Files
clang-p2996/mlir/lib/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.cpp
Tom Eccles 7b70fc74d0 [mlir][OpenMP] Convert omp.cancel sections to LLVMIR (#137193)
This is quite ugly but it is the best I could think of. The old
FiniCBWrapper was way too brittle depending upon the exact block
structure inside of the section, and could be confused by any control
flow in the section (e.g. an if clause on cancel). The wording in the
comment and variable names didn't seem to match where it was actually
branching too as well.

Clang's (non-OpenMPIRBuilder) lowering for cancel inside of sections
branches to a block containing __kmpc_for_static_fini.

This was hard to achieve here because sometimes the FiniCBWrapper has to
run before the worksharing loop finalization has been crated.

To get around this ordering issue I created a dummy branch to a dummy
block, which is then fixed later once all of the information is
available.
2025-04-29 17:19:40 +01:00

5803 lines
242 KiB
C++

//===- OpenMPToLLVMIRTranslation.cpp - Translate OpenMP dialect to LLVM IR-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a translation between the MLIR OpenMP dialect and LLVM
// IR.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/Dialect/OpenMP/OpenMPToLLVMIRTranslation.h"
#include "mlir/Analysis/TopologicalSortUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Operation.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/Dialect/OpenMPCommon.h"
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <any>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <optional>
#include <utility>
using namespace mlir;
namespace {
static llvm::omp::ScheduleKind
convertToScheduleKind(std::optional<omp::ClauseScheduleKind> schedKind) {
if (!schedKind.has_value())
return llvm::omp::OMP_SCHEDULE_Default;
switch (schedKind.value()) {
case omp::ClauseScheduleKind::Static:
return llvm::omp::OMP_SCHEDULE_Static;
case omp::ClauseScheduleKind::Dynamic:
return llvm::omp::OMP_SCHEDULE_Dynamic;
case omp::ClauseScheduleKind::Guided:
return llvm::omp::OMP_SCHEDULE_Guided;
case omp::ClauseScheduleKind::Auto:
return llvm::omp::OMP_SCHEDULE_Auto;
case omp::ClauseScheduleKind::Runtime:
return llvm::omp::OMP_SCHEDULE_Runtime;
}
llvm_unreachable("unhandled schedule clause argument");
}
/// ModuleTranslation stack frame for OpenMP operations. This keeps track of the
/// insertion points for allocas.
class OpenMPAllocaStackFrame
: public LLVM::ModuleTranslation::StackFrameBase<OpenMPAllocaStackFrame> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPAllocaStackFrame)
explicit OpenMPAllocaStackFrame(llvm::OpenMPIRBuilder::InsertPointTy allocaIP)
: allocaInsertPoint(allocaIP) {}
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
};
/// Stack frame to hold a \see llvm::CanonicalLoopInfo representing the
/// collapsed canonical loop information corresponding to an \c omp.loop_nest
/// operation.
class OpenMPLoopInfoStackFrame
: public LLVM::ModuleTranslation::StackFrameBase<OpenMPLoopInfoStackFrame> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(OpenMPLoopInfoStackFrame)
llvm::CanonicalLoopInfo *loopInfo = nullptr;
};
/// Custom error class to signal translation errors that don't need reporting,
/// since encountering them will have already triggered relevant error messages.
///
/// Its purpose is to serve as the glue between MLIR failures represented as
/// \see LogicalResult instances and \see llvm::Error instances used to
/// propagate errors through the \see llvm::OpenMPIRBuilder. Generally, when an
/// error of the first type is raised, a message is emitted directly (the \see
/// LogicalResult itself does not hold any information). If we need to forward
/// this error condition as an \see llvm::Error while avoiding triggering some
/// redundant error reporting later on, we need a custom \see llvm::ErrorInfo
/// class to just signal this situation has happened.
///
/// For example, this class should be used to trigger errors from within
/// callbacks passed to the \see OpenMPIRBuilder when they were triggered by the
/// translation of their own regions. This unclutters the error log from
/// redundant messages.
class PreviouslyReportedError
: public llvm::ErrorInfo<PreviouslyReportedError> {
public:
void log(raw_ostream &) const override {
// Do not log anything.
}
std::error_code convertToErrorCode() const override {
llvm_unreachable(
"PreviouslyReportedError doesn't support ECError conversion");
}
// Used by ErrorInfo::classID.
static char ID;
};
char PreviouslyReportedError::ID = 0;
} // namespace
/// Looks up from the operation from and returns the PrivateClauseOp with
/// name symbolName
static omp::PrivateClauseOp findPrivatizer(Operation *from,
SymbolRefAttr symbolName) {
omp::PrivateClauseOp privatizer =
SymbolTable::lookupNearestSymbolFrom<omp::PrivateClauseOp>(from,
symbolName);
assert(privatizer && "privatizer not found in the symbol table");
return privatizer;
}
/// Check whether translation to LLVM IR for the given operation is currently
/// supported. If not, descriptive diagnostics will be emitted to let users know
/// this is a not-yet-implemented feature.
///
/// \returns success if no unimplemented features are needed to translate the
/// given operation.
static LogicalResult checkImplementationStatus(Operation &op) {
auto todo = [&op](StringRef clauseName) {
return op.emitError() << "not yet implemented: Unhandled clause "
<< clauseName << " in " << op.getName()
<< " operation";
};
auto checkAllocate = [&todo](auto op, LogicalResult &result) {
if (!op.getAllocateVars().empty() || !op.getAllocatorVars().empty())
result = todo("allocate");
};
auto checkBare = [&todo](auto op, LogicalResult &result) {
if (op.getBare())
result = todo("ompx_bare");
};
auto checkCancelDirective = [&todo](auto op, LogicalResult &result) {
omp::ClauseCancellationConstructType cancelledDirective =
op.getCancelDirective();
if (cancelledDirective != omp::ClauseCancellationConstructType::Parallel &&
cancelledDirective != omp::ClauseCancellationConstructType::Sections)
result = todo("cancel directive construct type not yet supported");
};
auto checkDepend = [&todo](auto op, LogicalResult &result) {
if (!op.getDependVars().empty() || op.getDependKinds())
result = todo("depend");
};
auto checkDevice = [&todo](auto op, LogicalResult &result) {
if (op.getDevice())
result = todo("device");
};
auto checkDistSchedule = [&todo](auto op, LogicalResult &result) {
if (op.getDistScheduleChunkSize())
result = todo("dist_schedule with chunk_size");
};
auto checkHint = [](auto op, LogicalResult &) {
if (op.getHint())
op.emitWarning("hint clause discarded");
};
auto checkInReduction = [&todo](auto op, LogicalResult &result) {
if (!op.getInReductionVars().empty() || op.getInReductionByref() ||
op.getInReductionSyms())
result = todo("in_reduction");
};
auto checkIsDevicePtr = [&todo](auto op, LogicalResult &result) {
if (!op.getIsDevicePtrVars().empty())
result = todo("is_device_ptr");
};
auto checkLinear = [&todo](auto op, LogicalResult &result) {
if (!op.getLinearVars().empty() || !op.getLinearStepVars().empty())
result = todo("linear");
};
auto checkNontemporal = [&todo](auto op, LogicalResult &result) {
if (!op.getNontemporalVars().empty())
result = todo("nontemporal");
};
auto checkNowait = [&todo](auto op, LogicalResult &result) {
if (op.getNowait())
result = todo("nowait");
};
auto checkOrder = [&todo](auto op, LogicalResult &result) {
if (op.getOrder() || op.getOrderMod())
result = todo("order");
};
auto checkParLevelSimd = [&todo](auto op, LogicalResult &result) {
if (op.getParLevelSimd())
result = todo("parallelization-level");
};
auto checkPriority = [&todo](auto op, LogicalResult &result) {
if (op.getPriority())
result = todo("priority");
};
auto checkPrivate = [&todo](auto op, LogicalResult &result) {
if constexpr (std::is_same_v<std::decay_t<decltype(op)>, omp::TargetOp>) {
// Privatization clauses are supported, except on some situations, so we
// need to check here whether any of these unsupported cases are being
// translated.
if (std::optional<ArrayAttr> privateSyms = op.getPrivateSyms()) {
for (Attribute privatizerNameAttr : *privateSyms) {
omp::PrivateClauseOp privatizer = findPrivatizer(
op.getOperation(), cast<SymbolRefAttr>(privatizerNameAttr));
if (privatizer.getDataSharingType() ==
omp::DataSharingClauseType::FirstPrivate)
result = todo("firstprivate");
}
}
} else {
if (!op.getPrivateVars().empty() || op.getPrivateSyms())
result = todo("privatization");
}
};
auto checkReduction = [&todo](auto op, LogicalResult &result) {
if (isa<omp::TeamsOp>(op) || isa<omp::SimdOp>(op))
if (!op.getReductionVars().empty() || op.getReductionByref() ||
op.getReductionSyms())
result = todo("reduction");
if (op.getReductionMod() &&
op.getReductionMod().value() != omp::ReductionModifier::defaultmod)
result = todo("reduction with modifier");
};
auto checkTaskReduction = [&todo](auto op, LogicalResult &result) {
if (!op.getTaskReductionVars().empty() || op.getTaskReductionByref() ||
op.getTaskReductionSyms())
result = todo("task_reduction");
};
auto checkUntied = [&todo](auto op, LogicalResult &result) {
if (op.getUntied())
result = todo("untied");
};
LogicalResult result = success();
llvm::TypeSwitch<Operation &>(op)
.Case([&](omp::CancelOp op) { checkCancelDirective(op, result); })
.Case([&](omp::DistributeOp op) {
checkAllocate(op, result);
checkDistSchedule(op, result);
checkOrder(op, result);
})
.Case([&](omp::OrderedRegionOp op) { checkParLevelSimd(op, result); })
.Case([&](omp::SectionsOp op) {
checkAllocate(op, result);
checkPrivate(op, result);
checkReduction(op, result);
})
.Case([&](omp::SingleOp op) {
checkAllocate(op, result);
checkPrivate(op, result);
})
.Case([&](omp::TeamsOp op) {
checkAllocate(op, result);
checkPrivate(op, result);
})
.Case([&](omp::TaskOp op) {
checkAllocate(op, result);
checkInReduction(op, result);
})
.Case([&](omp::TaskgroupOp op) {
checkAllocate(op, result);
checkTaskReduction(op, result);
})
.Case([&](omp::TaskwaitOp op) {
checkDepend(op, result);
checkNowait(op, result);
})
.Case([&](omp::TaskloopOp op) {
// TODO: Add other clauses check
checkUntied(op, result);
checkPriority(op, result);
})
.Case([&](omp::WsloopOp op) {
checkAllocate(op, result);
checkLinear(op, result);
checkOrder(op, result);
checkReduction(op, result);
})
.Case([&](omp::ParallelOp op) {
checkAllocate(op, result);
checkReduction(op, result);
})
.Case([&](omp::SimdOp op) {
checkLinear(op, result);
checkNontemporal(op, result);
checkReduction(op, result);
})
.Case<omp::AtomicReadOp, omp::AtomicWriteOp, omp::AtomicUpdateOp,
omp::AtomicCaptureOp>([&](auto op) { checkHint(op, result); })
.Case<omp::TargetEnterDataOp, omp::TargetExitDataOp, omp::TargetUpdateOp>(
[&](auto op) { checkDepend(op, result); })
.Case([&](omp::TargetOp op) {
checkAllocate(op, result);
checkBare(op, result);
checkDevice(op, result);
checkInReduction(op, result);
checkIsDevicePtr(op, result);
checkPrivate(op, result);
})
.Default([](Operation &) {
// Assume all clauses for an operation can be translated unless they are
// checked above.
});
return result;
}
static LogicalResult handleError(llvm::Error error, Operation &op) {
LogicalResult result = success();
if (error) {
llvm::handleAllErrors(
std::move(error),
[&](const PreviouslyReportedError &) { result = failure(); },
[&](const llvm::ErrorInfoBase &err) {
result = op.emitError(err.message());
});
}
return result;
}
template <typename T>
static LogicalResult handleError(llvm::Expected<T> &result, Operation &op) {
if (!result)
return handleError(result.takeError(), op);
return success();
}
/// Find the insertion point for allocas given the current insertion point for
/// normal operations in the builder.
static llvm::OpenMPIRBuilder::InsertPointTy
findAllocaInsertPoint(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
// If there is an alloca insertion point on stack, i.e. we are in a nested
// operation and a specific point was provided by some surrounding operation,
// use it.
llvm::OpenMPIRBuilder::InsertPointTy allocaInsertPoint;
WalkResult walkResult = moduleTranslation.stackWalk<OpenMPAllocaStackFrame>(
[&](OpenMPAllocaStackFrame &frame) {
allocaInsertPoint = frame.allocaInsertPoint;
return WalkResult::interrupt();
});
if (walkResult.wasInterrupted())
return allocaInsertPoint;
// Otherwise, insert to the entry block of the surrounding function.
// If the current IRBuilder InsertPoint is the function's entry, it cannot
// also be used for alloca insertion which would result in insertion order
// confusion. Create a new BasicBlock for the Builder and use the entry block
// for the allocs.
// TODO: Create a dedicated alloca BasicBlock at function creation such that
// we do not need to move the current InertPoint here.
if (builder.GetInsertBlock() ==
&builder.GetInsertBlock()->getParent()->getEntryBlock()) {
assert(builder.GetInsertPoint() == builder.GetInsertBlock()->end() &&
"Assuming end of basic block");
llvm::BasicBlock *entryBB = llvm::BasicBlock::Create(
builder.getContext(), "entry", builder.GetInsertBlock()->getParent(),
builder.GetInsertBlock()->getNextNode());
builder.CreateBr(entryBB);
builder.SetInsertPoint(entryBB);
}
llvm::BasicBlock &funcEntryBlock =
builder.GetInsertBlock()->getParent()->getEntryBlock();
return llvm::OpenMPIRBuilder::InsertPointTy(
&funcEntryBlock, funcEntryBlock.getFirstInsertionPt());
}
/// Find the loop information structure for the loop nest being translated. It
/// will return a `null` value unless called from the translation function for
/// a loop wrapper operation after successfully translating its body.
static llvm::CanonicalLoopInfo *
findCurrentLoopInfo(LLVM::ModuleTranslation &moduleTranslation) {
llvm::CanonicalLoopInfo *loopInfo = nullptr;
moduleTranslation.stackWalk<OpenMPLoopInfoStackFrame>(
[&](OpenMPLoopInfoStackFrame &frame) {
loopInfo = frame.loopInfo;
return WalkResult::interrupt();
});
return loopInfo;
}
/// Converts the given region that appears within an OpenMP dialect operation to
/// LLVM IR, creating a branch from the `sourceBlock` to the entry block of the
/// region, and a branch from any block with an successor-less OpenMP terminator
/// to `continuationBlock`. Populates `continuationBlockPHIs` with the PHI nodes
/// of the continuation block if provided.
static llvm::Expected<llvm::BasicBlock *> convertOmpOpRegions(
Region &region, StringRef blockName, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<llvm::PHINode *> *continuationBlockPHIs = nullptr) {
bool isLoopWrapper = isa<omp::LoopWrapperInterface>(region.getParentOp());
llvm::BasicBlock *continuationBlock =
splitBB(builder, true, "omp.region.cont");
llvm::BasicBlock *sourceBlock = builder.GetInsertBlock();
llvm::LLVMContext &llvmContext = builder.getContext();
for (Block &bb : region) {
llvm::BasicBlock *llvmBB = llvm::BasicBlock::Create(
llvmContext, blockName, builder.GetInsertBlock()->getParent(),
builder.GetInsertBlock()->getNextNode());
moduleTranslation.mapBlock(&bb, llvmBB);
}
llvm::Instruction *sourceTerminator = sourceBlock->getTerminator();
// Terminators (namely YieldOp) may be forwarding values to the region that
// need to be available in the continuation block. Collect the types of these
// operands in preparation of creating PHI nodes. This is skipped for loop
// wrapper operations, for which we know in advance they have no terminators.
SmallVector<llvm::Type *> continuationBlockPHITypes;
unsigned numYields = 0;
if (!isLoopWrapper) {
bool operandsProcessed = false;
for (Block &bb : region.getBlocks()) {
if (omp::YieldOp yield = dyn_cast<omp::YieldOp>(bb.getTerminator())) {
if (!operandsProcessed) {
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
continuationBlockPHITypes.push_back(
moduleTranslation.convertType(yield->getOperand(i).getType()));
}
operandsProcessed = true;
} else {
assert(continuationBlockPHITypes.size() == yield->getNumOperands() &&
"mismatching number of values yielded from the region");
for (unsigned i = 0, e = yield->getNumOperands(); i < e; ++i) {
llvm::Type *operandType =
moduleTranslation.convertType(yield->getOperand(i).getType());
(void)operandType;
assert(continuationBlockPHITypes[i] == operandType &&
"values of mismatching types yielded from the region");
}
}
numYields++;
}
}
}
// Insert PHI nodes in the continuation block for any values forwarded by the
// terminators in this region.
if (!continuationBlockPHITypes.empty())
assert(
continuationBlockPHIs &&
"expected continuation block PHIs if converted regions yield values");
if (continuationBlockPHIs) {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
continuationBlockPHIs->reserve(continuationBlockPHITypes.size());
builder.SetInsertPoint(continuationBlock, continuationBlock->begin());
for (llvm::Type *ty : continuationBlockPHITypes)
continuationBlockPHIs->push_back(builder.CreatePHI(ty, numYields));
}
// Convert blocks one by one in topological order to ensure
// defs are converted before uses.
