";
OS.indent(FullIndexWidth + Indent);
}
}
const EmitNodeMatcherCommon *EN = cast<EmitNodeMatcherCommon>(N);
bool IsEmitNode = isa<EmitNodeMatcher>(EN);
OS << (IsEmitNode ? "OPC_EmitNode" : "OPC_MorphNodeTo");
bool CompressVTs = EN->getNumVTs() < 3;
bool CompressNodeInfo = false;
if (CompressVTs) {
OS << EN->getNumVTs();
if (!EN->hasChain() && !EN->hasInGlue() && !EN->hasOutGlue() &&
!EN->hasMemRefs() && EN->getNumFixedArityOperands() == -1) {
CompressNodeInfo = true;
OS << "None";
} else if (EN->hasChain() && !EN->hasInGlue() && !EN->hasOutGlue() &&
!EN->hasMemRefs() && EN->getNumFixedArityOperands() == -1) {
CompressNodeInfo = true;
OS << "Chain";
} else if (!IsEmitNode && !EN->hasChain() && EN->hasInGlue() &&
!EN->hasOutGlue() && !EN->hasMemRefs() &&
EN->getNumFixedArityOperands() == -1) {
CompressNodeInfo = true;
OS << "GlueInput";
} else if (!IsEmitNode && !EN->hasChain() && !EN->hasInGlue() &&
EN->hasOutGlue() && !EN->hasMemRefs() &&
EN->getNumFixedArityOperands() == -1) {
CompressNodeInfo = true;
OS << "GlueOutput";
}
}
const CodeGenInstruction &CGI = EN->getInstruction();
OS << ", TARGET_VAL(" << CGI.Namespace << "::" << CGI.TheDef->getName()
<< ")";
if (!CompressNodeInfo) {
OS << ", 0";
if (EN->hasChain())
OS << "|OPFL_Chain";
if (EN->hasInGlue())
OS << "|OPFL_GlueInput";
if (EN->hasOutGlue())
OS << "|OPFL_GlueOutput";
if (EN->hasMemRefs())
OS << "|OPFL_MemRefs";
if (EN->getNumFixedArityOperands() != -1)
OS << "|OPFL_Variadic" << EN->getNumFixedArityOperands();
}
OS << ",\n";
OS.indent(FullIndexWidth + Indent + 4);
if (!CompressVTs) {
OS << EN->getNumVTs();
if (!OmitComments)
OS << "/*#VTs*/";
OS << ", ";
}
unsigned NumTypeBytes = 0;
for (unsigned i = 0, e = EN->getNumVTs(); i != e; ++i) {
if (!OmitComments)
OS << "/*" << getEnumName(EN->getVT(i)) << "*/";
NumTypeBytes += EmitVBRValue(EN->getVT(i), OS);
}
OS << EN->getNumOperands();
if (!OmitComments)
OS << "/*#Ops*/";
OS << ", ";
unsigned NumOperandBytes = 0;
for (unsigned i = 0, e = EN->getNumOperands(); i != e; ++i)
NumOperandBytes += EmitVBRValue(EN->getOperand(i), OS);
if (!OmitComments) {
// Print the result #'s for EmitNode.
