Files
clang-p2996/llvm/test/Transforms/LoopVectorize/RISCV/riscv-vector-reverse.ll
Florian Hahn 6f92339d9e [LV] Compute register usage for interleaving on VPlan. (#126437)
Add a version of calculateRegisterUsage that works estimates register
usage for a VPlan. This mostly just ports the existing code, with some
updates to figure out what recipes will generate vectors vs scalars.

There are number of changes in the computed register usages, but they
should be more accurate w.r.t. to the generated vector code.

There are the following changes:

 * Scalar usage increases in most cases by 1, as we always create a
   scalar canonical IV, which is alive across the loop and is not
   considered by the legacy implementation

 * Output is ordered by insertion, now scalar registers are added first
   due the canonical IV phi.

 * Using the VPlan, we now also more precisely know if an induction will
   be vectorized or scalarized.

Depends on https://github.com/llvm/llvm-project/pull/126415

PR: https://github.com/llvm/llvm-project/pull/126437
2025-04-08 20:52:50 +01:00

519 lines
31 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 5
; This is the loop in c++ being vectorize in this file with
;vector.reverse
; #pragma clang loop vectorize_width(4, scalable)
; for (int i = N-1; i >= 0; --i)
; a[i] = b[i] + 1.0;
; REQUIRES: asserts
; RUN: opt -passes=loop-vectorize,dce,instcombine -mtriple riscv64-linux-gnu \
; RUN: -mattr=+v -debug-only=loop-vectorize -scalable-vectorization=on \
; RUN: -riscv-v-vector-bits-min=128 -disable-output < %s 2>&1 | FileCheck %s
define void @vector_reverse_i64(ptr nocapture noundef writeonly %A, ptr nocapture noundef readonly %B, i32 noundef signext %n) {
; CHECK-LABEL: 'vector_reverse_i64'
; CHECK-NEXT: LV: Loop hints: force=enabled width=vscale x 4 interleave=0
; CHECK-NEXT: LV: Found a loop: for.body
; CHECK-NEXT: LV: Found an induction variable.
; CHECK-NEXT: LV: Found an induction variable.
; CHECK-NEXT: LV: Did not find one integer induction var.
; CHECK-NEXT: LV: We can vectorize this loop (with a runtime bound check)!
; CHECK-NEXT: LV: Loop does not require scalar epilogue
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
; CHECK-NEXT: LV: Scalable vectorization is available
; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found uniform instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found uniform instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: %1 = load i32, ptr %arrayidx, align 4
; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %add9 = add i32 %1, 1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: store i32 %add9, ptr %arrayidx3, align 4
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
; CHECK-NEXT: LV: Using user VF vscale x 4.
; CHECK-NEXT: LV: Loop does not require scalar epilogue
; CHECK: LV: Scalarizing: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Scalarizing: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Scalarizing: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Scalarizing: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Scalarizing: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Scalarizing: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: VPlan 'Initial VPlan for VF={vscale x 4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.body.preheader>:
; CHECK-NEXT: IR %0 = zext i32 %n to i64
; CHECK-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (zext i32 %n to i64)
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: vp<[[END1:%.+]]> = DERIVED-IV ir<%0> + vp<[[VEC_TC]]> * ir<-1>
; CHECK-NEXT: vp<[[END2:%.+]]> = DERIVED-IV ir<%n> + vp<[[VEC_TC]]> * ir<-1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: vp<[[DEV_IV:%.+]]> = DERIVED-IV ir<%n> + vp<[[CAN_IV]]> * ir<-1>
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[DEV_IV]]>, ir<-1>
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<[[STEPS]]>, ir<-1>