SetVector<Block *> blocks = getBlocksSortedByDominance(region);
for (Block *bb : blocks) {
llvm::BasicBlock *llvmBB = moduleTranslation.lookupBlock(bb);
// Retarget the branch of the entry block to the entry block of the
// converted region (regions are single-entry).
if (bb->isEntryBlock()) {
assert(sourceTerminator->getNumSuccessors() == 1 &&
"provided entry block has multiple successors");
assert(sourceTerminator->getSuccessor(0) == continuationBlock &&
"ContinuationBlock is not the successor of the entry block");
sourceTerminator->setSuccessor(0, llvmBB);
}
llvm::IRBuilderBase::InsertPointGuard guard(builder);
if (failed(
moduleTranslation.convertBlock(*bb, bb->isEntryBlock(), builder)))
return llvm::make_error<PreviouslyReportedError>();
// Create a direct branch here for loop wrappers to prevent their lack of a
// terminator from causing a crash below.
if (isLoopWrapper) {
builder.CreateBr(continuationBlock);
continue;
}
// Special handling for `omp.yield` and `omp.terminator` (we may have more
// than one): they return the control to the parent OpenMP dialect operation
// so replace them with the branch to the continuation block. We handle this
// here to avoid relying inter-function communication through the
// ModuleTranslation class to set up the correct insertion point. This is
// also consistent with MLIR's idiom of handling special region terminators
// in the same code that handles the region-owning operation.
Operation *terminator = bb->getTerminator();
if (isa<omp::TerminatorOp, omp::YieldOp>(terminator)) {
builder.CreateBr(continuationBlock);
for (unsigned i = 0, e = terminator->getNumOperands(); i < e; ++i)
(*continuationBlockPHIs)[i]->addIncoming(
moduleTranslation.lookupValue(terminator->getOperand(i)), llvmBB);
}
}
// After all blocks have been traversed and values mapped, connect the PHI
// nodes to the results of preceding blocks.
LLVM::detail::connectPHINodes(region, moduleTranslation);
// Remove the blocks and values defined in this region from the mapping since
// they are not visible outside of this region. This allows the same region to
// be converted several times, that is cloned, without clashes, and slightly
// speeds up the lookups.
moduleTranslation.forgetMapping(region);
return continuationBlock;
}
/// Convert ProcBindKind from MLIR-generated enum to LLVM enum.
static llvm::omp::ProcBindKind getProcBindKind(omp::ClauseProcBindKind kind) {
switch (kind) {
case omp::ClauseProcBindKind::Close:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_close;
case omp::ClauseProcBindKind::Master:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_master;
case omp::ClauseProcBindKind::Primary:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_primary;
case omp::ClauseProcBindKind::Spread:
return llvm::omp::ProcBindKind::OMP_PROC_BIND_spread;
}
llvm_unreachable("Unknown ClauseProcBindKind kind");
}
/// Maps block arguments from \p blockArgIface (which are MLIR values) to the
/// corresponding LLVM values of \p the interface's operands. This is useful
/// when an OpenMP region with entry block arguments is converted to LLVM. In
/// this case the block arguments are (part of) of the OpenMP region's entry
/// arguments and the operands are (part of) of the operands to the OpenMP op
/// containing the region.
static void forwardArgs(LLVM::ModuleTranslation &moduleTranslation,
omp::BlockArgOpenMPOpInterface blockArgIface) {
llvm::SmallVector<std::pair<Value, BlockArgument>> blockArgsPairs;
blockArgIface.getBlockArgsPairs(blockArgsPairs);
for (auto [var, arg] : blockArgsPairs)
moduleTranslation.mapValue(arg, moduleTranslation.lookupValue(var));
}
/// Helper function to map block arguments defined by ignored loop wrappers to
/// LLVM values and prevent any uses of those from triggering null pointer
/// dereferences.
///
/// This must be called after block arguments of parent wrappers have already
/// been mapped to LLVM IR values.
static LogicalResult
convertIgnoredWrapper(omp::LoopWrapperInterface opInst,
LLVM::ModuleTranslation &moduleTranslation) {
// Map block arguments directly to the LLVM value associated to the
// corresponding operand. This is semantically equivalent to this wrapper not
// being present.
return llvm::TypeSwitch<Operation *, LogicalResult>(opInst)
.Case([&](omp::SimdOp op) {
forwardArgs(moduleTranslation,
cast<omp::BlockArgOpenMPOpInterface>(*op));
op.emitWarning() << "simd information on composite construct discarded";
return success();
})
.Default([&](Operation *op) {
return op->emitError() << "cannot ignore wrapper";
});
}
/// Converts an OpenMP 'masked' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpMasked(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto maskedOp = cast<omp::MaskedOp>(opInst);
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
if (failed(checkImplementationStatus(opInst)))
return failure();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// MaskedOp has only one region associated with it.
auto &region = maskedOp.getRegion();
builder.restoreIP(codeGenIP);
return convertOmpOpRegions(region, "omp.masked.region", builder,
moduleTranslation)
.takeError();
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) { return llvm::Error::success(); };
llvm::Value *filterVal = nullptr;
if (auto filterVar = maskedOp.getFilteredThreadId()) {
filterVal = moduleTranslation.lookupValue(filterVar);
} else {
llvm::LLVMContext &llvmContext = builder.getContext();
filterVal =
llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvmContext), /*V=*/0);
}
assert(filterVal != nullptr);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createMasked(ompLoc, bodyGenCB,
finiCB, filterVal);
if (failed(handleError(afterIP, opInst)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
/// Converts an OpenMP 'master' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpMaster(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto masterOp = cast<omp::MasterOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// MasterOp has only one region associated with it.
auto &region = masterOp.getRegion();
builder.restoreIP(codeGenIP);
return convertOmpOpRegions(region, "omp.master.region", builder,
moduleTranslation)
.takeError();
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) { return llvm::Error::success(); };
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createMaster(ompLoc, bodyGenCB,
finiCB);
if (failed(handleError(afterIP, opInst)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
/// Converts an OpenMP 'critical' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpCritical(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto criticalOp = cast<omp::CriticalOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// CriticalOp has only one region associated with it.
auto &region = cast<omp::CriticalOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
return convertOmpOpRegions(region, "omp.critical.region", builder,
moduleTranslation)
.takeError();
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) { return llvm::Error::success(); };
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::LLVMContext &llvmContext = moduleTranslation.getLLVMContext();
llvm::Constant *hint = nullptr;
// If it has a name, it probably has a hint too.
if (criticalOp.getNameAttr()) {
// The verifiers in OpenMP Dialect guarentee that all the pointers are
// non-null
auto symbolRef = cast<SymbolRefAttr>(criticalOp.getNameAttr());
auto criticalDeclareOp =
SymbolTable::lookupNearestSymbolFrom<omp::CriticalDeclareOp>(criticalOp,
symbolRef);
hint =
llvm::ConstantInt::get(llvm::Type::getInt32Ty(llvmContext),
static_cast<int>(criticalDeclareOp.getHint()));
}
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createCritical(
ompLoc, bodyGenCB, finiCB, criticalOp.getName().value_or(""), hint);
if (failed(handleError(afterIP, opInst)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
/// A util to collect info needed to convert delayed privatizers from MLIR to
/// LLVM.
struct PrivateVarsInfo {
template <typename OP>
PrivateVarsInfo(OP op)
: blockArgs(
cast<omp::BlockArgOpenMPOpInterface>(*op).getPrivateBlockArgs()) {
mlirVars.reserve(blockArgs.size());
llvmVars.reserve(blockArgs.size());
collectPrivatizationDecls<OP>(op);
for (mlir::Value privateVar : op.getPrivateVars())
mlirVars.push_back(privateVar);
}
MutableArrayRef<BlockArgument> blockArgs;
SmallVector<mlir::Value> mlirVars;
SmallVector<llvm::Value *> llvmVars;
SmallVector<omp::PrivateClauseOp> privatizers;
private:
/// Populates `privatizations` with privatization declarations used for the
/// given op.
template <class OP>
void collectPrivatizationDecls(OP op) {
std::optional<ArrayAttr> attr = op.getPrivateSyms();
if (!attr)
return;
privatizers.reserve(privatizers.size() + attr->size());
for (auto symbolRef : attr->getAsRange<SymbolRefAttr>()) {
privatizers.push_back(findPrivatizer(op, symbolRef));
}
}
};
/// Populates `reductions` with reduction declarations used in the given op.
template <typename T>
static void
collectReductionDecls(T op,
SmallVectorImpl<omp::DeclareReductionOp> &reductions) {
std::optional<ArrayAttr> attr = op.getReductionSyms();
if (!attr)
return;
reductions.reserve(reductions.size() + op.getNumReductionVars());
for (auto symbolRef : attr->getAsRange<SymbolRefAttr>()) {
reductions.push_back(
SymbolTable::lookupNearestSymbolFrom<omp::DeclareReductionOp>(
op, symbolRef));
}
}
/// Translates the blocks contained in the given region and appends them to at
/// the current insertion point of `builder`. The operations of the entry block
/// are appended to the current insertion block. If set, `continuationBlockArgs`
/// is populated with translated values that correspond to the values
/// omp.yield'ed from the region.
static LogicalResult inlineConvertOmpRegions(
Region &region, StringRef blockName, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<llvm::Value *> *continuationBlockArgs = nullptr) {
if (region.empty())
return success();
// Special case for single-block regions that don't create additional blocks:
// insert operations without creating additional blocks.
if (llvm::hasSingleElement(region)) {
llvm::Instruction *potentialTerminator =
builder.GetInsertBlock()->empty() ? nullptr
: &builder.GetInsertBlock()->back();
if (potentialTerminator && potentialTerminator->isTerminator())
potentialTerminator->removeFromParent();
moduleTranslation.mapBlock(&region.front(), builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(
region.front(), /*ignoreArguments=*/true, builder)))
return failure();
// The continuation arguments are simply the translated terminator operands.
if (continuationBlockArgs)
llvm::append_range(
*continuationBlockArgs,
moduleTranslation.lookupValues(region.front().back().getOperands()));
// Drop the mapping that is no longer necessary so that the same region can
// be processed multiple times.
moduleTranslation.forgetMapping(region);
if (potentialTerminator && potentialTerminator->isTerminator()) {
llvm::BasicBlock *block = builder.GetInsertBlock();
if (block->empty()) {
// this can happen for really simple reduction init regions e.g.
// %0 = llvm.mlir.constant(0 : i32) : i32
// omp.yield(%0 : i32)
// because the llvm.mlir.constant (MLIR op) isn't converted into any
// llvm op
potentialTerminator->insertInto(block, block->begin());
} else {
potentialTerminator->insertAfter(&block->back());
}
}
return success();
}
SmallVector<llvm::PHINode *> phis;
llvm::Expected<llvm::BasicBlock *> continuationBlock =
convertOmpOpRegions(region, blockName, builder, moduleTranslation, &phis);
if (failed(handleError(continuationBlock, *region.getParentOp())))
return failure();
if (continuationBlockArgs)
llvm::append_range(*continuationBlockArgs, phis);
builder.SetInsertPoint(*continuationBlock,
(*continuationBlock)->getFirstInsertionPt());
return success();
}
namespace {
/// Owning equivalents of OpenMPIRBuilder::(Atomic)ReductionGen that are used to
/// store lambdas with capture.
using OwningReductionGen =
std::function<llvm::OpenMPIRBuilder::InsertPointOrErrorTy(
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Value *, llvm::Value *,
llvm::Value *&)>;
using OwningAtomicReductionGen =
std::function<llvm::OpenMPIRBuilder::InsertPointOrErrorTy(
llvm::OpenMPIRBuilder::InsertPointTy, llvm::Type *, llvm::Value *,
llvm::Value *)>;
} // namespace
/// Create an OpenMPIRBuilder-compatible reduction generator for the given
/// reduction declaration. The generator uses `builder` but ignores its
/// insertion point.
static OwningReductionGen
makeReductionGen(omp::DeclareReductionOp decl, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
// The lambda is mutable because we need access to non-const methods of decl
// (which aren't actually mutating it), and we must capture decl by-value to
// avoid the dangling reference after the parent function returns.
OwningReductionGen gen =
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint,
llvm::Value *lhs, llvm::Value *rhs,
llvm::Value *&result) mutable
-> llvm::OpenMPIRBuilder::InsertPointOrErrorTy {
moduleTranslation.mapValue(decl.getReductionLhsArg(), lhs);
moduleTranslation.mapValue(decl.getReductionRhsArg(), rhs);
builder.restoreIP(insertPoint);
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(decl.getReductionRegion(),
"omp.reduction.nonatomic.body", builder,
moduleTranslation, &phis)))
return llvm::createStringError(
"failed to inline `combiner` region of `omp.declare_reduction`");
result = llvm::getSingleElement(phis);
return builder.saveIP();
};
return gen;
}
/// Create an OpenMPIRBuilder-compatible atomic reduction generator for the
/// given reduction declaration. The generator uses `builder` but ignores its
/// insertion point. Returns null if there is no atomic region available in the
/// reduction declaration.
static OwningAtomicReductionGen
makeAtomicReductionGen(omp::DeclareReductionOp decl,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (decl.getAtomicReductionRegion().empty())
return OwningAtomicReductionGen();
// The lambda is mutable because we need access to non-const methods of decl
// (which aren't actually mutating it), and we must capture decl by-value to
// avoid the dangling reference after the parent function returns.
OwningAtomicReductionGen atomicGen =
[&, decl](llvm::OpenMPIRBuilder::InsertPointTy insertPoint, llvm::Type *,
llvm::Value *lhs, llvm::Value *rhs) mutable
-> llvm::OpenMPIRBuilder::InsertPointOrErrorTy {
moduleTranslation.mapValue(decl.getAtomicReductionLhsArg(), lhs);
moduleTranslation.mapValue(decl.getAtomicReductionRhsArg(), rhs);
builder.restoreIP(insertPoint);
SmallVector<llvm::Value *> phis;
if (failed(inlineConvertOmpRegions(decl.getAtomicReductionRegion(),
"omp.reduction.atomic.body", builder,
moduleTranslation, &phis)))
return llvm::createStringError(
"failed to inline `atomic` region of `omp.declare_reduction`");
assert(phis.empty());
return builder.saveIP();
};
return atomicGen;
}
/// Converts an OpenMP 'ordered' operation into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpOrdered(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto orderedOp = cast<omp::OrderedOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
omp::ClauseDepend dependType = *orderedOp.getDoacrossDependType();
bool isDependSource = dependType == omp::ClauseDepend::dependsource;
unsigned numLoops = *orderedOp.getDoacrossNumLoops();
SmallVector<llvm::Value *> vecValues =
moduleTranslation.lookupValues(orderedOp.getDoacrossDependVars());
size_t indexVecValues = 0;
while (indexVecValues < vecValues.size()) {
SmallVector<llvm::Value *> storeValues;
storeValues.reserve(numLoops);
for (unsigned i = 0; i < numLoops; i++) {
storeValues.push_back(vecValues[indexVecValues]);
indexVecValues++;
}
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
builder.restoreIP(moduleTranslation.getOpenMPBuilder()->createOrderedDepend(
ompLoc, allocaIP, numLoops, storeValues, ".cnt.addr", isDependSource));
}
return success();
}
/// Converts an OpenMP 'ordered_region' operation into LLVM IR using
/// OpenMPIRBuilder.
static LogicalResult
convertOmpOrderedRegion(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto orderedRegionOp = cast<omp::OrderedRegionOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP) {
// OrderedOp has only one region associated with it.
auto &region = cast<omp::OrderedRegionOp>(opInst).getRegion();
builder.restoreIP(codeGenIP);
return convertOmpOpRegions(region, "omp.ordered.region", builder,
moduleTranslation)
.takeError();
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) { return llvm::Error::success(); };
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createOrderedThreadsSimd(
ompLoc, bodyGenCB, finiCB, !orderedRegionOp.getParLevelSimd());
if (failed(handleError(afterIP, opInst)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
namespace {
/// Contains the arguments for an LLVM store operation
struct DeferredStore {
DeferredStore(llvm::Value *value, llvm::Value *address)
: value(value), address(address) {}
llvm::Value *value;
llvm::Value *address;
};
} // namespace
/// Allocate space for privatized reduction variables.