if (const EmitNodeMatcher *E = dyn_cast<EmitNodeMatcher>(EN)) {
if (unsigned NumResults = EN->getNumVTs()) {
OS << " // Results =";
unsigned First = E->getFirstResultSlot();
for (unsigned i = 0; i != NumResults; ++i)
OS << " #" << First + i;
}
}
OS << '\n';
if (const MorphNodeToMatcher *SNT = dyn_cast<MorphNodeToMatcher>(N)) {
OS.indent(FullIndexWidth + Indent)
<< "// Src: " << SNT->getPattern().getSrcPattern()
<< " - Complexity = " << SNT->getPattern().getPatternComplexity(CGP)
<< '\n';
OS.indent(FullIndexWidth + Indent)
<< "// Dst: " << SNT->getPattern().getDstPattern() << '\n';
}
} else
OS << '\n';
return 4 + !CompressVTs + !CompressNodeInfo + NumTypeBytes +
NumOperandBytes + NumCoveredBytes;
}
case Matcher::CompleteMatch: {
const CompleteMatchMatcher *CM = cast<CompleteMatchMatcher>(N);
auto NumCoveredBytes = 0;
if (InstrumentCoverage) {
NumCoveredBytes = 3;
OS << "OPC_Coverage, ";
std::string src =
GetPatFromTreePatternNode(CM->getPattern().getSrcPattern());
std::string dst =
GetPatFromTreePatternNode(CM->getPattern().getDstPattern());
Record *PatRecord = CM->getPattern().getSrcRecord();
std::string include_src = getIncludePath(PatRecord);
unsigned Offset =
getPatternIdxFromTable(src + " -> " + dst, std::move(include_src));
OS << "TARGET_VAL(" << Offset << "),\n";
OS.indent(FullIndexWidth + Indent);
}
OS << "OPC_CompleteMatch, " << CM->getNumResults() << ", ";
unsigned NumResultBytes = 0;
for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
NumResultBytes += EmitVBRValue(CM->getResult(i), OS);
OS << '\n';
if (!OmitComments) {
OS.indent(FullIndexWidth + Indent)
<< " // Src: " << CM->getPattern().getSrcPattern()
<< " - Complexity = " << CM->getPattern().getPatternComplexity(CGP)
<< '\n';
OS.indent(FullIndexWidth + Indent)
<< " // Dst: " << CM->getPattern().getDstPattern();
}
OS << '\n';
return 2 + NumResultBytes + NumCoveredBytes;
}
}
llvm_unreachable("Unreachable");
}
/// This function traverses the matcher tree and emits all the nodes.
/// The nodes have already been sized.
unsigned MatcherTableEmitter::EmitMatcherList(const Matcher *N,
const unsigned Indent,
unsigned CurrentIdx,
raw_ostream &OS) {
unsigned Size = 0;
while (N) {
if (!OmitComments)
OS << "/*" << format_decimal(CurrentIdx, IndexWidth) << "*/";
unsigned MatcherSize = EmitMatcher(N, Indent, CurrentIdx, OS);
Size += MatcherSize;
CurrentIdx += MatcherSize;
// If there are other nodes in this list, iterate to them, otherwise we're
// done.
N = N->getNext();
}
return Size;
}
void MatcherTableEmitter::EmitNodePredicatesFunction(
const std::vector<TreePattern *> &Preds, StringRef Decl, raw_ostream &OS) {
if (Preds.empty())
return;
BeginEmitFunction(OS, "bool", Decl, true /*AddOverride*/);
OS << "{\n";
OS << " switch (PredNo) {\n";
OS << " default: llvm_unreachable(\"Invalid predicate in table?\");\n";
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
// Emit the predicate code corresponding to this pattern.
TreePredicateFn PredFn(Preds[i]);
assert(!PredFn.isAlwaysTrue() && "No code in this predicate");
std::string PredFnCodeStr = PredFn.getCodeToRunOnSDNode();
OS << " case " << i << ": {\n";
for (auto *SimilarPred : NodePredicatesByCodeToRun[PredFnCodeStr])
OS << " // " << TreePredicateFn(SimilarPred).getFnName() << '\n';
OS << PredFnCodeStr << "\n }\n";
}
OS << " }\n";
OS << "}\n";
EndEmitFunction(OS);
}
void MatcherTableEmitter::EmitPredicateFunctions(raw_ostream &OS) {
// Emit pattern predicates.
if (!PatternPredicates.empty()) {
BeginEmitFunction(OS, "bool",
"CheckPatternPredicate(unsigned PredNo) const",
true /*AddOverride*/);
OS << "{\n";
OS << " switch (PredNo) {\n";
OS << " default: llvm_unreachable(\"Invalid predicate in table?\");\n";
for (unsigned i = 0, e = PatternPredicates.size(); i != e; ++i)
OS << " case " << i << ": return " << PatternPredicates[i] << ";\n";
OS << " }\n";
OS << "}\n";
EndEmitFunction(OS);
}
// Emit Node predicates.