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-end-pointer inbounds ir<%arrayidx>, vp<[[VF]]>
; CHECK-NEXT: WIDEN ir<%1> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: WIDEN ir<%add9> = add ir<%1>, ir<1>
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = vector-end-pointer inbounds ir<%arrayidx3>, vp<[[VF]]>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add9>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq vp<[[TC]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; CHECK-NEXT: Successor(s): ir-bb<for.cond.cleanup.loopexit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT vp<[[RESUME1:%.+]]> = resume-phi vp<[[END1]]>, ir<%0>
; CHECK-NEXT: EMIT vp<[[RESUME2:%.+]]>.1 = resume-phi vp<[[END2]]>, ir<%n>
; CHECK-NEXT: Successor(s): ir-bb<for.body>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.body>:
; CHECK-NEXT: IR %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] (extra operand: vp<[[RESUME1]]> from scalar.ph)
; CHECK-NEXT: IR %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] (extra operand: vp<[[RESUME2]]>.1 from scalar.ph)
; CHECK: IR %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.cond.cleanup.loopexit>:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: %1 = load i32, ptr %arrayidx, align 4
; CHECK-NEXT: LV: Found an estimated cost of 2 for VF vscale x 4 For instruction: %add9 = add i32 %1, 1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: store i32 %add9, ptr %arrayidx3, align 4
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
; CHECK-NEXT: LV(REG): Calculating max register usage:
; CHECK-NEXT: LV(REG): At #0 Interval # 0
; CHECK-NEXT: LV(REG): At #1 Interval # 1
; CHECK-NEXT: LV(REG): At #2 Interval # 2
; CHECK-NEXT: LV(REG): At #3 Interval # 2
; CHECK-NEXT: LV(REG): At #4 Interval # 2
; CHECK-NEXT: LV(REG): At #5 Interval # 2
; CHECK-NEXT: LV(REG): At #6 Interval # 3
; CHECK-NEXT: LV(REG): At #7 Interval # 3
; CHECK-NEXT: LV(REG): At #8 Interval # 3
; CHECK-NEXT: LV(REG): At #9 Interval # 3
; CHECK-NEXT: LV(REG): At #10 Interval # 3
; CHECK-NEXT: LV(REG): At #11 Interval # 3
; CHECK-NEXT: LV(REG): At #12 Interval # 2
; CHECK-NEXT: LV(REG): At #13 Interval # 2
; CHECK-NEXT: LV(REG): VF = vscale x 4
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 3 registers
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 2 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 1 item
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 1 registers
; CHECK-NEXT: LV: The target has 31 registers of RISCV::GPRRC register class
; CHECK-NEXT: LV: The target has 32 registers of RISCV::VRRC register class
; CHECK-NEXT: LV: Loop does not require scalar epilogue
; CHECK-NEXT: LV: Loop cost is 32
; CHECK-NEXT: LV: IC is 1
; CHECK-NEXT: LV: VF is vscale x 4
; CHECK-NEXT: LV: Not Interleaving.
; CHECK-NEXT: LV: Interleaving is not beneficial.
; CHECK-NEXT: LV: Found a vectorizable loop (vscale x 4) in <stdin>
; CHECK-NEXT: LEV: Epilogue vectorization is not profitable for this loop
; CHECK: Executing best plan with VF=vscale x 4, UF=1
; CHECK-NEXT: VPlan 'Final VPlan for VF={vscale x 4},UF={1}' {
; CHECK-NEXT: Live-in ir<[[VF:%.+]]> = VF
; CHECK-NEXT: Live-in ir<[[VFxUF:%.+]]>.1 = VF * UF
; CHECK-NEXT: Live-in ir<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: ir<%0> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.body.preheader>:
; CHECK-NEXT: IR %0 = zext i32 %n to i64
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.scevcheck>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<vector.scevcheck>:
; CHECK-NEXT: IR %3 = add nsw i64 %0, -1
; CHECK-NEXT: IR %4 = add i32 %n, -1
; CHECK-NEXT: IR %5 = trunc i64 %3 to i32
; CHECK-NEXT: IR %mul = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 1, i32 %5)
; CHECK-NEXT: IR %mul.result = extractvalue { i32, i1 } %mul, 0
; CHECK-NEXT: IR %mul.overflow = extractvalue { i32, i1 } %mul, 1