/// `deferredStores` contains information to create store operations which needs
/// to be inserted after all allocas
template <typename T>
static LogicalResult
allocReductionVars(T loop, ArrayRef<BlockArgument> reductionArgs,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
const llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
SmallVectorImpl<llvm::Value *> &privateReductionVariables,
DenseMap<Value, llvm::Value *> &reductionVariableMap,
SmallVectorImpl<DeferredStore> &deferredStores,
llvm::ArrayRef<bool> isByRefs) {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
builder.SetInsertPoint(allocaIP.getBlock()->getTerminator());
// delay creating stores until after all allocas
deferredStores.reserve(loop.getNumReductionVars());
for (std::size_t i = 0; i < loop.getNumReductionVars(); ++i) {
Region &allocRegion = reductionDecls[i].getAllocRegion();
if (isByRefs[i]) {
if (allocRegion.empty())
continue;
SmallVector<llvm::Value *, 1> phis;
if (failed(inlineConvertOmpRegions(allocRegion, "omp.reduction.alloc",
builder, moduleTranslation, &phis)))
return loop.emitError(
"failed to inline `alloc` region of `omp.declare_reduction`");
assert(phis.size() == 1 && "expected one allocation to be yielded");
builder.SetInsertPoint(allocaIP.getBlock()->getTerminator());
// Allocate reduction variable (which is a pointer to the real reduction
// variable allocated in the inlined region)
llvm::Value *var = builder.CreateAlloca(
moduleTranslation.convertType(reductionDecls[i].getType()));
llvm::Type *ptrTy = builder.getPtrTy();
llvm::Value *castVar =
builder.CreatePointerBitCastOrAddrSpaceCast(var, ptrTy);
llvm::Value *castPhi =
builder.CreatePointerBitCastOrAddrSpaceCast(phis[0], ptrTy);
deferredStores.emplace_back(castPhi, castVar);
privateReductionVariables[i] = castVar;
moduleTranslation.mapValue(reductionArgs[i], castPhi);
reductionVariableMap.try_emplace(loop.getReductionVars()[i], castPhi);
} else {
assert(allocRegion.empty() &&
"allocaction is implicit for by-val reduction");
llvm::Value *var = builder.CreateAlloca(
moduleTranslation.convertType(reductionDecls[i].getType()));
llvm::Type *ptrTy = builder.getPtrTy();
llvm::Value *castVar =
builder.CreatePointerBitCastOrAddrSpaceCast(var, ptrTy);
moduleTranslation.mapValue(reductionArgs[i], castVar);
privateReductionVariables[i] = castVar;
reductionVariableMap.try_emplace(loop.getReductionVars()[i], castVar);
}
}
return success();
}
/// Map input arguments to reduction initialization region
template <typename T>
static void
mapInitializationArgs(T loop, LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
DenseMap<Value, llvm::Value *> &reductionVariableMap,
unsigned i) {
// map input argument to the initialization region
mlir::omp::DeclareReductionOp &reduction = reductionDecls[i];
Region &initializerRegion = reduction.getInitializerRegion();
Block &entry = initializerRegion.front();
mlir::Value mlirSource = loop.getReductionVars()[i];
llvm::Value *llvmSource = moduleTranslation.lookupValue(mlirSource);
assert(llvmSource && "lookup reduction var");
moduleTranslation.mapValue(reduction.getInitializerMoldArg(), llvmSource);
if (entry.getNumArguments() > 1) {
llvm::Value *allocation =
reductionVariableMap.lookup(loop.getReductionVars()[i]);
moduleTranslation.mapValue(reduction.getInitializerAllocArg(), allocation);
}
}
static void
setInsertPointForPossiblyEmptyBlock(llvm::IRBuilderBase &builder,
llvm::BasicBlock *block = nullptr) {
if (block == nullptr)
block = builder.GetInsertBlock();
if (block->empty() || block->getTerminator() == nullptr)
builder.SetInsertPoint(block);
else
builder.SetInsertPoint(block->getTerminator());
}
/// Inline reductions' `init` regions. This functions assumes that the
/// `builder`'s insertion point is where the user wants the `init` regions to be
/// inlined; i.e. it does not try to find a proper insertion location for the
/// `init` regions. It also leaves the `builder's insertions point in a state
/// where the user can continue the code-gen directly afterwards.
template <typename OP>
static LogicalResult
initReductionVars(OP op, ArrayRef<BlockArgument> reductionArgs,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::BasicBlock *latestAllocaBlock,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
SmallVectorImpl<llvm::Value *> &privateReductionVariables,
DenseMap<Value, llvm::Value *> &reductionVariableMap,
llvm::ArrayRef<bool> isByRef,
SmallVectorImpl<DeferredStore> &deferredStores) {
if (op.getNumReductionVars() == 0)
return success();
llvm::BasicBlock *initBlock = splitBB(builder, true, "omp.reduction.init");
auto allocaIP = llvm::IRBuilderBase::InsertPoint(
latestAllocaBlock, latestAllocaBlock->getTerminator()->getIterator());
builder.restoreIP(allocaIP);
SmallVector<llvm::Value *> byRefVars(op.getNumReductionVars());
for (unsigned i = 0; i < op.getNumReductionVars(); ++i) {
if (isByRef[i]) {
if (!reductionDecls[i].getAllocRegion().empty())
continue;
// TODO: remove after all users of by-ref are updated to use the alloc
// region: Allocate reduction variable (which is a pointer to the real
// reduciton variable allocated in the inlined region)
byRefVars[i] = builder.CreateAlloca(
moduleTranslation.convertType(reductionDecls[i].getType()));
}
}
setInsertPointForPossiblyEmptyBlock(builder, initBlock);
// store result of the alloc region to the allocated pointer to the real
// reduction variable
for (auto [data, addr] : deferredStores)
builder.CreateStore(data, addr);
// Before the loop, store the initial values of reductions into reduction
// variables. Although this could be done after allocas, we don't want to mess
// up with the alloca insertion point.
for (unsigned i = 0; i < op.getNumReductionVars(); ++i) {
SmallVector<llvm::Value *, 1> phis;
// map block argument to initializer region
mapInitializationArgs(op, moduleTranslation, reductionDecls,
reductionVariableMap, i);
if (failed(inlineConvertOmpRegions(reductionDecls[i].getInitializerRegion(),
"omp.reduction.neutral", builder,
moduleTranslation, &phis)))
return failure();
assert(phis.size() == 1 && "expected one value to be yielded from the "
"reduction neutral element declaration region");
setInsertPointForPossiblyEmptyBlock(builder);
if (isByRef[i]) {
if (!reductionDecls[i].getAllocRegion().empty())
// done in allocReductionVars
continue;
// TODO: this path can be removed once all users of by-ref are updated to
// use an alloc region
// Store the result of the inlined region to the allocated reduction var
// ptr
builder.CreateStore(phis[0], byRefVars[i]);
privateReductionVariables[i] = byRefVars[i];
moduleTranslation.mapValue(reductionArgs[i], phis[0]);
reductionVariableMap.try_emplace(op.getReductionVars()[i], phis[0]);
} else {
// for by-ref case the store is inside of the reduction region
builder.CreateStore(phis[0], privateReductionVariables[i]);
// the rest was handled in allocByValReductionVars
}
// forget the mapping for the initializer region because we might need a
// different mapping if this reduction declaration is re-used for a
// different variable
moduleTranslation.forgetMapping(reductionDecls[i].getInitializerRegion());
}
return success();
}
/// Collect reduction info
template <typename T>
static void collectReductionInfo(
T loop, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
SmallVectorImpl<OwningReductionGen> &owningReductionGens,
SmallVectorImpl<OwningAtomicReductionGen> &owningAtomicReductionGens,
const ArrayRef<llvm::Value *> privateReductionVariables,
SmallVectorImpl<llvm::OpenMPIRBuilder::ReductionInfo> &reductionInfos) {
unsigned numReductions = loop.getNumReductionVars();
for (unsigned i = 0; i < numReductions; ++i) {
owningReductionGens.push_back(
makeReductionGen(reductionDecls[i], builder, moduleTranslation));
owningAtomicReductionGens.push_back(
makeAtomicReductionGen(reductionDecls[i], builder, moduleTranslation));
}
// Collect the reduction information.
reductionInfos.reserve(numReductions);
for (unsigned i = 0; i < numReductions; ++i) {
llvm::OpenMPIRBuilder::ReductionGenAtomicCBTy atomicGen = nullptr;
if (owningAtomicReductionGens[i])
atomicGen = owningAtomicReductionGens[i];
llvm::Value *variable =
moduleTranslation.lookupValue(loop.getReductionVars()[i]);
reductionInfos.push_back(
{moduleTranslation.convertType(reductionDecls[i].getType()), variable,
privateReductionVariables[i],
/*EvaluationKind=*/llvm::OpenMPIRBuilder::EvalKind::Scalar,
owningReductionGens[i],
/*ReductionGenClang=*/nullptr, atomicGen});
}
}
/// handling of DeclareReductionOp's cleanup region
static LogicalResult
inlineOmpRegionCleanup(llvm::SmallVectorImpl<Region *> &cleanupRegions,
llvm::ArrayRef<llvm::Value *> privateVariables,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder, StringRef regionName,
bool shouldLoadCleanupRegionArg = true) {
for (auto [i, cleanupRegion] : llvm::enumerate(cleanupRegions)) {
if (cleanupRegion->empty())
continue;
// map the argument to the cleanup region
Block &entry = cleanupRegion->front();
llvm::Instruction *potentialTerminator =
builder.GetInsertBlock()->empty() ? nullptr
: &builder.GetInsertBlock()->back();
if (potentialTerminator && potentialTerminator->isTerminator())
builder.SetInsertPoint(potentialTerminator);
llvm::Value *privateVarValue =
shouldLoadCleanupRegionArg
? builder.CreateLoad(
moduleTranslation.convertType(entry.getArgument(0).getType()),
privateVariables[i])
: privateVariables[i];
moduleTranslation.mapValue(entry.getArgument(0), privateVarValue);
if (failed(inlineConvertOmpRegions(*cleanupRegion, regionName, builder,
moduleTranslation)))
return failure();
// clear block argument mapping in case it needs to be re-created with a
// different source for another use of the same reduction decl
moduleTranslation.forgetMapping(*cleanupRegion);
}
return success();
}
// TODO: not used by ParallelOp
template <class OP>
static LogicalResult createReductionsAndCleanup(
OP op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
ArrayRef<llvm::Value *> privateReductionVariables, ArrayRef<bool> isByRef,
bool isNowait = false, bool isTeamsReduction = false) {
// Process the reductions if required.
if (op.getNumReductionVars() == 0)
return success();
SmallVector<OwningReductionGen> owningReductionGens;
SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// Create the reduction generators. We need to own them here because
// ReductionInfo only accepts references to the generators.
collectReductionInfo(op, builder, moduleTranslation, reductionDecls,
owningReductionGens, owningAtomicReductionGens,
privateReductionVariables, reductionInfos);
// The call to createReductions below expects the block to have a
// terminator. Create an unreachable instruction to serve as terminator
// and remove it later.
llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
builder.SetInsertPoint(tempTerminator);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy contInsertPoint =
ompBuilder->createReductions(builder.saveIP(), allocaIP, reductionInfos,
isByRef, isNowait, isTeamsReduction);
if (failed(handleError(contInsertPoint, *op)))
return failure();
if (!contInsertPoint->getBlock())
return op->emitOpError() << "failed to convert reductions";
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
ompBuilder->createBarrier(*contInsertPoint, llvm::omp::OMPD_for);
if (failed(handleError(afterIP, *op)))
return failure();
tempTerminator->eraseFromParent();
builder.restoreIP(*afterIP);
// after the construct, deallocate private reduction variables
SmallVector<Region *> reductionRegions;
llvm::transform(reductionDecls, std::back_inserter(reductionRegions),
[](omp::DeclareReductionOp reductionDecl) {
return &reductionDecl.getCleanupRegion();
});
return inlineOmpRegionCleanup(reductionRegions, privateReductionVariables,
moduleTranslation, builder,
"omp.reduction.cleanup");
return success();
}
static ArrayRef<bool> getIsByRef(std::optional<ArrayRef<bool>> attr) {
if (!attr)
return {};
return *attr;
}
// TODO: not used by omp.parallel
template <typename OP>
static LogicalResult allocAndInitializeReductionVars(
OP op, ArrayRef<BlockArgument> reductionArgs, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
SmallVectorImpl<omp::DeclareReductionOp> &reductionDecls,
SmallVectorImpl<llvm::Value *> &privateReductionVariables,
DenseMap<Value, llvm::Value *> &reductionVariableMap,
llvm::ArrayRef<bool> isByRef) {
if (op.getNumReductionVars() == 0)
return success();
SmallVector<DeferredStore> deferredStores;
if (failed(allocReductionVars(op, reductionArgs, builder, moduleTranslation,
allocaIP, reductionDecls,
privateReductionVariables, reductionVariableMap,
deferredStores, isByRef)))
return failure();
return initReductionVars(op, reductionArgs, builder, moduleTranslation,
allocaIP.getBlock(), reductionDecls,
privateReductionVariables, reductionVariableMap,
isByRef, deferredStores);
}
/// Return the llvm::Value * corresponding to the `privateVar` that
/// is being privatized. It isn't always as simple as looking up
/// moduleTranslation with privateVar. For instance, in case of
/// an allocatable, the descriptor for the allocatable is privatized.
/// This descriptor is mapped using an MapInfoOp. So, this function
/// will return a pointer to the llvm::Value corresponding to the
/// block argument for the mapped descriptor.
static llvm::Value *
findAssociatedValue(Value privateVar, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::DenseMap<Value, Value> *mappedPrivateVars = nullptr) {
if (mappedPrivateVars == nullptr || !mappedPrivateVars->contains(privateVar))
return moduleTranslation.lookupValue(privateVar);
Value blockArg = (*mappedPrivateVars)[privateVar];
Type privVarType = privateVar.getType();
Type blockArgType = blockArg.getType();
assert(isa<LLVM::LLVMPointerType>(blockArgType) &&
"A block argument corresponding to a mapped var should have "
"!llvm.ptr type");
if (privVarType == blockArgType)
return moduleTranslation.lookupValue(blockArg);
// This typically happens when the privatized type is lowered from
// boxchar<KIND> and gets lowered to !llvm.struct<(ptr, i64)>. That is the
// struct/pair is passed by value. But, mapped values are passed only as
// pointers, so before we privatize, we must load the pointer.
if (!isa<LLVM::LLVMPointerType>(privVarType))
return builder.CreateLoad(moduleTranslation.convertType(privVarType),
moduleTranslation.lookupValue(blockArg));
return moduleTranslation.lookupValue(privateVar);
}
/// Initialize a single (first)private variable. You probably want to use
/// allocateAndInitPrivateVars instead of this.
/// This returns the private variable which has been initialized. This
/// variable should be mapped before constructing the body of the Op.
static llvm::Expected<llvm::Value *> initPrivateVar(
llvm::IRBuilderBase &builder, LLVM::ModuleTranslation &moduleTranslation,
omp::PrivateClauseOp &privDecl, Value mlirPrivVar, BlockArgument &blockArg,
llvm::Value *llvmPrivateVar, llvm::BasicBlock *privInitBlock,
llvm::DenseMap<Value, Value> *mappedPrivateVars = nullptr) {
Region &initRegion = privDecl.getInitRegion();
if (initRegion.empty())
return llvmPrivateVar;
// map initialization region block arguments
llvm::Value *nonPrivateVar = findAssociatedValue(
mlirPrivVar, builder, moduleTranslation, mappedPrivateVars);
assert(nonPrivateVar);
moduleTranslation.mapValue(privDecl.getInitMoldArg(), nonPrivateVar);
moduleTranslation.mapValue(privDecl.getInitPrivateArg(), llvmPrivateVar);
// in-place convert the private initialization region
SmallVector<llvm::Value *, 1> phis;
if (failed(inlineConvertOmpRegions(initRegion, "omp.private.init", builder,
moduleTranslation, &phis)))
return llvm::createStringError(
"failed to inline `init` region of `omp.private`");
assert(phis.size() == 1 && "expected one allocation to be yielded");
// clear init region block argument mapping in case it needs to be
// re-created with a different source for another use of the same
// reduction decl
moduleTranslation.forgetMapping(initRegion);
// Prefer the value yielded from the init region to the allocated private
// variable in case the region is operating on arguments by-value (e.g.