EmitNodePredicatesFunction(
NodePredicates, "CheckNodePredicate(SDNode *Node, unsigned PredNo) const",
OS);
EmitNodePredicatesFunction(
NodePredicatesWithOperands,
"CheckNodePredicateWithOperands(SDNode *Node, unsigned PredNo, "
"const SmallVectorImpl<SDValue> &Operands) const",
OS);
// Emit CompletePattern matchers.
// FIXME: This should be const.
if (!ComplexPatterns.empty()) {
BeginEmitFunction(
OS, "bool",
"CheckComplexPattern(SDNode *Root, SDNode *Parent,\n"
" SDValue N, unsigned PatternNo,\n"
" SmallVectorImpl<std::pair<SDValue, SDNode *>> &Result)",
true /*AddOverride*/);
OS << "{\n";
OS << " unsigned NextRes = Result.size();\n";
OS << " switch (PatternNo) {\n";
OS << " default: llvm_unreachable(\"Invalid pattern # in table?\");\n";
for (unsigned i = 0, e = ComplexPatterns.size(); i != e; ++i) {
const ComplexPattern &P = *ComplexPatterns[i];
unsigned NumOps = P.getNumOperands();
if (P.hasProperty(SDNPHasChain))
++NumOps; // Get the chained node too.
OS << " case " << i << ":\n";
if (InstrumentCoverage)
OS << " {\n";
OS << " Result.resize(NextRes+" << NumOps << ");\n";
if (InstrumentCoverage)
OS << " bool Succeeded = " << P.getSelectFunc();
else
OS << " return " << P.getSelectFunc();
OS << "(";
// If the complex pattern wants the root of the match, pass it in as the
// first argument.
if (P.hasProperty(SDNPWantRoot))
OS << "Root, ";
// If the complex pattern wants the parent of the operand being matched,
// pass it in as the next argument.
if (P.hasProperty(SDNPWantParent))
OS << "Parent, ";
OS << "N";
for (unsigned i = 0; i != NumOps; ++i)
OS << ", Result[NextRes+" << i << "].first";
OS << ");\n";
if (InstrumentCoverage) {
OS << " if (Succeeded)\n";
OS << " dbgs() << \"\\nCOMPLEX_PATTERN: " << P.getSelectFunc()
<< "\\n\" ;\n";
OS << " return Succeeded;\n";
OS << " }\n";
}
}
OS << " }\n";
OS << "}\n";
EndEmitFunction(OS);
}
// Emit SDNodeXForm handlers.
// FIXME: This should be const.
if (!NodeXForms.empty()) {
BeginEmitFunction(OS, "SDValue",
"RunSDNodeXForm(SDValue V, unsigned XFormNo)",
true /*AddOverride*/);
OS << "{\n";
OS << " switch (XFormNo) {\n";
OS << " default: llvm_unreachable(\"Invalid xform # in table?\");\n";
// FIXME: The node xform could take SDValue's instead of SDNode*'s.