; CHECK-NEXT: IR %6 = sub i32 %4, %mul.result
; CHECK-NEXT: IR %7 = icmp ugt i32 %6, %4
; CHECK-NEXT: IR %8 = or i1 %7, %mul.overflow
; CHECK-NEXT: IR %9 = icmp ugt i64 %3, 4294967295
; CHECK-NEXT: IR %10 = or i1 %8, %9
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.memcheck>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<vector.memcheck>:
; CHECK-NEXT: IR %11 = call i64 @llvm.vscale.i64()
; CHECK-NEXT: IR %12 = mul i64 %11, 4
; CHECK-NEXT: IR %13 = mul i64 %12, 4
; CHECK-NEXT: IR %14 = sub i64 %B1, %A2
; CHECK-NEXT: IR %diff.check = icmp ult i64 %14, %13
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.ph>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<vector.ph>:
; CHECK-NEXT: IR %15 = call i64 @llvm.vscale.i64()
; CHECK-NEXT: IR %16 = mul i64 %15, 4
; CHECK-NEXT: IR %n.mod.vf = urem i64 %0, %16
; CHECK-NEXT: IR %n.vec = sub i64 %0, %n.mod.vf
; CHECK-NEXT: IR %17 = call i64 @llvm.vscale.i64()
; CHECK-NEXT: IR %18 = mul i64 %17, 4
; CHECK-NEXT: vp<[[END1:%.+]]> = DERIVED-IV ir<%0> + ir<[[VEC_TC]]> * ir<-1>
; CHECK-NEXT: vp<[[END2:%.+]]> = DERIVED-IV ir<%n> + ir<[[VEC_TC]]> * ir<-1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = phi ir<0>, vp<[[CAN_IV_NEXT:%.+]]>
; CHECK-NEXT: vp<[[DEV_IV:%.+]]> = DERIVED-IV ir<%n> + vp<[[CAN_IV]]> * ir<-1>
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<[[DEV_IV]]>, ir<-1>
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-end-pointer inbounds ir<%arrayidx>, ir<[[VF]]>
; CHECK-NEXT: WIDEN ir<[[L:%.+]]> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: WIDEN ir<%add9> = add ir<[[L]]>, ir<1>
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = vector-end-pointer inbounds ir<%arrayidx3>, ir<[[VF]]>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add9>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, ir<[[VFxUF]]>.1
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, ir<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq ir<%0>, ir<[[VEC_TC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; CHECK-NEXT: Successor(s): ir-bb<for.cond.cleanup.loopexit>, ir-bb<scalar.ph>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.cond.cleanup.loopexit>:
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<scalar.ph>:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = resume-phi vp<[[END1]]>, ir<%0>
; CHECK-NEXT: EMIT vp<[[RESUME_2:%.+]]>.1 = resume-phi vp<[[END2]]>, ir<%n>
; CHECK-NEXT: Successor(s): ir-bb<for.body>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.body>:
; CHECK-NEXT: IR %indvars.iv = phi i64 [ %0, %scalar.ph ], [ %indvars.iv.next, %for.body ] (extra operand: vp<[[RESUME_1]]> from ir-bb<scalar.ph>)
; CHECK-NEXT: IR %i.0.in8 = phi i32 [ %n, %scalar.ph ], [ %i.0, %for.body ] (extra operand: vp<[[RESUME_2]]>.1 from ir-bb<scalar.ph>)
; CHECK: IR %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader: ; preds = %entry
%0 = zext i32 %n to i64
br label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
ret void
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
%i.0 = add nsw i32 %i.0.in8, -1
%idxprom = zext i32 %i.0 to i64
%arrayidx = getelementptr inbounds i32, ptr %B, i64 %idxprom
%1 = load i32, ptr %arrayidx, align 4
%add9 = add i32 %1, 1
%arrayidx3 = getelementptr inbounds i32, ptr %A, i64 %idxprom
store i32 %add9, ptr %arrayidx3, align 4
%cmp = icmp ugt i64 %indvars.iv, 1
%indvars.iv.next = add nsw i64 %indvars.iv, -1
br i1 %cmp, label %for.body, label %for.cond.cleanup, !llvm.loop !0
}
define void @vector_reverse_f32(ptr nocapture noundef writeonly %A, ptr nocapture noundef readonly %B, i32 noundef signext %n) {
; CHECK-LABEL: 'vector_reverse_f32'
; CHECK-NEXT: LV: Loop hints: force=enabled width=vscale x 4 interleave=0
; CHECK-NEXT: LV: Found a loop: for.body
; CHECK-NEXT: LV: Found an induction variable.
; CHECK-NEXT: LV: Found an induction variable.
; CHECK-NEXT: LV: Found FP op with unsafe algebra.