// Fortran character boxes).
return phis[0];
}
static llvm::Error
initPrivateVars(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
PrivateVarsInfo &privateVarsInfo,
llvm::DenseMap<Value, Value> *mappedPrivateVars = nullptr) {
if (privateVarsInfo.blockArgs.empty())
return llvm::Error::success();
llvm::BasicBlock *privInitBlock = splitBB(builder, true, "omp.private.init");
setInsertPointForPossiblyEmptyBlock(builder, privInitBlock);
for (auto [idx, zip] : llvm::enumerate(llvm::zip_equal(
privateVarsInfo.privatizers, privateVarsInfo.mlirVars,
privateVarsInfo.blockArgs, privateVarsInfo.llvmVars))) {
auto [privDecl, mlirPrivVar, blockArg, llvmPrivateVar] = zip;
llvm::Expected<llvm::Value *> privVarOrErr = initPrivateVar(
builder, moduleTranslation, privDecl, mlirPrivVar, blockArg,
llvmPrivateVar, privInitBlock, mappedPrivateVars);
if (!privVarOrErr)
return privVarOrErr.takeError();
llvmPrivateVar = privVarOrErr.get();
moduleTranslation.mapValue(blockArg, llvmPrivateVar);
setInsertPointForPossiblyEmptyBlock(builder);
}
return llvm::Error::success();
}
/// Allocate and initialize delayed private variables. Returns the basic block
/// which comes after all of these allocations. llvm::Value * for each of these
/// private variables are populated in llvmPrivateVars.
static llvm::Expected<llvm::BasicBlock *>
allocatePrivateVars(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
PrivateVarsInfo &privateVarsInfo,
const llvm::OpenMPIRBuilder::InsertPointTy &allocaIP,
llvm::DenseMap<Value, Value> *mappedPrivateVars = nullptr) {
// Allocate private vars
llvm::Instruction *allocaTerminator = allocaIP.getBlock()->getTerminator();
splitBB(llvm::OpenMPIRBuilder::InsertPointTy(allocaIP.getBlock(),
allocaTerminator->getIterator()),
true, allocaTerminator->getStableDebugLoc(),
"omp.region.after_alloca");
llvm::IRBuilderBase::InsertPointGuard guard(builder);
// Update the allocaTerminator since the alloca block was split above.
allocaTerminator = allocaIP.getBlock()->getTerminator();
builder.SetInsertPoint(allocaTerminator);
// The new terminator is an uncondition branch created by the splitBB above.
assert(allocaTerminator->getNumSuccessors() == 1 &&
"This is an unconditional branch created by splitBB");
llvm::BasicBlock *afterAllocas = allocaTerminator->getSuccessor(0);
unsigned int allocaAS =
moduleTranslation.getLLVMModule()->getDataLayout().getAllocaAddrSpace();
unsigned int defaultAS = moduleTranslation.getLLVMModule()
->getDataLayout()
.getProgramAddressSpace();
for (auto [privDecl, mlirPrivVar, blockArg] :
llvm::zip_equal(privateVarsInfo.privatizers, privateVarsInfo.mlirVars,
privateVarsInfo.blockArgs)) {
llvm::Type *llvmAllocType =
moduleTranslation.convertType(privDecl.getType());
builder.SetInsertPoint(allocaIP.getBlock()->getTerminator());
llvm::Value *llvmPrivateVar = builder.CreateAlloca(
llvmAllocType, /*ArraySize=*/nullptr, "omp.private.alloc");
if (allocaAS != defaultAS)
llvmPrivateVar = builder.CreateAddrSpaceCast(llvmPrivateVar,
builder.getPtrTy(defaultAS));
privateVarsInfo.llvmVars.push_back(llvmPrivateVar);
}
return afterAllocas;
}
static LogicalResult
copyFirstPrivateVars(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<mlir::Value> &mlirPrivateVars,
ArrayRef<llvm::Value *> llvmPrivateVars,
SmallVectorImpl<omp::PrivateClauseOp> &privateDecls) {
// Apply copy region for firstprivate.
bool needsFirstprivate =
llvm::any_of(privateDecls, [](omp::PrivateClauseOp &privOp) {
return privOp.getDataSharingType() ==
omp::DataSharingClauseType::FirstPrivate;
});
if (!needsFirstprivate)
return success();
llvm::BasicBlock *copyBlock =
splitBB(builder, /*CreateBranch=*/true, "omp.private.copy");
setInsertPointForPossiblyEmptyBlock(builder, copyBlock);
for (auto [decl, mlirVar, llvmVar] :
llvm::zip_equal(privateDecls, mlirPrivateVars, llvmPrivateVars)) {
if (decl.getDataSharingType() != omp::DataSharingClauseType::FirstPrivate)
continue;
// copyRegion implements `lhs = rhs`
Region &copyRegion = decl.getCopyRegion();
// map copyRegion rhs arg
llvm::Value *nonPrivateVar = moduleTranslation.lookupValue(mlirVar);
assert(nonPrivateVar);
moduleTranslation.mapValue(decl.getCopyMoldArg(), nonPrivateVar);
// map copyRegion lhs arg
moduleTranslation.mapValue(decl.getCopyPrivateArg(), llvmVar);
// in-place convert copy region
if (failed(inlineConvertOmpRegions(copyRegion, "omp.private.copy", builder,
moduleTranslation)))
return decl.emitError("failed to inline `copy` region of `omp.private`");
setInsertPointForPossiblyEmptyBlock(builder);
// ignore unused value yielded from copy region
// clear copy region block argument mapping in case it needs to be
// re-created with different sources for reuse of the same reduction
// decl
moduleTranslation.forgetMapping(copyRegion);
}
return success();
}
static LogicalResult
cleanupPrivateVars(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation, Location loc,
SmallVectorImpl<llvm::Value *> &llvmPrivateVars,
SmallVectorImpl<omp::PrivateClauseOp> &privateDecls) {
// private variable deallocation
SmallVector<Region *> privateCleanupRegions;
llvm::transform(privateDecls, std::back_inserter(privateCleanupRegions),
[](omp::PrivateClauseOp privatizer) {
return &privatizer.getDeallocRegion();
});
if (failed(inlineOmpRegionCleanup(
privateCleanupRegions, llvmPrivateVars, moduleTranslation, builder,
"omp.private.dealloc", /*shouldLoadCleanupRegionArg=*/false)))
return mlir::emitError(loc, "failed to inline `dealloc` region of an "
"`omp.private` op in");
return success();
}
/// Returns true if the construct contains omp.cancel or omp.cancellation_point
static bool constructIsCancellable(Operation *op) {
// omp.cancel must be "closely nested" so it will be visible and not inside of
// funcion calls. This is enforced by the verifier.
return op
->walk([](Operation *child) {
if (mlir::isa<omp::CancelOp>(child))
return WalkResult::interrupt();
return WalkResult::advance();
})
.wasInterrupted();
}
static LogicalResult
convertOmpSections(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
using StorableBodyGenCallbackTy =
llvm::OpenMPIRBuilder::StorableBodyGenCallbackTy;
auto sectionsOp = cast<omp::SectionsOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
llvm::ArrayRef<bool> isByRef = getIsByRef(sectionsOp.getReductionByref());
assert(isByRef.size() == sectionsOp.getNumReductionVars());
SmallVector<omp::DeclareReductionOp> reductionDecls;
collectReductionDecls(sectionsOp, reductionDecls);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
SmallVector<llvm::Value *> privateReductionVariables(
sectionsOp.getNumReductionVars());
DenseMap<Value, llvm::Value *> reductionVariableMap;
MutableArrayRef<BlockArgument> reductionArgs =
cast<omp::BlockArgOpenMPOpInterface>(opInst).getReductionBlockArgs();
if (failed(allocAndInitializeReductionVars(
sectionsOp, reductionArgs, builder, moduleTranslation, allocaIP,
reductionDecls, privateReductionVariables, reductionVariableMap,
isByRef)))
return failure();
SmallVector<StorableBodyGenCallbackTy> sectionCBs;
for (Operation &op : *sectionsOp.getRegion().begin()) {
auto sectionOp = dyn_cast<omp::SectionOp>(op);
if (!sectionOp) // omp.terminator
continue;
Region &region = sectionOp.getRegion();
auto sectionCB = [&sectionsOp, &region, &builder, &moduleTranslation](
InsertPointTy allocaIP, InsertPointTy codeGenIP) {
builder.restoreIP(codeGenIP);
// map the omp.section reduction block argument to the omp.sections block
// arguments
// TODO: this assumes that the only block arguments are reduction
// variables
assert(region.getNumArguments() ==
sectionsOp.getRegion().getNumArguments());
for (auto [sectionsArg, sectionArg] : llvm::zip_equal(
sectionsOp.getRegion().getArguments(), region.getArguments())) {
llvm::Value *llvmVal = moduleTranslation.lookupValue(sectionsArg);
assert(llvmVal);
moduleTranslation.mapValue(sectionArg, llvmVal);
}
return convertOmpOpRegions(region, "omp.section.region", builder,
moduleTranslation)
.takeError();
};
sectionCBs.push_back(sectionCB);
}
// No sections within omp.sections operation - skip generation. This situation
// is only possible if there is only a terminator operation inside the
// sections operation
if (sectionCBs.empty())
return success();
assert(isa<omp::SectionOp>(*sectionsOp.getRegion().op_begin()));
// TODO: Perform appropriate actions according to the data-sharing
// attribute (shared, private, firstprivate, ...) of variables.
// Currently defaults to shared.
auto privCB = [&](InsertPointTy, InsertPointTy codeGenIP, llvm::Value &,
llvm::Value &vPtr, llvm::Value *&replacementValue)
-> llvm::OpenMPIRBuilder::InsertPointOrErrorTy {
replacementValue = &vPtr;
return codeGenIP;
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) { return llvm::Error::success(); };
allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
bool isCancellable = constructIsCancellable(sectionsOp);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createSections(
ompLoc, allocaIP, sectionCBs, privCB, finiCB, isCancellable,
sectionsOp.getNowait());
if (failed(handleError(afterIP, opInst)))
return failure();
builder.restoreIP(*afterIP);
// Process the reductions if required.
return createReductionsAndCleanup(
sectionsOp, builder, moduleTranslation, allocaIP, reductionDecls,
privateReductionVariables, isByRef, sectionsOp.getNowait());
}
/// Converts an OpenMP single construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpSingle(omp::SingleOp &singleOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
if (failed(checkImplementationStatus(*singleOp)))
return failure();
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
builder.restoreIP(codegenIP);
return convertOmpOpRegions(singleOp.getRegion(), "omp.single.region",
builder, moduleTranslation)
.takeError();
};
auto finiCB = [&](InsertPointTy codeGenIP) { return llvm::Error::success(); };
// Handle copyprivate
Operation::operand_range cpVars = singleOp.getCopyprivateVars();
std::optional<ArrayAttr> cpFuncs = singleOp.getCopyprivateSyms();
llvm::SmallVector<llvm::Value *> llvmCPVars;
llvm::SmallVector<llvm::Function *> llvmCPFuncs;
for (size_t i = 0, e = cpVars.size(); i < e; ++i) {
llvmCPVars.push_back(moduleTranslation.lookupValue(cpVars[i]));
auto llvmFuncOp = SymbolTable::lookupNearestSymbolFrom<LLVM::LLVMFuncOp>(
singleOp, cast<SymbolRefAttr>((*cpFuncs)[i]));
llvmCPFuncs.push_back(
moduleTranslation.lookupFunction(llvmFuncOp.getName()));
}
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createSingle(
ompLoc, bodyCB, finiCB, singleOp.getNowait(), llvmCPVars,
llvmCPFuncs);
if (failed(handleError(afterIP, *singleOp)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
static bool teamsReductionContainedInDistribute(omp::TeamsOp teamsOp) {
auto iface =
llvm::cast<mlir::omp::BlockArgOpenMPOpInterface>(teamsOp.getOperation());
// Check that all uses of the reduction block arg has the same distribute op
// parent.
llvm::SmallVector<mlir::Operation *> debugUses;
Operation *distOp = nullptr;
for (auto ra : iface.getReductionBlockArgs())
for (auto &use : ra.getUses()) {
auto *useOp = use.getOwner();
// Ignore debug uses.
if (mlir::isa<LLVM::DbgDeclareOp, LLVM::DbgValueOp>(useOp)) {
debugUses.push_back(useOp);
continue;
}
auto currentDistOp = useOp->getParentOfType<omp::DistributeOp>();
// Use is not inside a distribute op - return false
if (!currentDistOp)
return false;
// Multiple distribute operations - return false
Operation *currentOp = currentDistOp.getOperation();
if (distOp && (distOp != currentOp))
return false;
distOp = currentOp;
}
// If we are going to use distribute reduction then remove any debug uses of
// the reduction parameters in teamsOp. Otherwise they will be left without
// any mapped value in moduleTranslation and will eventually error out.
for (auto use : debugUses)
use->erase();
return true;
}
// Convert an OpenMP Teams construct to LLVM IR using OpenMPIRBuilder
static LogicalResult
convertOmpTeams(omp::TeamsOp op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
if (failed(checkImplementationStatus(*op)))
return failure();
DenseMap<Value, llvm::Value *> reductionVariableMap;
unsigned numReductionVars = op.getNumReductionVars();
SmallVector<omp::DeclareReductionOp> reductionDecls;
SmallVector<llvm::Value *> privateReductionVariables(numReductionVars);
llvm::ArrayRef<bool> isByRef;
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
// Only do teams reduction if there is no distribute op that captures the
// reduction instead.
bool doTeamsReduction = !teamsReductionContainedInDistribute(op);
if (doTeamsReduction) {
isByRef = getIsByRef(op.getReductionByref());
assert(isByRef.size() == op.getNumReductionVars());
MutableArrayRef<BlockArgument> reductionArgs =
llvm::cast<omp::BlockArgOpenMPOpInterface>(*op).getReductionBlockArgs();
collectReductionDecls(op, reductionDecls);
if (failed(allocAndInitializeReductionVars(
op, reductionArgs, builder, moduleTranslation, allocaIP,
reductionDecls, privateReductionVariables, reductionVariableMap,
isByRef)))
return failure();
}
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
builder.restoreIP(codegenIP);
return convertOmpOpRegions(op.getRegion(), "omp.teams.region", builder,
moduleTranslation)
.takeError();
};
llvm::Value *numTeamsLower = nullptr;
if (Value numTeamsLowerVar = op.getNumTeamsLower())
numTeamsLower = moduleTranslation.lookupValue(numTeamsLowerVar);
llvm::Value *numTeamsUpper = nullptr;
if (Value numTeamsUpperVar = op.getNumTeamsUpper())
numTeamsUpper = moduleTranslation.lookupValue(numTeamsUpperVar);
llvm::Value *threadLimit = nullptr;
if (Value threadLimitVar = op.getThreadLimit())
threadLimit = moduleTranslation.lookupValue(threadLimitVar);
llvm::Value *ifExpr = nullptr;
if (Value ifVar = op.getIfExpr())
ifExpr = moduleTranslation.lookupValue(ifVar);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createTeams(
ompLoc, bodyCB, numTeamsLower, numTeamsUpper, threadLimit, ifExpr);
if (failed(handleError(afterIP, *op)))
return failure();
builder.restoreIP(*afterIP);
if (doTeamsReduction) {
// Process the reductions if required.
return createReductionsAndCleanup(
op, builder, moduleTranslation, allocaIP, reductionDecls,
privateReductionVariables, isByRef,
/*isNoWait*/ false, /*isTeamsReduction*/ true);
}
return success();
}
static void
buildDependData(std::optional<ArrayAttr> dependKinds, OperandRange dependVars,
LLVM::ModuleTranslation &moduleTranslation,
SmallVectorImpl<llvm::OpenMPIRBuilder::DependData> &dds) {
if (dependVars.empty())
return;
for (auto dep : llvm::zip(dependVars, dependKinds->getValue())) {
llvm::omp::RTLDependenceKindTy type;
switch (
cast<mlir::omp::ClauseTaskDependAttr>(std::get<1>(dep)).getValue()) {
case mlir::omp::ClauseTaskDepend::taskdependin:
type = llvm::omp::RTLDependenceKindTy::DepIn;
break;
// The OpenMP runtime requires that the codegen for 'depend' clause for
// 'out' dependency kind must be the same as codegen for 'depend' clause
// with 'inout' dependency.
case mlir::omp::ClauseTaskDepend::taskdependout:
case mlir::omp::ClauseTaskDepend::taskdependinout:
type = llvm::omp::RTLDependenceKindTy::DepInOut;
break;
case mlir::omp::ClauseTaskDepend::taskdependmutexinoutset:
type = llvm::omp::RTLDependenceKindTy::DepMutexInOutSet;
break;
case mlir::omp::ClauseTaskDepend::taskdependinoutset:
type = llvm::omp::RTLDependenceKindTy::DepInOutSet;
break;
};
llvm::Value *depVal = moduleTranslation.lookupValue(std::get<0>(dep));
llvm::OpenMPIRBuilder::DependData dd(type, depVal->getType(), depVal);
dds.emplace_back(dd);
}
}
namespace {
/// TaskContextStructManager takes care of creating and freeing a structure
/// containing information needed by the task body to execute.
class TaskContextStructManager {
public:
TaskContextStructManager(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
MutableArrayRef<omp::PrivateClauseOp> privateDecls)
: builder{builder}, moduleTranslation{moduleTranslation},
privateDecls{privateDecls} {}
/// Creates a heap allocated struct containing space for each private
/// variable. Invariant: privateVarTypes, privateDecls, and the elements of
/// the structure should all have the same order (although privateDecls which
/// do not read from the mold argument are skipped).
void generateTaskContextStruct();
/// Create GEPs to access each member of the structure representing a private
/// variable, adding them to llvmPrivateVars. Null values are added where
/// private decls were skipped so that the ordering continues to match the
/// private decls.
void createGEPsToPrivateVars();
/// De-allocate the task context structure.
void freeStructPtr();
MutableArrayRef<llvm::Value *> getLLVMPrivateVarGEPs() {
return llvmPrivateVarGEPs;
}
llvm::Value *getStructPtr() { return structPtr; }
private:
llvm::IRBuilderBase &builder;
LLVM::ModuleTranslation &moduleTranslation;
MutableArrayRef<omp::PrivateClauseOp> privateDecls;
/// The type of each member of the structure, in order.
SmallVector<llvm::Type *> privateVarTypes;
/// LLVM values for each private variable, or null if that private variable is
/// not included in the task context structure
SmallVector<llvm::Value *> llvmPrivateVarGEPs;
/// A pointer to the structure containing context for this task.
llvm::Value *structPtr = nullptr;
/// The type of the structure
llvm::Type *structTy = nullptr;
};
} // namespace
void TaskContextStructManager::generateTaskContextStruct() {
if (privateDecls.empty())
return;
privateVarTypes.reserve(privateDecls.size());
for (omp::PrivateClauseOp &privOp : privateDecls) {
// Skip private variables which can safely be allocated and initialised
// inside of the task
if (!privOp.readsFromMold())
continue;
Type mlirType = privOp.getType();
privateVarTypes.push_back(moduleTranslation.convertType(mlirType));
}
structTy = llvm::StructType::get(moduleTranslation.getLLVMContext(),
privateVarTypes);
llvm::DataLayout dataLayout =
builder.GetInsertBlock()->getModule()->getDataLayout();
llvm::Type *intPtrTy = builder.getIntPtrTy(dataLayout);
llvm::Constant *allocSize = llvm::ConstantExpr::getSizeOf(structTy);
// Heap allocate the structure
structPtr = builder.CreateMalloc(intPtrTy, structTy, allocSize,
/*ArraySize=*/nullptr, /*MallocF=*/nullptr,
"omp.task.context_ptr");
}
void TaskContextStructManager::createGEPsToPrivateVars() {
if (!structPtr) {
assert(privateVarTypes.empty());
return;
}
// Create GEPs for each struct member
llvmPrivateVarGEPs.clear();
llvmPrivateVarGEPs.reserve(privateDecls.size());
llvm::Value *zero = builder.getInt32(0);
unsigned i = 0;
for (auto privDecl : privateDecls) {
if (!privDecl.readsFromMold()) {
// Handle this inside of the task so we don't pass unnessecary vars in
llvmPrivateVarGEPs.push_back(nullptr);
continue;
}
llvm::Value *iVal = builder.getInt32(i);
llvm::Value *gep = builder.CreateGEP(structTy, structPtr, {zero, iVal});
llvmPrivateVarGEPs.push_back(gep);
i += 1;
}
}
void TaskContextStructManager::freeStructPtr() {
if (!structPtr)
return;
llvm::IRBuilderBase::InsertPointGuard guard{builder};
// Ensure we don't put the call to free() after the terminator
builder.SetInsertPoint(builder.GetInsertBlock()->getTerminator());
builder.CreateFree(structPtr);
}
/// Converts an OpenMP task construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpTaskOp(omp::TaskOp taskOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
if (failed(checkImplementationStatus(*taskOp)))
return failure();
PrivateVarsInfo privateVarsInfo(taskOp);
TaskContextStructManager taskStructMgr{builder, moduleTranslation,
privateVarsInfo.privatizers};
// Allocate and copy private variables before creating the task. This avoids
// accessing invalid memory if (after this scope ends) the private variables
// are initialized from host variables or if the variables are copied into
// from host variables (firstprivate). The insertion point is just before
// where the code for creating and scheduling the task will go. That puts this
// code outside of the outlined task region, which is what we want because
// this way the initialization and copy regions are executed immediately while
// the host variable data are still live.