for (unsigned i = 0, e = NodeXForms.size(); i != e; ++i) {
const CodeGenDAGPatterns::NodeXForm &Entry =
CGP.getSDNodeTransform(NodeXForms[i]);
Record *SDNode = Entry.first;
const std::string &Code = Entry.second;
OS << " case " << i << ": { ";
if (!OmitComments)
OS << "// " << NodeXForms[i]->getName();
OS << '\n';
std::string ClassName =
std::string(CGP.getSDNodeInfo(SDNode).getSDClassName());
if (ClassName == "SDNode")
OS << " SDNode *N = V.getNode();\n";
else
OS << " " << ClassName << " *N = cast<" << ClassName
<< ">(V.getNode());\n";
OS << Code << "\n }\n";
}
OS << " }\n";
OS << "}\n";
EndEmitFunction(OS);
}
}
static StringRef getOpcodeString(Matcher::KindTy Kind) {
switch (Kind) {
case Matcher::Scope:
return "OPC_Scope";
case Matcher::RecordNode:
return "OPC_RecordNode";
case Matcher::RecordChild:
return "OPC_RecordChild";
case Matcher::RecordMemRef:
return "OPC_RecordMemRef";
case Matcher::CaptureGlueInput:
return "OPC_CaptureGlueInput";
case Matcher::MoveChild:
return "OPC_MoveChild";
case Matcher::MoveSibling:
return "OPC_MoveSibling";
case Matcher::MoveParent:
return "OPC_MoveParent";
case Matcher::CheckSame:
return "OPC_CheckSame";
case Matcher::CheckChildSame:
return "OPC_CheckChildSame";
case Matcher::CheckPatternPredicate:
return "OPC_CheckPatternPredicate";
case Matcher::CheckPredicate:
return "OPC_CheckPredicate";
case Matcher::CheckOpcode:
return "OPC_CheckOpcode";
case Matcher::SwitchOpcode:
return "OPC_SwitchOpcode";
case Matcher::CheckType:
return "OPC_CheckType";
case Matcher::SwitchType:
return "OPC_SwitchType";
case Matcher::CheckChildType:
return "OPC_CheckChildType";
case Matcher::CheckInteger:
return "OPC_CheckInteger";
case Matcher::CheckChildInteger:
return "OPC_CheckChildInteger";
case Matcher::CheckCondCode:
return "OPC_CheckCondCode";
case Matcher::CheckChild2CondCode:
return "OPC_CheckChild2CondCode";
case Matcher::CheckValueType:
return "OPC_CheckValueType";
case Matcher::CheckComplexPat:
return "OPC_CheckComplexPat";
case Matcher::CheckAndImm:
return "OPC_CheckAndImm";
case Matcher::CheckOrImm:
return "OPC_CheckOrImm";
case Matcher::CheckFoldableChainNode:
return "OPC_CheckFoldableChainNode";
case Matcher::CheckImmAllOnesV:
return "OPC_CheckImmAllOnesV";
case Matcher::CheckImmAllZerosV:
return "OPC_CheckImmAllZerosV";
case Matcher::EmitInteger:
return "OPC_EmitInteger";
case Matcher::EmitStringInteger:
return "OPC_EmitStringInteger";
case Matcher::EmitRegister:
return "OPC_EmitRegister";
case Matcher::EmitConvertToTarget:
return "OPC_EmitConvertToTarget";
case Matcher::EmitMergeInputChains:
return "OPC_EmitMergeInputChains";
case Matcher::EmitCopyToReg:
return "OPC_EmitCopyToReg";
case Matcher::EmitNode:
return "OPC_EmitNode";
case Matcher::MorphNodeTo:
return "OPC_MorphNodeTo";
case Matcher::EmitNodeXForm:
return "OPC_EmitNodeXForm";
case Matcher::CompleteMatch:
return "OPC_CompleteMatch";
}
llvm_unreachable("Unhandled opcode?");
}
void MatcherTableEmitter::EmitHistogram(const Matcher *M, raw_ostream &OS) {
if (OmitComments)
return;
OS << " // Opcode Histogram:\n";
for (unsigned i = 0, e = OpcodeCounts.size(); i != e; ++i) {
OS << " // #"
<< left_justify(getOpcodeString((Matcher::KindTy)i), HistOpcWidth)
<< " = " << OpcodeCounts[i] << '\n';
}
OS << '\n';
}
void llvm::EmitMatcherTable(Matcher *TheMatcher, const CodeGenDAGPatterns &CGP,
raw_ostream &OS) {
OS << "#if defined(GET_DAGISEL_DECL) && defined(GET_DAGISEL_BODY)\n";
OS << "#error GET_DAGISEL_DECL and GET_DAGISEL_BODY cannot be both defined, ";
OS << "undef both for inline definitions\n";
OS << "#endif\n\n";
// Emit a check for omitted class name.