; CHECK-NEXT: LV: Did not find one integer induction var.
; CHECK-NEXT: LV: We can vectorize this loop (with a runtime bound check)!
; CHECK-NEXT: LV: Loop does not require scalar epilogue
; CHECK-NEXT: LV: Found trip count: 0
; CHECK-NEXT: LV: Found maximum trip count: 4294967295
; CHECK-NEXT: LV: Scalable vectorization is available
; CHECK-NEXT: LV: The max safe fixed VF is: 67108864.
; CHECK-NEXT: LV: The max safe scalable VF is: vscale x 4294967295.
; CHECK-NEXT: LV: Found uniform instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found uniform instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found uniform instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found uniform instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found uniform instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found uniform instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: %1 = load float, ptr %arrayidx, align 4
; CHECK-NEXT: LV: Found an estimated cost of 4 for VF vscale x 4 For instruction: %conv1 = fadd float %1, 1.000000e+00
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: store float %conv1, ptr %arrayidx3, align 4
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
; CHECK-NEXT: LV: Using user VF vscale x 4.
; CHECK-NEXT: LV: Loop does not require scalar epilogue
; CHECK: LV: Scalarizing: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Scalarizing: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Scalarizing: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Scalarizing: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Scalarizing: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Scalarizing: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: VPlan 'Initial VPlan for VF={vscale x 4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: vp<[[TC:%.+]]> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.body.preheader>:
; CHECK-NEXT: IR %0 = zext i32 %n to i64
; CHECK-NEXT: EMIT vp<[[TC]]> = EXPAND SCEV (zext i32 %n to i64)
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: vp<[[END1:%.+]]> = DERIVED-IV ir<%0> + vp<[[VEC_TC]]> * ir<-1>
; CHECK-NEXT: vp<[[END2:%.+]]> = DERIVED-IV ir<%n> + vp<[[VEC_TC]]> * ir<-1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: vp<[[DEV_IV:%.+]]> = DERIVED-IV ir<%n> + vp<[[CAN_IV]]> * ir<-1>
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[DEV_IV]]>, ir<-1>
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<[[STEPS]]>, ir<-1>
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-end-pointer inbounds ir<%arrayidx>, vp<[[VF]]>
; CHECK-NEXT: WIDEN ir<%1> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: WIDEN ir<%conv1> = fadd ir<%1>, ir<1.000000e+00>
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = vector-end-pointer inbounds ir<%arrayidx3>, vp<[[VF]]>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%conv1>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq vp<[[TC]]>, vp<[[VEC_TC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; CHECK-NEXT: Successor(s): ir-bb<for.cond.cleanup.loopexit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT vp<[[RESUME1:%.+]]> = resume-phi vp<[[END1]]>, ir<%0>
; CHECK-NEXT: EMIT vp<[[RESUME2:%.+]]>.1 = resume-phi vp<[[END2]]>, ir<%n>
; CHECK-NEXT: Successor(s): ir-bb<for.body>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.body>:
; CHECK-NEXT: IR %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ] (extra operand: vp<[[RESUME1]]> from scalar.ph)
; CHECK-NEXT: IR %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ] (extra operand: vp<[[RESUME2]]>.1 from scalar.ph)