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
// Not using splitBB() because that requires the current block to have a
// terminator.
assert(builder.GetInsertPoint() == builder.GetInsertBlock()->end());
llvm::BasicBlock *taskStartBlock = llvm::BasicBlock::Create(
builder.getContext(), "omp.task.start",
/*Parent=*/builder.GetInsertBlock()->getParent());
llvm::Instruction *branchToTaskStartBlock = builder.CreateBr(taskStartBlock);
builder.SetInsertPoint(branchToTaskStartBlock);
// Now do this again to make the initialization and copy blocks
llvm::BasicBlock *copyBlock =
splitBB(builder, /*CreateBranch=*/true, "omp.private.copy");
llvm::BasicBlock *initBlock =
splitBB(builder, /*CreateBranch=*/true, "omp.private.init");
// Now the control flow graph should look like
// starter_block:
// <---- where we started when convertOmpTaskOp was called
// br %omp.private.init
// omp.private.init:
// br %omp.private.copy
// omp.private.copy:
// br %omp.task.start
// omp.task.start:
// <---- where we want the insertion point to be when we call createTask()
// Save the alloca insertion point on ModuleTranslation stack for use in
// nested regions.
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
// Allocate and initialize private variables
builder.SetInsertPoint(initBlock->getTerminator());
// Create task variable structure
taskStructMgr.generateTaskContextStruct();
// GEPs so that we can initialize the variables. Don't use these GEPs inside
// of the body otherwise it will be the GEP not the struct which is fowarded
// to the outlined function. GEPs forwarded in this way are passed in a
// stack-allocated (by OpenMPIRBuilder) structure which is not safe for tasks
// which may not be executed until after the current stack frame goes out of
// scope.
taskStructMgr.createGEPsToPrivateVars();
for (auto [privDecl, mlirPrivVar, blockArg, llvmPrivateVarAlloc] :
llvm::zip_equal(privateVarsInfo.privatizers, privateVarsInfo.mlirVars,
privateVarsInfo.blockArgs,
taskStructMgr.getLLVMPrivateVarGEPs())) {
// To be handled inside the task.
if (!privDecl.readsFromMold())
continue;
assert(llvmPrivateVarAlloc &&
"reads from mold so shouldn't have been skipped");
llvm::Expected<llvm::Value *> privateVarOrErr =
initPrivateVar(builder, moduleTranslation, privDecl, mlirPrivVar,
blockArg, llvmPrivateVarAlloc, initBlock);
if (!privateVarOrErr)
return handleError(privateVarOrErr, *taskOp.getOperation());
llvm::IRBuilderBase::InsertPointGuard guard(builder);
builder.SetInsertPoint(builder.GetInsertBlock()->getTerminator());
// TODO: this is a bit of a hack for Fortran character boxes.
// Character boxes are passed by value into the init region and then the
// initialized character box is yielded by value. Here we need to store the
// yielded value into the private allocation, and load the private
// allocation to match the type expected by region block arguments.
if ((privateVarOrErr.get() != llvmPrivateVarAlloc) &&
!mlir::isa<LLVM::LLVMPointerType>(blockArg.getType())) {
builder.CreateStore(privateVarOrErr.get(), llvmPrivateVarAlloc);
// Load it so we have the value pointed to by the GEP
llvmPrivateVarAlloc = builder.CreateLoad(privateVarOrErr.get()->getType(),
llvmPrivateVarAlloc);
}
assert(llvmPrivateVarAlloc->getType() ==
moduleTranslation.convertType(blockArg.getType()));
// Mapping blockArg -> llvmPrivateVarAlloc is done inside the body callback
// so that OpenMPIRBuilder doesn't try to pass each GEP address through a
// stack allocated structure.
}
// firstprivate copy region
setInsertPointForPossiblyEmptyBlock(builder, copyBlock);
if (failed(copyFirstPrivateVars(
builder, moduleTranslation, privateVarsInfo.mlirVars,
taskStructMgr.getLLVMPrivateVarGEPs(), privateVarsInfo.privatizers)))
return llvm::failure();
// Set up for call to createTask()
builder.SetInsertPoint(taskStartBlock);
auto bodyCB = [&](InsertPointTy allocaIP,
InsertPointTy codegenIP) -> llvm::Error {
// Save the alloca insertion point on ModuleTranslation stack for use in
// nested regions.
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
// translate the body of the task:
builder.restoreIP(codegenIP);
llvm::BasicBlock *privInitBlock = nullptr;
privateVarsInfo.llvmVars.resize(privateVarsInfo.blockArgs.size());
for (auto [i, zip] : llvm::enumerate(llvm::zip_equal(
privateVarsInfo.blockArgs, privateVarsInfo.privatizers,
privateVarsInfo.mlirVars))) {
auto [blockArg, privDecl, mlirPrivVar] = zip;
// This is handled before the task executes
if (privDecl.readsFromMold())
continue;
llvm::IRBuilderBase::InsertPointGuard guard(builder);
llvm::Type *llvmAllocType =
moduleTranslation.convertType(privDecl.getType());
builder.SetInsertPoint(allocaIP.getBlock()->getTerminator());
llvm::Value *llvmPrivateVar = builder.CreateAlloca(
llvmAllocType, /*ArraySize=*/nullptr, "omp.private.alloc");
llvm::Expected<llvm::Value *> privateVarOrError =
initPrivateVar(builder, moduleTranslation, privDecl, mlirPrivVar,
blockArg, llvmPrivateVar, privInitBlock);
if (!privateVarOrError)
return privateVarOrError.takeError();
moduleTranslation.mapValue(blockArg, privateVarOrError.get());
privateVarsInfo.llvmVars[i] = privateVarOrError.get();
}
taskStructMgr.createGEPsToPrivateVars();
for (auto [i, llvmPrivVar] :
llvm::enumerate(taskStructMgr.getLLVMPrivateVarGEPs())) {
if (!llvmPrivVar) {
assert(privateVarsInfo.llvmVars[i] &&
"This is added in the loop above");
continue;
}
privateVarsInfo.llvmVars[i] = llvmPrivVar;
}
// Find and map the addresses of each variable within the task context
// structure
for (auto [blockArg, llvmPrivateVar, privateDecl] :
llvm::zip_equal(privateVarsInfo.blockArgs, privateVarsInfo.llvmVars,
privateVarsInfo.privatizers)) {
// This was handled above.
if (!privateDecl.readsFromMold())
continue;
// Fix broken pass-by-value case for Fortran character boxes
if (!mlir::isa<LLVM::LLVMPointerType>(blockArg.getType())) {
llvmPrivateVar = builder.CreateLoad(
moduleTranslation.convertType(blockArg.getType()), llvmPrivateVar);
}
assert(llvmPrivateVar->getType() ==
moduleTranslation.convertType(blockArg.getType()));
moduleTranslation.mapValue(blockArg, llvmPrivateVar);
}
auto continuationBlockOrError = convertOmpOpRegions(
taskOp.getRegion(), "omp.task.region", builder, moduleTranslation);
if (failed(handleError(continuationBlockOrError, *taskOp)))
return llvm::make_error<PreviouslyReportedError>();
builder.SetInsertPoint(continuationBlockOrError.get()->getTerminator());
if (failed(cleanupPrivateVars(builder, moduleTranslation, taskOp.getLoc(),
privateVarsInfo.llvmVars,
privateVarsInfo.privatizers)))
return llvm::make_error<PreviouslyReportedError>();
// Free heap allocated task context structure at the end of the task.
taskStructMgr.freeStructPtr();
return llvm::Error::success();
};
SmallVector<llvm::OpenMPIRBuilder::DependData> dds;
buildDependData(taskOp.getDependKinds(), taskOp.getDependVars(),
moduleTranslation, dds);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createTask(
ompLoc, allocaIP, bodyCB, !taskOp.getUntied(),
moduleTranslation.lookupValue(taskOp.getFinal()),
moduleTranslation.lookupValue(taskOp.getIfExpr()), dds,
taskOp.getMergeable(),
moduleTranslation.lookupValue(taskOp.getEventHandle()),
moduleTranslation.lookupValue(taskOp.getPriority()));
if (failed(handleError(afterIP, *taskOp)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
/// Converts an OpenMP taskgroup construct into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpTaskgroupOp(omp::TaskgroupOp tgOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
if (failed(checkImplementationStatus(*tgOp)))
return failure();
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codegenIP) {
builder.restoreIP(codegenIP);
return convertOmpOpRegions(tgOp.getRegion(), "omp.taskgroup.region",
builder, moduleTranslation)
.takeError();
};
InsertPointTy allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createTaskgroup(ompLoc, allocaIP,
bodyCB);
if (failed(handleError(afterIP, *tgOp)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
static LogicalResult
convertOmpTaskwaitOp(omp::TaskwaitOp twOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (failed(checkImplementationStatus(*twOp)))
return failure();
moduleTranslation.getOpenMPBuilder()->createTaskwait(builder.saveIP());
return success();
}
/// Converts an OpenMP workshare loop into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpWsloop(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
auto wsloopOp = cast<omp::WsloopOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
auto loopOp = cast<omp::LoopNestOp>(wsloopOp.getWrappedLoop());
llvm::ArrayRef<bool> isByRef = getIsByRef(wsloopOp.getReductionByref());
assert(isByRef.size() == wsloopOp.getNumReductionVars());
// Static is the default.
auto schedule =
wsloopOp.getScheduleKind().value_or(omp::ClauseScheduleKind::Static);
// Find the loop configuration.
llvm::Value *step = moduleTranslation.lookupValue(loopOp.getLoopSteps()[0]);
llvm::Type *ivType = step->getType();
llvm::Value *chunk = nullptr;
if (wsloopOp.getScheduleChunk()) {
llvm::Value *chunkVar =
moduleTranslation.lookupValue(wsloopOp.getScheduleChunk());
chunk = builder.CreateSExtOrTrunc(chunkVar, ivType);
}
PrivateVarsInfo privateVarsInfo(wsloopOp);
SmallVector<omp::DeclareReductionOp> reductionDecls;
collectReductionDecls(wsloopOp, reductionDecls);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
SmallVector<llvm::Value *> privateReductionVariables(
wsloopOp.getNumReductionVars());
llvm::Expected<llvm::BasicBlock *> afterAllocas = allocatePrivateVars(
builder, moduleTranslation, privateVarsInfo, allocaIP);
if (handleError(afterAllocas, opInst).failed())
return failure();
DenseMap<Value, llvm::Value *> reductionVariableMap;
MutableArrayRef<BlockArgument> reductionArgs =
cast<omp::BlockArgOpenMPOpInterface>(opInst).getReductionBlockArgs();
SmallVector<DeferredStore> deferredStores;
if (failed(allocReductionVars(wsloopOp, reductionArgs, builder,
moduleTranslation, allocaIP, reductionDecls,
privateReductionVariables, reductionVariableMap,
deferredStores, isByRef)))
return failure();
if (handleError(initPrivateVars(builder, moduleTranslation, privateVarsInfo),
opInst)
.failed())
return failure();
if (failed(copyFirstPrivateVars(
builder, moduleTranslation, privateVarsInfo.mlirVars,
privateVarsInfo.llvmVars, privateVarsInfo.privatizers)))
return failure();
assert(afterAllocas.get()->getSinglePredecessor());
if (failed(initReductionVars(wsloopOp, reductionArgs, builder,
moduleTranslation,
afterAllocas.get()->getSinglePredecessor(),
reductionDecls, privateReductionVariables,
reductionVariableMap, isByRef, deferredStores)))
return failure();
// TODO: Handle doacross loops when the ordered clause has a parameter.
bool isOrdered = wsloopOp.getOrdered().has_value();
std::optional<omp::ScheduleModifier> scheduleMod = wsloopOp.getScheduleMod();
bool isSimd = wsloopOp.getScheduleSimd();
bool loopNeedsBarrier = !wsloopOp.getNowait();
// The only legal way for the direct parent to be omp.distribute is that this
// represents 'distribute parallel do'. Otherwise, this is a regular
// worksharing loop.
llvm::omp::WorksharingLoopType workshareLoopType =
llvm::isa_and_present<omp::DistributeOp>(opInst.getParentOp())
? llvm::omp::WorksharingLoopType::DistributeForStaticLoop
: llvm::omp::WorksharingLoopType::ForStaticLoop;
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::Expected<llvm::BasicBlock *> regionBlock = convertOmpOpRegions(
wsloopOp.getRegion(), "omp.wsloop.region", builder, moduleTranslation);
if (failed(handleError(regionBlock, opInst)))
return failure();
builder.SetInsertPoint(*regionBlock, (*regionBlock)->begin());
llvm::CanonicalLoopInfo *loopInfo = findCurrentLoopInfo(moduleTranslation);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy wsloopIP =
ompBuilder->applyWorkshareLoop(
ompLoc.DL, loopInfo, allocaIP, loopNeedsBarrier,
convertToScheduleKind(schedule), chunk, isSimd,
scheduleMod == omp::ScheduleModifier::monotonic,
scheduleMod == omp::ScheduleModifier::nonmonotonic, isOrdered,
workshareLoopType);
if (failed(handleError(wsloopIP, opInst)))
return failure();
// Process the reductions if required.
if (failed(createReductionsAndCleanup(
wsloopOp, builder, moduleTranslation, allocaIP, reductionDecls,
privateReductionVariables, isByRef, wsloopOp.getNowait(),
/*isTeamsReduction=*/false)))
return failure();
return cleanupPrivateVars(builder, moduleTranslation, wsloopOp.getLoc(),
privateVarsInfo.llvmVars,
privateVarsInfo.privatizers);
}
/// Converts the OpenMP parallel operation to LLVM IR.
static LogicalResult
convertOmpParallel(omp::ParallelOp opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
ArrayRef<bool> isByRef = getIsByRef(opInst.getReductionByref());
assert(isByRef.size() == opInst.getNumReductionVars());
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
if (failed(checkImplementationStatus(*opInst)))
return failure();
PrivateVarsInfo privateVarsInfo(opInst);
// Collect reduction declarations
SmallVector<omp::DeclareReductionOp> reductionDecls;
collectReductionDecls(opInst, reductionDecls);
SmallVector<llvm::Value *> privateReductionVariables(
opInst.getNumReductionVars());
SmallVector<DeferredStore> deferredStores;
auto bodyGenCB = [&](InsertPointTy allocaIP,
InsertPointTy codeGenIP) -> llvm::Error {
llvm::Expected<llvm::BasicBlock *> afterAllocas = allocatePrivateVars(
builder, moduleTranslation, privateVarsInfo, allocaIP);
if (handleError(afterAllocas, *opInst).failed())
return llvm::make_error<PreviouslyReportedError>();
// Allocate reduction vars
DenseMap<Value, llvm::Value *> reductionVariableMap;
MutableArrayRef<BlockArgument> reductionArgs =
cast<omp::BlockArgOpenMPOpInterface>(*opInst).getReductionBlockArgs();
allocaIP =
InsertPointTy(allocaIP.getBlock(),
allocaIP.getBlock()->getTerminator()->getIterator());
if (failed(allocReductionVars(
opInst, reductionArgs, builder, moduleTranslation, allocaIP,
reductionDecls, privateReductionVariables, reductionVariableMap,
deferredStores, isByRef)))
return llvm::make_error<PreviouslyReportedError>();
assert(afterAllocas.get()->getSinglePredecessor());
builder.restoreIP(codeGenIP);
if (handleError(
initPrivateVars(builder, moduleTranslation, privateVarsInfo),
*opInst)
.failed())
return llvm::make_error<PreviouslyReportedError>();
if (failed(copyFirstPrivateVars(
builder, moduleTranslation, privateVarsInfo.mlirVars,
privateVarsInfo.llvmVars, privateVarsInfo.privatizers)))
return llvm::make_error<PreviouslyReportedError>();
if (failed(
initReductionVars(opInst, reductionArgs, builder, moduleTranslation,
afterAllocas.get()->getSinglePredecessor(),
reductionDecls, privateReductionVariables,
reductionVariableMap, isByRef, deferredStores)))
return llvm::make_error<PreviouslyReportedError>();
// Save the alloca insertion point on ModuleTranslation stack for use in
// nested regions.