OS << "#ifdef GET_DAGISEL_BODY\n";
OS << "#define LOCAL_DAGISEL_STRINGIZE(X) LOCAL_DAGISEL_STRINGIZE_(X)\n";
OS << "#define LOCAL_DAGISEL_STRINGIZE_(X) #X\n";
OS << "static_assert(sizeof(LOCAL_DAGISEL_STRINGIZE(GET_DAGISEL_BODY)) > 1,"
"\n";
OS << " \"GET_DAGISEL_BODY is empty: it should be defined with the class "
"name\");\n";
OS << "#undef LOCAL_DAGISEL_STRINGIZE_\n";
OS << "#undef LOCAL_DAGISEL_STRINGIZE\n";
OS << "#endif\n\n";
OS << "#if !defined(GET_DAGISEL_DECL) && !defined(GET_DAGISEL_BODY)\n";
OS << "#define DAGISEL_INLINE 1\n";
OS << "#else\n";
OS << "#define DAGISEL_INLINE 0\n";
OS << "#endif\n\n";
OS << "#if !DAGISEL_INLINE\n";
OS << "#define DAGISEL_CLASS_COLONCOLON GET_DAGISEL_BODY ::\n";
OS << "#else\n";
OS << "#define DAGISEL_CLASS_COLONCOLON\n";
OS << "#endif\n\n";
BeginEmitFunction(OS, "void", "SelectCode(SDNode *N)", false /*AddOverride*/);
MatcherTableEmitter MatcherEmitter(TheMatcher, CGP);
// First we size all the children of the three kinds of matchers that have
// them. This is done by sharing the code in EmitMatcher(). but we don't
// want to emit anything, so we turn off comments and use a null stream.
bool SaveOmitComments = OmitComments;
OmitComments = true;
raw_null_ostream NullOS;
unsigned TotalSize = MatcherEmitter.SizeMatcherList(TheMatcher, NullOS);
OmitComments = SaveOmitComments;
// Now that the matchers are sized, we can emit the code for them to the
// final stream.
OS << "{\n";
OS << " // Some target values are emitted as 2 bytes, TARGET_VAL handles\n";
OS << " // this.\n";
OS << " #define TARGET_VAL(X) X & 255, unsigned(X) >> 8\n";
OS << " static const unsigned char MatcherTable[] = {\n";
TotalSize = MatcherEmitter.EmitMatcherList(TheMatcher, 1, 0, OS);
OS << " 0\n }; // Total Array size is " << (TotalSize + 1)
<< " bytes\n\n";
MatcherEmitter.EmitHistogram(TheMatcher, OS);
OS << " #undef TARGET_VAL\n";
OS << " SelectCodeCommon(N, MatcherTable, sizeof(MatcherTable));\n";
OS << "}\n";
EndEmitFunction(OS);
// Next up, emit the function for node and pattern predicates:
MatcherEmitter.EmitPredicateFunctions(OS);
if (InstrumentCoverage)
MatcherEmitter.EmitPatternMatchTable(OS);
// Clean up the preprocessor macros.
OS << "\n";
OS << "#ifdef DAGISEL_INLINE\n";
OS << "#undef DAGISEL_INLINE\n";
OS << "#endif\n";
OS << "#ifdef DAGISEL_CLASS_COLONCOLON\n";
OS << "#undef DAGISEL_CLASS_COLONCOLON\n";
OS << "#endif\n";
OS << "#ifdef GET_DAGISEL_DECL\n";
OS << "#undef GET_DAGISEL_DECL\n";
OS << "#endif\n";
OS << "#ifdef GET_DAGISEL_BODY\n";
OS << "#undef GET_DAGISEL_BODY\n";
OS << "#endif\n";
}