; CHECK: IR %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.cond.cleanup.loopexit>:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %i.0 = add nsw i32 %i.0.in8, -1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %idxprom = zext i32 %i.0 to i64
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: %1 = load float, ptr %arrayidx, align 4
; CHECK-NEXT: LV: Found an estimated cost of 4 for VF vscale x 4 For instruction: %conv1 = fadd float %1, 1.000000e+00
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: %arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
; CHECK-NEXT: LV: Found an estimated cost of 13 for VF vscale x 4 For instruction: store float %conv1, ptr %arrayidx3, align 4
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %cmp = icmp ugt i64 %indvars.iv, 1
; CHECK-NEXT: LV: Found an estimated cost of 1 for VF vscale x 4 For instruction: %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: LV: Found an estimated cost of 0 for VF vscale x 4 For instruction: br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit, !llvm.loop !0
; CHECK-NEXT: LV(REG): Calculating max register usage:
; CHECK-NEXT: LV(REG): At #0 Interval # 0
; CHECK-NEXT: LV(REG): At #1 Interval # 1
; CHECK-NEXT: LV(REG): At #2 Interval # 2
; CHECK-NEXT: LV(REG): At #3 Interval # 2
; CHECK-NEXT: LV(REG): At #4 Interval # 2
; CHECK-NEXT: LV(REG): At #5 Interval # 2
; CHECK-NEXT: LV(REG): At #6 Interval # 3
; CHECK-NEXT: LV(REG): At #7 Interval # 3
; CHECK-NEXT: LV(REG): At #8 Interval # 3
; CHECK-NEXT: LV(REG): At #9 Interval # 3
; CHECK-NEXT: LV(REG): At #10 Interval # 3
; CHECK-NEXT: LV(REG): At #11 Interval # 3
; CHECK-NEXT: LV(REG): At #12 Interval # 2
; CHECK-NEXT: LV(REG): At #13 Interval # 2
; CHECK-NEXT: LV(REG): VF = vscale x 4
; CHECK-NEXT: LV(REG): Found max usage: 2 item
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 3 registers
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::VRRC, 2 registers
; CHECK-NEXT: LV(REG): Found invariant usage: 1 item
; CHECK-NEXT: LV(REG): RegisterClass: RISCV::GPRRC, 1 registers
; CHECK-NEXT: LV: The target has 31 registers of RISCV::GPRRC register class
; CHECK-NEXT: LV: The target has 32 registers of RISCV::VRRC register class
; CHECK-NEXT: LV: Loop does not require scalar epilogue
; CHECK-NEXT: LV: Loop cost is 34
; CHECK-NEXT: LV: IC is 1
; CHECK-NEXT: LV: VF is vscale x 4
; CHECK-NEXT: LV: Not Interleaving.
; CHECK-NEXT: LV: Interleaving is not beneficial.
; CHECK-NEXT: LV: Found a vectorizable loop (vscale x 4) in <stdin>
; CHECK-NEXT: LEV: Epilogue vectorization is not profitable for this loop
; CHECK: Executing best plan with VF=vscale x 4, UF=1
; CHECK-NEXT: VPlan 'Final VPlan for VF={vscale x 4},UF={1}' {
; CHECK-NEXT: Live-in ir<[[VF:%.+]]> = VF
; CHECK-NEXT: Live-in ir<[[VFxUF:%.+]]>.1 = VF * UF
; CHECK-NEXT: Live-in ir<[[VEC_TC:%.+]]> = vector-trip-count
; CHECK-NEXT: ir<%0> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.body.preheader>:
; CHECK-NEXT: IR %0 = zext i32 %n to i64
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.scevcheck>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<vector.scevcheck>:
; CHECK-NEXT: IR %3 = add nsw i64 %0, -1
; CHECK-NEXT: IR %4 = add i32 %n, -1
; CHECK-NEXT: IR %5 = trunc i64 %3 to i32
; CHECK-NEXT: IR %mul = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 1, i32 %5)
; CHECK-NEXT: IR %mul.result = extractvalue { i32, i1 } %mul, 0
; CHECK-NEXT: IR %mul.overflow = extractvalue { i32, i1 } %mul, 1
; CHECK-NEXT: IR %6 = sub i32 %4, %mul.result
; CHECK-NEXT: IR %7 = icmp ugt i32 %6, %4
; CHECK-NEXT: IR %8 = or i1 %7, %mul.overflow
; CHECK-NEXT: IR %9 = icmp ugt i64 %3, 4294967295
; CHECK-NEXT: IR %10 = or i1 %8, %9
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.memcheck>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<vector.memcheck>:
; CHECK-NEXT: IR %11 = call i64 @llvm.vscale.i64()
; CHECK-NEXT: IR %12 = mul i64 %11, 4
; CHECK-NEXT: IR %13 = mul i64 %12, 4
; CHECK-NEXT: IR %14 = sub i64 %B1, %A2
; CHECK-NEXT: IR %diff.check = icmp ult i64 %14, %13
; CHECK-NEXT: Successor(s): ir-bb<scalar.ph>, ir-bb<vector.ph>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<vector.ph>:
; CHECK-NEXT: IR %15 = call i64 @llvm.vscale.i64()
; CHECK-NEXT: IR %16 = mul i64 %15, 4
; CHECK-NEXT: IR %n.mod.vf = urem i64 %0, %16
; CHECK-NEXT: IR %n.vec = sub i64 %0, %n.mod.vf
; CHECK-NEXT: IR %17 = call i64 @llvm.vscale.i64()
; CHECK-NEXT: IR %18 = mul i64 %17, 4
; CHECK-NEXT: vp<[[END1:%.+]]> = DERIVED-IV ir<%0> + ir<[[VEC_TC]]> * ir<-1>
; CHECK-NEXT: vp<[[END2:%.+]]> = DERIVED-IV ir<%n> + ir<[[VEC_TC]]> * ir<-1>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = phi ir<0>, vp<[[CAN_IV_NEXT:%.+]]>
; CHECK-NEXT: vp<[[DEV_IV:%.+]]> = DERIVED-IV ir<%n> + vp<[[CAN_IV]]> * ir<-1>
; CHECK-NEXT: CLONE ir<%i.0> = add nsw vp<[[DEV_IV]]>, ir<-1>
; CHECK-NEXT: CLONE ir<%idxprom> = zext ir<%i.0>
; CHECK-NEXT: CLONE ir<%arrayidx> = getelementptr inbounds ir<%B>, ir<%idxprom>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-end-pointer inbounds ir<%arrayidx>, ir<[[VF]]>
; CHECK-NEXT: WIDEN ir<[[L:%.+]]> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: WIDEN ir<%conv1> = fadd ir<[[L]]>, ir<1.000000e+00>
; CHECK-NEXT: CLONE ir<%arrayidx3> = getelementptr inbounds ir<%A>, ir<%idxprom>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-end-pointer inbounds ir<%arrayidx3>, ir<[[VF]]>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR]]>, ir<%conv1>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, ir<[[VFxUF]]>.1
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, ir<[[VEC_TC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq ir<%0>, ir<[[VEC_TC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; CHECK-NEXT: Successor(s): ir-bb<for.cond.cleanup.loopexit>, ir-bb<scalar.ph>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.cond.cleanup.loopexit>:
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<scalar.ph>:
; CHECK-NEXT: EMIT vp<[[RESUME1:%.+]]> = resume-phi vp<[[END1]]>, ir<%0>
; CHECK-NEXT: EMIT vp<[[RESUME2:%.+]]>.1 = resume-phi vp<[[END2]]>, ir<%n>
; CHECK-NEXT: Successor(s): ir-bb<for.body>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.body>:
; CHECK-NEXT: IR %indvars.iv = phi i64 [ %0, %scalar.ph ], [ %indvars.iv.next, %for.body ] (extra operand: vp<[[RESUME1]]> from ir-bb<scalar.ph>)
; CHECK-NEXT: IR %i.0.in8 = phi i32 [ %n, %scalar.ph ], [ %i.0, %for.body ] (extra operand: vp<[[RESUME2]]>.1 from ir-bb<scalar.ph>)
; CHECK: IR %indvars.iv.next = add nsw i64 %indvars.iv, -1
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader: ; preds = %entry
%0 = zext i32 %n to i64
br label %for.body
for.cond.cleanup: ; preds = %for.body, %entry
ret void
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%i.0.in8 = phi i32 [ %n, %for.body.preheader ], [ %i.0, %for.body ]
%i.0 = add nsw i32 %i.0.in8, -1
%idxprom = zext i32 %i.0 to i64
%arrayidx = getelementptr inbounds float, ptr %B, i64 %idxprom
%1 = load float, ptr %arrayidx, align 4
%conv1 = fadd float %1, 1.000000e+00
%arrayidx3 = getelementptr inbounds float, ptr %A, i64 %idxprom
store float %conv1, ptr %arrayidx3, align 4
%cmp = icmp ugt i64 %indvars.iv, 1
%indvars.iv.next = add nsw i64 %indvars.iv, -1
br i1 %cmp, label %for.body, label %for.cond.cleanup, !llvm.loop !0
}
!0 = distinct !{!0, !1, !2, !3, !4}
!1 = !{!"llvm.loop.mustprogress"}
!2 = !{!"llvm.loop.vectorize.width", i32 4}
!3 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
!4 = !{!"llvm.loop.vectorize.enable", i1 true}