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
// ParallelOp has only one region associated with it.
llvm::Expected<llvm::BasicBlock *> regionBlock = convertOmpOpRegions(
opInst.getRegion(), "omp.par.region", builder, moduleTranslation);
if (!regionBlock)
return regionBlock.takeError();
// Process the reductions if required.
if (opInst.getNumReductionVars() > 0) {
// Collect reduction info
SmallVector<OwningReductionGen> owningReductionGens;
SmallVector<OwningAtomicReductionGen> owningAtomicReductionGens;
SmallVector<llvm::OpenMPIRBuilder::ReductionInfo> reductionInfos;
collectReductionInfo(opInst, builder, moduleTranslation, reductionDecls,
owningReductionGens, owningAtomicReductionGens,
privateReductionVariables, reductionInfos);
// Move to region cont block
builder.SetInsertPoint((*regionBlock)->getTerminator());
// Generate reductions from info
llvm::UnreachableInst *tempTerminator = builder.CreateUnreachable();
builder.SetInsertPoint(tempTerminator);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy contInsertPoint =
ompBuilder->createReductions(
builder.saveIP(), allocaIP, reductionInfos, isByRef,
/*IsNoWait=*/false, /*IsTeamsReduction=*/false);
if (!contInsertPoint)
return contInsertPoint.takeError();
if (!contInsertPoint->getBlock())
return llvm::make_error<PreviouslyReportedError>();
tempTerminator->eraseFromParent();
builder.restoreIP(*contInsertPoint);
}
return llvm::Error::success();
};
auto privCB = [](InsertPointTy allocaIP, InsertPointTy codeGenIP,
llvm::Value &, llvm::Value &val, llvm::Value *&replVal) {
// tell OpenMPIRBuilder not to do anything. We handled Privatisation in
// bodyGenCB.
replVal = &val;
return codeGenIP;
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) -> llvm::Error {
InsertPointTy oldIP = builder.saveIP();
builder.restoreIP(codeGenIP);
// if the reduction has a cleanup region, inline it here to finalize the
// reduction variables
SmallVector<Region *> reductionCleanupRegions;
llvm::transform(reductionDecls, std::back_inserter(reductionCleanupRegions),
[](omp::DeclareReductionOp reductionDecl) {
return &reductionDecl.getCleanupRegion();
});
if (failed(inlineOmpRegionCleanup(
reductionCleanupRegions, privateReductionVariables,
moduleTranslation, builder, "omp.reduction.cleanup")))
return llvm::createStringError(
"failed to inline `cleanup` region of `omp.declare_reduction`");
if (failed(cleanupPrivateVars(builder, moduleTranslation, opInst.getLoc(),
privateVarsInfo.llvmVars,
privateVarsInfo.privatizers)))
return llvm::make_error<PreviouslyReportedError>();
builder.restoreIP(oldIP);
return llvm::Error::success();
};
llvm::Value *ifCond = nullptr;
if (auto ifVar = opInst.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifVar);
llvm::Value *numThreads = nullptr;
if (auto numThreadsVar = opInst.getNumThreads())
numThreads = moduleTranslation.lookupValue(numThreadsVar);
auto pbKind = llvm::omp::OMP_PROC_BIND_default;
if (auto bind = opInst.getProcBindKind())
pbKind = getProcBindKind(*bind);
bool isCancellable = constructIsCancellable(opInst);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
ompBuilder->createParallel(ompLoc, allocaIP, bodyGenCB, privCB, finiCB,
ifCond, numThreads, pbKind, isCancellable);
if (failed(handleError(afterIP, *opInst)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
/// Convert Order attribute to llvm::omp::OrderKind.
static llvm::omp::OrderKind
convertOrderKind(std::optional<omp::ClauseOrderKind> o) {
if (!o)
return llvm::omp::OrderKind::OMP_ORDER_unknown;
switch (*o) {
case omp::ClauseOrderKind::Concurrent:
return llvm::omp::OrderKind::OMP_ORDER_concurrent;
}
llvm_unreachable("Unknown ClauseOrderKind kind");
}
/// Converts an OpenMP simd loop into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpSimd(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
auto simdOp = cast<omp::SimdOp>(opInst);
// TODO: Replace this with proper composite translation support.
// Currently, simd information on composite constructs is ignored, so e.g.
// 'do/for simd' will be treated the same as a standalone 'do/for'. This is
// allowed by the spec, since it's equivalent to using a SIMD length of 1.
if (simdOp.isComposite()) {
if (failed(convertIgnoredWrapper(simdOp, moduleTranslation)))
return failure();
return inlineConvertOmpRegions(simdOp.getRegion(), "omp.simd.region",
builder, moduleTranslation);
}
if (failed(checkImplementationStatus(opInst)))
return failure();
PrivateVarsInfo privateVarsInfo(simdOp);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::Expected<llvm::BasicBlock *> afterAllocas = allocatePrivateVars(
builder, moduleTranslation, privateVarsInfo, allocaIP);
if (handleError(afterAllocas, opInst).failed())
return failure();
if (handleError(initPrivateVars(builder, moduleTranslation, privateVarsInfo),
opInst)
.failed())
return failure();
llvm::ConstantInt *simdlen = nullptr;
if (std::optional<uint64_t> simdlenVar = simdOp.getSimdlen())
simdlen = builder.getInt64(simdlenVar.value());
llvm::ConstantInt *safelen = nullptr;
if (std::optional<uint64_t> safelenVar = simdOp.getSafelen())
safelen = builder.getInt64(safelenVar.value());
llvm::MapVector<llvm::Value *, llvm::Value *> alignedVars;
llvm::omp::OrderKind order = convertOrderKind(simdOp.getOrder());
llvm::BasicBlock *sourceBlock = builder.GetInsertBlock();
std::optional<ArrayAttr> alignmentValues = simdOp.getAlignments();
mlir::OperandRange operands = simdOp.getAlignedVars();
for (size_t i = 0; i < operands.size(); ++i) {
llvm::Value *alignment = nullptr;
llvm::Value *llvmVal = moduleTranslation.lookupValue(operands[i]);
llvm::Type *ty = llvmVal->getType();
auto intAttr = cast<IntegerAttr>((*alignmentValues)[i]);
alignment = builder.getInt64(intAttr.getInt());
assert(ty->isPointerTy() && "Invalid type for aligned variable");
assert(alignment && "Invalid alignment value");
auto curInsert = builder.saveIP();
builder.SetInsertPoint(sourceBlock);
llvmVal = builder.CreateLoad(ty, llvmVal);
builder.restoreIP(curInsert);
alignedVars[llvmVal] = alignment;
}
llvm::Expected<llvm::BasicBlock *> regionBlock = convertOmpOpRegions(
simdOp.getRegion(), "omp.simd.region", builder, moduleTranslation);
if (failed(handleError(regionBlock, opInst)))
return failure();
builder.SetInsertPoint(*regionBlock, (*regionBlock)->begin());
llvm::CanonicalLoopInfo *loopInfo = findCurrentLoopInfo(moduleTranslation);
ompBuilder->applySimd(loopInfo, alignedVars,
simdOp.getIfExpr()
? moduleTranslation.lookupValue(simdOp.getIfExpr())
: nullptr,
order, simdlen, safelen);
return cleanupPrivateVars(builder, moduleTranslation, simdOp.getLoc(),
privateVarsInfo.llvmVars,
privateVarsInfo.privatizers);
}
/// Converts an OpenMP loop nest into LLVM IR using OpenMPIRBuilder.
static LogicalResult
convertOmpLoopNest(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
auto loopOp = cast<omp::LoopNestOp>(opInst);
// Set up the source location value for OpenMP runtime.
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
// Generator of the canonical loop body.
SmallVector<llvm::CanonicalLoopInfo *> loopInfos;
SmallVector<llvm::OpenMPIRBuilder::InsertPointTy> bodyInsertPoints;
auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip,
llvm::Value *iv) -> llvm::Error {
// Make sure further conversions know about the induction variable.
moduleTranslation.mapValue(
loopOp.getRegion().front().getArgument(loopInfos.size()), iv);
// Capture the body insertion point for use in nested loops. BodyIP of the
// CanonicalLoopInfo always points to the beginning of the entry block of
// the body.
bodyInsertPoints.push_back(ip);
if (loopInfos.size() != loopOp.getNumLoops() - 1)
return llvm::Error::success();
// Convert the body of the loop.
builder.restoreIP(ip);
llvm::Expected<llvm::BasicBlock *> regionBlock = convertOmpOpRegions(
loopOp.getRegion(), "omp.loop_nest.region", builder, moduleTranslation);
if (!regionBlock)
return regionBlock.takeError();
builder.SetInsertPoint(*regionBlock, (*regionBlock)->begin());
return llvm::Error::success();
};
// Delegate actual loop construction to the OpenMP IRBuilder.
// TODO: this currently assumes omp.loop_nest is semantically similar to SCF
// loop, i.e. it has a positive step, uses signed integer semantics.
// Reconsider this code when the nested loop operation clearly supports more
// cases.
for (unsigned i = 0, e = loopOp.getNumLoops(); i < e; ++i) {
llvm::Value *lowerBound =
moduleTranslation.lookupValue(loopOp.getLoopLowerBounds()[i]);
llvm::Value *upperBound =
moduleTranslation.lookupValue(loopOp.getLoopUpperBounds()[i]);
llvm::Value *step = moduleTranslation.lookupValue(loopOp.getLoopSteps()[i]);
// Make sure loop trip count are emitted in the preheader of the outermost
// loop at the latest so that they are all available for the new collapsed
// loop will be created below.
llvm::OpenMPIRBuilder::LocationDescription loc = ompLoc;
llvm::OpenMPIRBuilder::InsertPointTy computeIP = ompLoc.IP;
if (i != 0) {
loc = llvm::OpenMPIRBuilder::LocationDescription(bodyInsertPoints.back(),
ompLoc.DL);
computeIP = loopInfos.front()->getPreheaderIP();
}
llvm::Expected<llvm::CanonicalLoopInfo *> loopResult =
ompBuilder->createCanonicalLoop(
loc, bodyGen, lowerBound, upperBound, step,
/*IsSigned=*/true, loopOp.getLoopInclusive(), computeIP);
if (failed(handleError(loopResult, *loopOp)))
return failure();
loopInfos.push_back(*loopResult);
}
// Collapse loops. Store the insertion point because LoopInfos may get
// invalidated.
llvm::OpenMPIRBuilder::InsertPointTy afterIP =
loopInfos.front()->getAfterIP();
// Update the stack frame created for this loop to point to the resulting loop
// after applying transformations.
moduleTranslation.stackWalk<OpenMPLoopInfoStackFrame>(
[&](OpenMPLoopInfoStackFrame &frame) {
frame.loopInfo = ompBuilder->collapseLoops(ompLoc.DL, loopInfos, {});
return WalkResult::interrupt();
});
// Continue building IR after the loop. Note that the LoopInfo returned by
// `collapseLoops` points inside the outermost loop and is intended for
// potential further loop transformations. Use the insertion point stored
// before collapsing loops instead.
builder.restoreIP(afterIP);
return success();
}
/// Convert an Atomic Ordering attribute to llvm::AtomicOrdering.
static llvm::AtomicOrdering
convertAtomicOrdering(std::optional<omp::ClauseMemoryOrderKind> ao) {
if (!ao)
return llvm::AtomicOrdering::Monotonic; // Default Memory Ordering
switch (*ao) {
case omp::ClauseMemoryOrderKind::Seq_cst:
return llvm::AtomicOrdering::SequentiallyConsistent;
case omp::ClauseMemoryOrderKind::Acq_rel:
return llvm::AtomicOrdering::AcquireRelease;
case omp::ClauseMemoryOrderKind::Acquire:
return llvm::AtomicOrdering::Acquire;
case omp::ClauseMemoryOrderKind::Release:
return llvm::AtomicOrdering::Release;
case omp::ClauseMemoryOrderKind::Relaxed:
return llvm::AtomicOrdering::Monotonic;
}
llvm_unreachable("Unknown ClauseMemoryOrderKind kind");
}
/// Convert omp.atomic.read operation to LLVM IR.
static LogicalResult
convertOmpAtomicRead(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto readOp = cast<omp::AtomicReadOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::AtomicOrdering AO = convertAtomicOrdering(readOp.getMemoryOrder());
llvm::Value *x = moduleTranslation.lookupValue(readOp.getX());
llvm::Value *v = moduleTranslation.lookupValue(readOp.getV());
llvm::Type *elementType =
moduleTranslation.convertType(readOp.getElementType());
llvm::OpenMPIRBuilder::AtomicOpValue V = {v, elementType, false, false};
llvm::OpenMPIRBuilder::AtomicOpValue X = {x, elementType, false, false};
builder.restoreIP(ompBuilder->createAtomicRead(ompLoc, X, V, AO, allocaIP));
return success();
}
/// Converts an omp.atomic.write operation to LLVM IR.
static LogicalResult
convertOmpAtomicWrite(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto writeOp = cast<omp::AtomicWriteOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::AtomicOrdering ao = convertAtomicOrdering(writeOp.getMemoryOrder());
llvm::Value *expr = moduleTranslation.lookupValue(writeOp.getExpr());
llvm::Value *dest = moduleTranslation.lookupValue(writeOp.getX());
llvm::Type *ty = moduleTranslation.convertType(writeOp.getExpr().getType());
llvm::OpenMPIRBuilder::AtomicOpValue x = {dest, ty, /*isSigned=*/false,
/*isVolatile=*/false};
builder.restoreIP(
ompBuilder->createAtomicWrite(ompLoc, x, expr, ao, allocaIP));
return success();
}
/// Converts an LLVM dialect binary operation to the corresponding enum value
/// for `atomicrmw` supported binary operation.
llvm::AtomicRMWInst::BinOp convertBinOpToAtomic(Operation &op) {
return llvm::TypeSwitch<Operation *, llvm::AtomicRMWInst::BinOp>(&op)
.Case([&](LLVM::AddOp) { return llvm::AtomicRMWInst::BinOp::Add; })
.Case([&](LLVM::SubOp) { return llvm::AtomicRMWInst::BinOp::Sub; })
.Case([&](LLVM::AndOp) { return llvm::AtomicRMWInst::BinOp::And; })
.Case([&](LLVM::OrOp) { return llvm::AtomicRMWInst::BinOp::Or; })
.Case([&](LLVM::XOrOp) { return llvm::AtomicRMWInst::BinOp::Xor; })
.Case([&](LLVM::UMaxOp) { return llvm::AtomicRMWInst::BinOp::UMax; })
.Case([&](LLVM::UMinOp) { return llvm::AtomicRMWInst::BinOp::UMin; })
.Case([&](LLVM::FAddOp) { return llvm::AtomicRMWInst::BinOp::FAdd; })
.Case([&](LLVM::FSubOp) { return llvm::AtomicRMWInst::BinOp::FSub; })
.Default(llvm::AtomicRMWInst::BinOp::BAD_BINOP);
}
/// Converts an OpenMP atomic update operation using OpenMPIRBuilder.
static LogicalResult
convertOmpAtomicUpdate(omp::AtomicUpdateOp &opInst,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
if (failed(checkImplementationStatus(*opInst)))
return failure();
// Convert values and types.
auto &innerOpList = opInst.getRegion().front().getOperations();
bool isXBinopExpr{false};
llvm::AtomicRMWInst::BinOp binop;
mlir::Value mlirExpr;
llvm::Value *llvmExpr = nullptr;
llvm::Value *llvmX = nullptr;
llvm::Type *llvmXElementType = nullptr;
if (innerOpList.size() == 2) {
// The two operations here are the update and the terminator.
// Since we can identify the update operation, there is a possibility
// that we can generate the atomicrmw instruction.
mlir::Operation &innerOp = *opInst.getRegion().front().begin();
if (!llvm::is_contained(innerOp.getOperands(),
opInst.getRegion().getArgument(0))) {
return opInst.emitError("no atomic update operation with region argument"
" as operand found inside atomic.update region");
}
binop = convertBinOpToAtomic(innerOp);
isXBinopExpr = innerOp.getOperand(0) == opInst.getRegion().getArgument(0);
mlirExpr = (isXBinopExpr ? innerOp.getOperand(1) : innerOp.getOperand(0));
llvmExpr = moduleTranslation.lookupValue(mlirExpr);
} else {
// Since the update region includes more than one operation
// we will resort to generating a cmpxchg loop.
binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
}
llvmX = moduleTranslation.lookupValue(opInst.getX());
llvmXElementType = moduleTranslation.convertType(
opInst.getRegion().getArgument(0).getType());
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::AtomicOrdering atomicOrdering =
convertAtomicOrdering(opInst.getMemoryOrder());
// Generate update code.
auto updateFn =
[&opInst, &moduleTranslation](
llvm::Value *atomicx,
llvm::IRBuilder<> &builder) -> llvm::Expected<llvm::Value *> {
Block &bb = *opInst.getRegion().begin();
moduleTranslation.mapValue(*opInst.getRegion().args_begin(), atomicx);
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(bb, true, builder)))
return llvm::make_error<PreviouslyReportedError>();
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
assert(yieldop && yieldop.getResults().size() == 1 &&
"terminator must be omp.yield op and it must have exactly one "
"argument");
return moduleTranslation.lookupValue(yieldop.getResults()[0]);
};
// Handle ambiguous alloca, if any.
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
ompBuilder->createAtomicUpdate(ompLoc, allocaIP, llvmAtomicX, llvmExpr,
atomicOrdering, binop, updateFn,
isXBinopExpr);
if (failed(handleError(afterIP, *opInst)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
static LogicalResult
convertOmpAtomicCapture(omp::AtomicCaptureOp atomicCaptureOp,
llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
if (failed(checkImplementationStatus(*atomicCaptureOp)))
return failure();
mlir::Value mlirExpr;
bool isXBinopExpr = false, isPostfixUpdate = false;
llvm::AtomicRMWInst::BinOp binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
omp::AtomicUpdateOp atomicUpdateOp = atomicCaptureOp.getAtomicUpdateOp();
omp::AtomicWriteOp atomicWriteOp = atomicCaptureOp.getAtomicWriteOp();
assert((atomicUpdateOp || atomicWriteOp) &&
"internal op must be an atomic.update or atomic.write op");
if (atomicWriteOp) {
isPostfixUpdate = true;
mlirExpr = atomicWriteOp.getExpr();
} else {
isPostfixUpdate = atomicCaptureOp.getSecondOp() ==
atomicCaptureOp.getAtomicUpdateOp().getOperation();
auto &innerOpList = atomicUpdateOp.getRegion().front().getOperations();
// Find the binary update operation that uses the region argument
// and get the expression to update
if (innerOpList.size() == 2) {
mlir::Operation &innerOp = *atomicUpdateOp.getRegion().front().begin();
if (!llvm::is_contained(innerOp.getOperands(),
atomicUpdateOp.getRegion().getArgument(0))) {
return atomicUpdateOp.emitError(
"no atomic update operation with region argument"
" as operand found inside atomic.update region");
}
binop = convertBinOpToAtomic(innerOp);
isXBinopExpr =
innerOp.getOperand(0) == atomicUpdateOp.getRegion().getArgument(0);
mlirExpr = (isXBinopExpr ? innerOp.getOperand(1) : innerOp.getOperand(0));
} else {
binop = llvm::AtomicRMWInst::BinOp::BAD_BINOP;
}
}
llvm::Value *llvmExpr = moduleTranslation.lookupValue(mlirExpr);
llvm::Value *llvmX =
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().getX());
llvm::Value *llvmV =
moduleTranslation.lookupValue(atomicCaptureOp.getAtomicReadOp().getV());
llvm::Type *llvmXElementType = moduleTranslation.convertType(
atomicCaptureOp.getAtomicReadOp().getElementType());
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicX = {llvmX, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::OpenMPIRBuilder::AtomicOpValue llvmAtomicV = {llvmV, llvmXElementType,
/*isSigned=*/false,
/*isVolatile=*/false};
llvm::AtomicOrdering atomicOrdering =
convertAtomicOrdering(atomicCaptureOp.getMemoryOrder());
auto updateFn =
[&](llvm::Value *atomicx,
llvm::IRBuilder<> &builder) -> llvm::Expected<llvm::Value *> {
if (atomicWriteOp)
return moduleTranslation.lookupValue(atomicWriteOp.getExpr());
Block &bb = *atomicUpdateOp.getRegion().begin();
moduleTranslation.mapValue(*atomicUpdateOp.getRegion().args_begin(),
atomicx);
moduleTranslation.mapBlock(&bb, builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(bb, true, builder)))
return llvm::make_error<PreviouslyReportedError>();
omp::YieldOp yieldop = dyn_cast<omp::YieldOp>(bb.getTerminator());
assert(yieldop && yieldop.getResults().size() == 1 &&
"terminator must be omp.yield op and it must have exactly one "
"argument");
return moduleTranslation.lookupValue(yieldop.getResults()[0]);
};
// Handle ambiguous alloca, if any.
auto allocaIP = findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
ompBuilder->createAtomicCapture(
ompLoc, allocaIP, llvmAtomicX, llvmAtomicV, llvmExpr, atomicOrdering,
binop, updateFn, atomicUpdateOp, isPostfixUpdate, isXBinopExpr);
if (failed(handleError(afterIP, *atomicCaptureOp)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
static llvm::omp::Directive convertCancellationConstructType(
omp::ClauseCancellationConstructType directive) {
switch (directive) {
case omp::ClauseCancellationConstructType::Loop:
return llvm::omp::Directive::OMPD_for;
case omp::ClauseCancellationConstructType::Parallel:
return llvm::omp::Directive::OMPD_parallel;
case omp::ClauseCancellationConstructType::Sections:
return llvm::omp::Directive::OMPD_sections;
case omp::ClauseCancellationConstructType::Taskgroup:
return llvm::omp::Directive::OMPD_taskgroup;
}
}
static LogicalResult
convertOmpCancel(omp::CancelOp op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
if (failed(checkImplementationStatus(*op.getOperation())))
return failure();
llvm::Value *ifCond = nullptr;
if (Value ifVar = op.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifVar);
llvm::omp::Directive cancelledDirective =
convertCancellationConstructType(op.getCancelDirective());
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
ompBuilder->createCancel(ompLoc, ifCond, cancelledDirective);
if (failed(handleError(afterIP, *op.getOperation())))
return failure();
builder.restoreIP(afterIP.get());
return success();
}
/// Converts an OpenMP Threadprivate operation into LLVM IR using
/// OpenMPIRBuilder.
static LogicalResult
convertOmpThreadprivate(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
auto threadprivateOp = cast<omp::ThreadprivateOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
Value symAddr = threadprivateOp.getSymAddr();
auto *symOp = symAddr.getDefiningOp();
if (auto asCast = dyn_cast<LLVM::AddrSpaceCastOp>(symOp))
symOp = asCast.getOperand().getDefiningOp();
if (!isa<LLVM::AddressOfOp>(symOp))
return opInst.emitError("Addressing symbol not found");
LLVM::AddressOfOp addressOfOp = dyn_cast<LLVM::AddressOfOp>(symOp);
LLVM::GlobalOp global =
addressOfOp.getGlobal(moduleTranslation.symbolTable());
llvm::GlobalValue *globalValue = moduleTranslation.lookupGlobal(global);
if (!ompBuilder->Config.isTargetDevice()) {
llvm::Type *type = globalValue->getValueType();
llvm::TypeSize typeSize =
builder.GetInsertBlock()->getModule()->getDataLayout().getTypeStoreSize(
type);
llvm::ConstantInt *size = builder.getInt64(typeSize.getFixedValue());
llvm::Value *callInst = ompBuilder->createCachedThreadPrivate(
ompLoc, globalValue, size, global.getSymName() + ".cache");
moduleTranslation.mapValue(opInst.getResult(0), callInst);
} else {
moduleTranslation.mapValue(opInst.getResult(0), globalValue);
}
return success();
}
static llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseKind
convertToDeviceClauseKind(mlir::omp::DeclareTargetDeviceType deviceClause) {
switch (deviceClause) {
case mlir::omp::DeclareTargetDeviceType::host:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseHost;
break;
case mlir::omp::DeclareTargetDeviceType::nohost:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseNoHost;
break;
case mlir::omp::DeclareTargetDeviceType::any:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseAny;
break;
}
llvm_unreachable("unhandled device clause");
}
static llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind
convertToCaptureClauseKind(
mlir::omp::DeclareTargetCaptureClause captureClause) {
switch (captureClause) {
case mlir::omp::DeclareTargetCaptureClause::to:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
case mlir::omp::DeclareTargetCaptureClause::link:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink;
case mlir::omp::DeclareTargetCaptureClause::enter:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter;
}
llvm_unreachable("unhandled capture clause");
}
static llvm::SmallString<64>
getDeclareTargetRefPtrSuffix(LLVM::GlobalOp globalOp,
llvm::OpenMPIRBuilder &ompBuilder) {
llvm::SmallString<64> suffix;
llvm::raw_svector_ostream os(suffix);
if (globalOp.getVisibility() == mlir::SymbolTable::Visibility::Private) {
auto loc = globalOp->getLoc()->findInstanceOf<FileLineColLoc>();
auto fileInfoCallBack = [&loc]() {
return std::pair<std::string, uint64_t>(
llvm::StringRef(loc.getFilename()), loc.getLine());
};
os << llvm::format(
"_%x", ompBuilder.getTargetEntryUniqueInfo(fileInfoCallBack).FileID);
}
os << "_decl_tgt_ref_ptr";
return suffix;
}
static bool isDeclareTargetLink(mlir::Value value) {
if (auto addressOfOp =
llvm::dyn_cast_if_present<LLVM::AddressOfOp>(value.getDefiningOp())) {
auto modOp = addressOfOp->getParentOfType<mlir::ModuleOp>();
Operation *gOp = modOp.lookupSymbol(addressOfOp.getGlobalName());
if (auto declareTargetGlobal =
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(gOp))
if (declareTargetGlobal.getDeclareTargetCaptureClause() ==
mlir::omp::DeclareTargetCaptureClause::link)
return true;
}
return false;
}
// Returns the reference pointer generated by the lowering of the declare target
// operation in cases where the link clause is used or the to clause is used in
// USM mode.
static llvm::Value *
getRefPtrIfDeclareTarget(mlir::Value value,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// An easier way to do this may just be to keep track of any pointer
// references and their mapping to their respective operation
if (auto addressOfOp =
llvm::dyn_cast_if_present<LLVM::AddressOfOp>(value.getDefiningOp())) {
if (auto gOp = llvm::dyn_cast_or_null<LLVM::GlobalOp>(
addressOfOp->getParentOfType<mlir::ModuleOp>().lookupSymbol(
addressOfOp.getGlobalName()))) {
if (auto declareTargetGlobal =
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(
gOp.getOperation())) {
// In this case, we must utilise the reference pointer generated by the
// declare target operation, similar to Clang
if ((declareTargetGlobal.getDeclareTargetCaptureClause() ==
mlir::omp::DeclareTargetCaptureClause::link) ||
(declareTargetGlobal.getDeclareTargetCaptureClause() ==
mlir::omp::DeclareTargetCaptureClause::to &&
ompBuilder->Config.hasRequiresUnifiedSharedMemory())) {
llvm::SmallString<64> suffix =
getDeclareTargetRefPtrSuffix(gOp, *ompBuilder);
if (gOp.getSymName().contains(suffix))
return moduleTranslation.getLLVMModule()->getNamedValue(
gOp.getSymName());
return moduleTranslation.getLLVMModule()->getNamedValue(
(gOp.getSymName().str() + suffix.str()).str());
}
}
}
}
return nullptr;
}
namespace {
// Append customMappers information to existing MapInfosTy
struct MapInfosTy : llvm::OpenMPIRBuilder::MapInfosTy {
SmallVector<Operation *, 4> Mappers;
/// Append arrays in \a CurInfo.
void append(MapInfosTy &curInfo) {
Mappers.append(curInfo.Mappers.begin(), curInfo.Mappers.end());
llvm::OpenMPIRBuilder::MapInfosTy::append(curInfo);
}
};
// A small helper structure to contain data gathered
// for map lowering and coalese it into one area and
// avoiding extra computations such as searches in the
// llvm module for lowered mapped variables or checking
// if something is declare target (and retrieving the
// value) more than neccessary.
struct MapInfoData : MapInfosTy {
llvm::SmallVector<bool, 4> IsDeclareTarget;
llvm::SmallVector<bool, 4> IsAMember;
// Identify if mapping was added by mapClause or use_device clauses.
llvm::SmallVector<bool, 4> IsAMapping;
llvm::SmallVector<mlir::Operation *, 4> MapClause;
llvm::SmallVector<llvm::Value *, 4> OriginalValue;
// Stripped off array/pointer to get the underlying
// element type
llvm::SmallVector<llvm::Type *, 4> BaseType;
/// Append arrays in \a CurInfo.
void append(MapInfoData &CurInfo) {
IsDeclareTarget.append(CurInfo.IsDeclareTarget.begin(),
CurInfo.IsDeclareTarget.end());
MapClause.append(CurInfo.MapClause.begin(), CurInfo.MapClause.end());
OriginalValue.append(CurInfo.OriginalValue.begin(),
CurInfo.OriginalValue.end());
BaseType.append(CurInfo.BaseType.begin(), CurInfo.BaseType.end());
MapInfosTy::append(CurInfo);
}
};
} // namespace
uint64_t getArrayElementSizeInBits(LLVM::LLVMArrayType arrTy, DataLayout &dl) {
if (auto nestedArrTy = llvm::dyn_cast_if_present<LLVM::LLVMArrayType>(
arrTy.getElementType()))
return getArrayElementSizeInBits(nestedArrTy, dl);
return dl.getTypeSizeInBits(arrTy.getElementType());
}
// This function calculates the size to be offloaded for a specified type, given
// its associated map clause (which can contain bounds information which affects
// the total size), this size is calculated based on the underlying element type
// e.g. given a 1-D array of ints, we will calculate the size from the integer
// type * number of elements in the array. This size can be used in other
// calculations but is ultimately used as an argument to the OpenMP runtimes
// kernel argument structure which is generated through the combinedInfo data
// structures.
// This function is somewhat equivalent to Clang's getExprTypeSize inside of
// CGOpenMPRuntime.cpp.
llvm::Value *getSizeInBytes(DataLayout &dl, const mlir::Type &type,
Operation *clauseOp, llvm::Value *basePointer,
llvm::Type *baseType, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (auto memberClause =
mlir::dyn_cast_if_present<mlir::omp::MapInfoOp>(clauseOp)) {
// This calculates the size to transfer based on bounds and the underlying
// element type, provided bounds have been specified (Fortran
// pointers/allocatables/target and arrays that have sections specified fall
// into this as well).
if (!memberClause.getBounds().empty()) {
llvm::Value *elementCount = builder.getInt64(1);
for (auto bounds : memberClause.getBounds()) {
if (auto boundOp = mlir::dyn_cast_if_present<mlir::omp::MapBoundsOp>(
bounds.getDefiningOp())) {
// The below calculation for the size to be mapped calculated from the
// map.info's bounds is: (elemCount * [UB - LB] + 1), later we
// multiply by the underlying element types byte size to get the full
// size to be offloaded based on the bounds
elementCount = builder.CreateMul(
elementCount,
builder.CreateAdd(
builder.CreateSub(
moduleTranslation.lookupValue(boundOp.getUpperBound()),
moduleTranslation.lookupValue(boundOp.getLowerBound())),
builder.getInt64(1)));
}
}
// utilising getTypeSizeInBits instead of getTypeSize as getTypeSize gives
// the size in inconsistent byte or bit format.
uint64_t underlyingTypeSzInBits = dl.getTypeSizeInBits(type);
if (auto arrTy = llvm::dyn_cast_if_present<LLVM::LLVMArrayType>(type))
underlyingTypeSzInBits = getArrayElementSizeInBits(arrTy, dl);
// The size in bytes x number of elements, the sizeInBytes stored is
// the underyling types size, e.g. if ptr<i32>, it'll be the i32's
// size, so we do some on the fly runtime math to get the size in
// bytes from the extent (ub - lb) * sizeInBytes. NOTE: This may need
// some adjustment for members with more complex types.
return builder.CreateMul(elementCount,
builder.getInt64(underlyingTypeSzInBits / 8));
}
}
return builder.getInt64(dl.getTypeSizeInBits(type) / 8);
}
static void collectMapDataFromMapOperands(
MapInfoData &mapData, SmallVectorImpl<Value> &mapVars,
LLVM::ModuleTranslation &moduleTranslation, DataLayout &dl,
llvm::IRBuilderBase &builder, ArrayRef<Value> useDevPtrOperands = {},
ArrayRef<Value> useDevAddrOperands = {},
ArrayRef<Value> hasDevAddrOperands = {}) {
auto checkIsAMember = [](const auto &mapVars, auto mapOp) {
// Check if this is a member mapping and correctly assign that it is, if
// it is a member of a larger object.
// TODO: Need better handling of members, and distinguishing of members
// that are implicitly allocated on device vs explicitly passed in as
// arguments.
// TODO: May require some further additions to support nested record
// types, i.e. member maps that can have member maps.
for (Value mapValue : mapVars) {
auto map = cast<omp::MapInfoOp>(mapValue.getDefiningOp());
for (auto member : map.getMembers())
if (member == mapOp)
return true;
}
return false;
};
// Process MapOperands
for (Value mapValue : mapVars) {
auto mapOp = cast<omp::MapInfoOp>(mapValue.getDefiningOp());
Value offloadPtr =
mapOp.getVarPtrPtr() ? mapOp.getVarPtrPtr() : mapOp.getVarPtr();
mapData.OriginalValue.push_back(moduleTranslation.lookupValue(offloadPtr));
mapData.Pointers.push_back(mapData.OriginalValue.back());
if (llvm::Value *refPtr =
getRefPtrIfDeclareTarget(offloadPtr,
moduleTranslation)) { // declare target
mapData.IsDeclareTarget.push_back(true);
mapData.BasePointers.push_back(refPtr);
} else { // regular mapped variable
mapData.IsDeclareTarget.push_back(false);
mapData.BasePointers.push_back(mapData.OriginalValue.back());
}
mapData.BaseType.push_back(
moduleTranslation.convertType(mapOp.getVarType()));
mapData.Sizes.push_back(
getSizeInBytes(dl, mapOp.getVarType(), mapOp, mapData.Pointers.back(),
mapData.BaseType.back(), builder, moduleTranslation));
mapData.MapClause.push_back(mapOp.getOperation());
mapData.Types.push_back(
llvm::omp::OpenMPOffloadMappingFlags(mapOp.getMapType()));
mapData.Names.push_back(LLVM::createMappingInformation(
mapOp.getLoc(), *moduleTranslation.getOpenMPBuilder()));
mapData.DevicePointers.push_back(llvm::OpenMPIRBuilder::DeviceInfoTy::None);
if (mapOp.getMapperId())
mapData.Mappers.push_back(
SymbolTable::lookupNearestSymbolFrom<omp::DeclareMapperOp>(
mapOp, mapOp.getMapperIdAttr()));
else
mapData.Mappers.push_back(nullptr);
mapData.IsAMapping.push_back(true);
mapData.IsAMember.push_back(checkIsAMember(mapVars, mapOp));
}
auto findMapInfo = [&mapData](llvm::Value *val,
llvm::OpenMPIRBuilder::DeviceInfoTy devInfoTy) {
unsigned index = 0;
bool found = false;
for (llvm::Value *basePtr : mapData.OriginalValue) {
if (basePtr == val && mapData.IsAMapping[index]) {
found = true;
mapData.Types[index] |=
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM;
mapData.DevicePointers[index] = devInfoTy;
}
index++;
}
return found;
};
// Process useDevPtr(Addr)Operands
auto addDevInfos = [&](const llvm::ArrayRef<Value> &useDevOperands,
llvm::OpenMPIRBuilder::DeviceInfoTy devInfoTy) {
for (Value mapValue : useDevOperands) {
auto mapOp = cast<omp::MapInfoOp>(mapValue.getDefiningOp());
Value offloadPtr =
mapOp.getVarPtrPtr() ? mapOp.getVarPtrPtr() : mapOp.getVarPtr();
llvm::Value *origValue = moduleTranslation.lookupValue(offloadPtr);
// Check if map info is already present for this entry.
if (!findMapInfo(origValue, devInfoTy)) {
mapData.OriginalValue.push_back(origValue);
mapData.Pointers.push_back(mapData.OriginalValue.back());
mapData.IsDeclareTarget.push_back(false);
mapData.BasePointers.push_back(mapData.OriginalValue.back());
mapData.BaseType.push_back(
moduleTranslation.convertType(mapOp.getVarType()));
mapData.Sizes.push_back(builder.getInt64(0));
mapData.MapClause.push_back(mapOp.getOperation());
mapData.Types.push_back(
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM);
mapData.Names.push_back(LLVM::createMappingInformation(
mapOp.getLoc(), *moduleTranslation.getOpenMPBuilder()));
mapData.DevicePointers.push_back(devInfoTy);
mapData.Mappers.push_back(nullptr);
mapData.IsAMapping.push_back(false);
mapData.IsAMember.push_back(checkIsAMember(useDevOperands, mapOp));
}
}
};
addDevInfos(useDevAddrOperands, llvm::OpenMPIRBuilder::DeviceInfoTy::Address);
addDevInfos(useDevPtrOperands, llvm::OpenMPIRBuilder::DeviceInfoTy::Pointer);
for (Value mapValue : hasDevAddrOperands) {
auto mapOp = cast<omp::MapInfoOp>(mapValue.getDefiningOp());
Value offloadPtr =
mapOp.getVarPtrPtr() ? mapOp.getVarPtrPtr() : mapOp.getVarPtr();
llvm::Value *origValue = moduleTranslation.lookupValue(offloadPtr);
auto mapType =
static_cast<llvm::omp::OpenMPOffloadMappingFlags>(mapOp.getMapType());
auto mapTypeAlways = llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS;
mapData.OriginalValue.push_back(origValue);
mapData.BasePointers.push_back(origValue);
mapData.Pointers.push_back(origValue);
mapData.IsDeclareTarget.push_back(false);
mapData.BaseType.push_back(
moduleTranslation.convertType(mapOp.getVarType()));
mapData.Sizes.push_back(
builder.getInt64(dl.getTypeSize(mapOp.getVarType())));
mapData.MapClause.push_back(mapOp.getOperation());
if (llvm::to_underlying(mapType & mapTypeAlways)) {
// Descriptors are mapped with the ALWAYS flag, since they can get
// rematerialized, so the address of the decriptor for a given object
// may change from one place to another.
mapData.Types.push_back(mapType);
// Technically it's possible for a non-descriptor mapping to have
// both has-device-addr and ALWAYS, so lookup the mapper in case it
// exists.
if (mapOp.getMapperId()) {
mapData.Mappers.push_back(
SymbolTable::lookupNearestSymbolFrom<omp::DeclareMapperOp>(
mapOp, mapOp.getMapperIdAttr()));
} else {
mapData.Mappers.push_back(nullptr);
}
} else {
mapData.Types.push_back(
llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_LITERAL);
mapData.Mappers.push_back(nullptr);
}
mapData.Names.push_back(LLVM::createMappingInformation(
mapOp.getLoc(), *moduleTranslation.getOpenMPBuilder()));
mapData.DevicePointers.push_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::Address);
mapData.IsAMapping.push_back(false);
mapData.IsAMember.push_back(checkIsAMember(hasDevAddrOperands, mapOp));
}
}
static int getMapDataMemberIdx(MapInfoData &mapData, omp::MapInfoOp memberOp) {
auto *res = llvm::find(mapData.MapClause, memberOp);
assert(res != mapData.MapClause.end() &&
"MapInfoOp for member not found in MapData, cannot return index");
return std::distance(mapData.MapClause.begin(), res);
}
static omp::MapInfoOp getFirstOrLastMappedMemberPtr(omp::MapInfoOp mapInfo,
bool first) {
ArrayAttr indexAttr = mapInfo.getMembersIndexAttr();
// Only 1 member has been mapped, we can return it.
if (indexAttr.size() == 1)
return cast<omp::MapInfoOp>(mapInfo.getMembers()[0].getDefiningOp());
llvm::SmallVector<size_t> indices(indexAttr.size());
std::iota(indices.begin(), indices.end(), 0);
llvm::sort(indices.begin(), indices.end(),
[&](const size_t a, const size_t b) {
auto memberIndicesA = cast<ArrayAttr>(indexAttr[a]);
auto memberIndicesB = cast<ArrayAttr>(indexAttr[b]);
for (const auto it : llvm::zip(memberIndicesA, memberIndicesB)) {
int64_t aIndex = cast<IntegerAttr>(std::get<0>(it)).getInt();
int64_t bIndex = cast<IntegerAttr>(std::get<1>(it)).getInt();
if (aIndex == bIndex)
continue;
if (aIndex < bIndex)
return first;
if (aIndex > bIndex)
return !first;
}
// Iterated the up until the end of the smallest member and
// they were found to be equal up to that point, so select
// the member with the lowest index count, so the "parent"
return memberIndicesA.size() < memberIndicesB.size();
});
return llvm::cast<omp::MapInfoOp>(
mapInfo.getMembers()[indices.front()].getDefiningOp());
}
/// This function calculates the array/pointer offset for map data provided
/// with bounds operations, e.g. when provided something like the following:
///
/// Fortran
/// map(tofrom: array(2:5, 3:2))
/// or
/// C++
/// map(tofrom: array[1:4][2:3])
/// We must calculate the initial pointer offset to pass across, this function
/// performs this using bounds.
///
/// NOTE: which while specified in row-major order it currently needs to be
/// flipped for Fortran's column order array allocation and access (as
/// opposed to C++'s row-major, hence the backwards processing where order is
/// important). This is likely important to keep in mind for the future when
/// we incorporate a C++ frontend, both frontends will need to agree on the
/// ordering of generated bounds operations (one may have to flip them) to
/// make the below lowering frontend agnostic. The offload size
/// calcualtion may also have to be adjusted for C++.
std::vector<llvm::Value *>
calculateBoundsOffset(LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder, bool isArrayTy,
OperandRange bounds) {
std::vector<llvm::Value *> idx;
// There's no bounds to calculate an offset from, we can safely
// ignore and return no indices.
if (bounds.empty())
return idx;
// If we have an array type, then we have its type so can treat it as a
// normal GEP instruction where the bounds operations are simply indexes
// into the array. We currently do reverse order of the bounds, which
// I believe leans more towards Fortran's column-major in memory.
if (isArrayTy) {
idx.push_back(builder.getInt64(0));
for (int i = bounds.size() - 1; i >= 0; --i) {
if (auto boundOp = dyn_cast_if_present<omp::MapBoundsOp>(
bounds[i].getDefiningOp())) {
idx.push_back(moduleTranslation.lookupValue(boundOp.getLowerBound()));
}
}
} else {
// If we do not have an array type, but we have bounds, then we're dealing
// with a pointer that's being treated like an array and we have the
// underlying type e.g. an i32, or f64 etc, e.g. a fortran descriptor base
// address (pointer pointing to the actual data) so we must caclulate the
// offset using a single index which the following two loops attempts to
// compute.
// Calculates the size offset we need to make per row e.g. first row or
// column only needs to be offset by one, but the next would have to be
// the previous row/column offset multiplied by the extent of current row.
//
// For example ([1][10][100]):
//
// - First row/column we move by 1 for each index increment
// - Second row/column we move by 1 (first row/column) * 10 (extent/size of
// current) for 10 for each index increment
// - Third row/column we would move by 10 (second row/column) *
// (extent/size of current) 100 for 1000 for each index increment
std::vector<llvm::Value *> dimensionIndexSizeOffset{builder.getInt64(1)};
for (size_t i = 1; i < bounds.size(); ++i) {
if (auto boundOp = dyn_cast_if_present<omp::MapBoundsOp>(
bounds[i].getDefiningOp())) {
dimensionIndexSizeOffset.push_back(builder.CreateMul(
moduleTranslation.lookupValue(boundOp.getExtent()),
dimensionIndexSizeOffset[i - 1]));
}
}
// Now that we have calculated how much we move by per index, we must
// multiply each lower bound offset in indexes by the size offset we
// have calculated in the previous and accumulate the results to get
// our final resulting offset.
for (int i = bounds.size() - 1; i >= 0; --i) {
if (auto boundOp = dyn_cast_if_present<omp::MapBoundsOp>(
bounds[i].getDefiningOp())) {
if (idx.empty())
idx.emplace_back(builder.CreateMul(
moduleTranslation.lookupValue(boundOp.getLowerBound()),
dimensionIndexSizeOffset[i]));
else
idx.back() = builder.CreateAdd(
idx.back(), builder.CreateMul(moduleTranslation.lookupValue(
boundOp.getLowerBound()),
dimensionIndexSizeOffset[i]));
}
}
}
return idx;
}
// This creates two insertions into the MapInfosTy data structure for the
// "parent" of a set of members, (usually a container e.g.
// class/structure/derived type) when subsequent members have also been
// explicitly mapped on the same map clause. Certain types, such as Fortran
// descriptors are mapped like this as well, however, the members are
// implicit as far as a user is concerned, but we must explicitly map them
// internally.
//
// This function also returns the memberOfFlag for this particular parent,
// which is utilised in subsequent member mappings (by modifying there map type
// with it) to indicate that a member is part of this parent and should be
// treated by the runtime as such. Important to achieve the correct mapping.
//
// This function borrows a lot from Clang's emitCombinedEntry function
// inside of CGOpenMPRuntime.cpp
static llvm::omp::OpenMPOffloadMappingFlags mapParentWithMembers(
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl, MapInfosTy &combinedInfo,
MapInfoData &mapData, uint64_t mapDataIndex, bool isTargetParams) {
// Map the first segment of our structure
combinedInfo.Types.emplace_back(
isTargetParams
? llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM
: llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_NONE);
combinedInfo.DevicePointers.emplace_back(
mapData.DevicePointers[mapDataIndex]);
combinedInfo.Mappers.emplace_back(mapData.Mappers[mapDataIndex]);
combinedInfo.Names.emplace_back(LLVM::createMappingInformation(
mapData.MapClause[mapDataIndex]->getLoc(), ompBuilder));
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
// Calculate size of the parent object being mapped based on the
// addresses at runtime, highAddr - lowAddr = size. This of course
// doesn't factor in allocated data like pointers, hence the further
// processing of members specified by users, or in the case of
// Fortran pointers and allocatables, the mapping of the pointed to
// data by the descriptor (which itself, is a structure containing
// runtime information on the dynamically allocated data).
auto parentClause =
llvm::cast<omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
llvm::Value *lowAddr, *highAddr;
if (!parentClause.getPartialMap()) {
lowAddr = builder.CreatePointerCast(mapData.Pointers[mapDataIndex],
builder.getPtrTy());
highAddr = builder.CreatePointerCast(
builder.CreateConstGEP1_32(mapData.BaseType[mapDataIndex],
mapData.Pointers[mapDataIndex], 1),
builder.getPtrTy());
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIndex]);
} else {
auto mapOp = dyn_cast<omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
int firstMemberIdx = getMapDataMemberIdx(
mapData, getFirstOrLastMappedMemberPtr(mapOp, true));
lowAddr = builder.CreatePointerCast(mapData.Pointers[firstMemberIdx],
builder.getPtrTy());
int lastMemberIdx = getMapDataMemberIdx(
mapData, getFirstOrLastMappedMemberPtr(mapOp, false));
highAddr = builder.CreatePointerCast(
builder.CreateGEP(mapData.BaseType[lastMemberIdx],
mapData.Pointers[lastMemberIdx], builder.getInt64(1)),
builder.getPtrTy());
combinedInfo.Pointers.emplace_back(mapData.Pointers[firstMemberIdx]);
}
llvm::Value *size = builder.CreateIntCast(
builder.CreatePtrDiff(builder.getInt8Ty(), highAddr, lowAddr),
builder.getInt64Ty(),
/*isSigned=*/false);
combinedInfo.Sizes.push_back(size);
llvm::omp::OpenMPOffloadMappingFlags memberOfFlag =
ompBuilder.getMemberOfFlag(combinedInfo.BasePointers.size() - 1);
// This creates the initial MEMBER_OF mapping that consists of
// the parent/top level container (same as above effectively, except
// with a fixed initial compile time size and separate maptype which
// indicates the true mape type (tofrom etc.). This parent mapping is
// only relevant if the structure in its totality is being mapped,
// otherwise the above suffices.
if (!parentClause.getPartialMap()) {
// TODO: This will need to be expanded to include the whole host of logic
// for the map flags that Clang currently supports (e.g. it should do some
// further case specific flag modifications). For the moment, it handles
// what we support as expected.
llvm::omp::OpenMPOffloadMappingFlags mapFlag = mapData.Types[mapDataIndex];
ompBuilder.setCorrectMemberOfFlag(mapFlag, memberOfFlag);
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.DevicePointers.emplace_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
combinedInfo.Mappers.emplace_back(nullptr);
combinedInfo.Names.emplace_back(LLVM::createMappingInformation(
mapData.MapClause[mapDataIndex]->getLoc(), ompBuilder));
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIndex]);
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIndex]);
combinedInfo.Sizes.emplace_back(mapData.Sizes[mapDataIndex]);
}
return memberOfFlag;
}
// The intent is to verify if the mapped data being passed is a
// pointer -> pointee that requires special handling in certain cases,
// e.g. applying the OMP_MAP_PTR_AND_OBJ map type.
//
// There may be a better way to verify this, but unfortunately with
// opaque pointers we lose the ability to easily check if something is
// a pointer whilst maintaining access to the underlying type.
static bool checkIfPointerMap(omp::MapInfoOp mapOp) {
// If we have a varPtrPtr field assigned then the underlying type is a pointer
if (mapOp.getVarPtrPtr())
return true;
// If the map data is declare target with a link clause, then it's represented
// as a pointer when we lower it to LLVM-IR even if at the MLIR level it has
// no relation to pointers.
if (isDeclareTargetLink(mapOp.getVarPtr()))
return true;
return false;
}
// This function is intended to add explicit mappings of members
static void processMapMembersWithParent(
LLVM::ModuleTranslation &moduleTranslation, llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder, DataLayout &dl, MapInfosTy &combinedInfo,
MapInfoData &mapData, uint64_t mapDataIndex,
llvm::omp::OpenMPOffloadMappingFlags memberOfFlag) {
auto parentClause =
llvm::cast<omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
for (auto mappedMembers : parentClause.getMembers()) {
auto memberClause =
llvm::cast<omp::MapInfoOp>(mappedMembers.getDefiningOp());
int memberDataIdx = getMapDataMemberIdx(mapData, memberClause);
assert(memberDataIdx >= 0 && "could not find mapped member of structure");
// If we're currently mapping a pointer to a block of data, we must
// initially map the pointer, and then attatch/bind the data with a
// subsequent map to the pointer. This segment of code generates the
// pointer mapping, which can in certain cases be optimised out as Clang
// currently does in its lowering. However, for the moment we do not do so,
// in part as we currently have substantially less information on the data
// being mapped at this stage.
if (checkIfPointerMap(memberClause)) {
auto mapFlag =
llvm::omp::OpenMPOffloadMappingFlags(memberClause.getMapType());
mapFlag &= ~llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
ompBuilder.setCorrectMemberOfFlag(mapFlag, memberOfFlag);
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.DevicePointers.emplace_back(
llvm::OpenMPIRBuilder::DeviceInfoTy::None);
combinedInfo.Mappers.emplace_back(nullptr);
combinedInfo.Names.emplace_back(
LLVM::createMappingInformation(memberClause.getLoc(), ompBuilder));
combinedInfo.BasePointers.emplace_back(
mapData.BasePointers[mapDataIndex]);
combinedInfo.Pointers.emplace_back(mapData.BasePointers[memberDataIdx]);
combinedInfo.Sizes.emplace_back(builder.getInt64(
moduleTranslation.getLLVMModule()->getDataLayout().getPointerSize()));
}
// Same MemberOfFlag to indicate its link with parent and other members
// of.
auto mapFlag =
llvm::omp::OpenMPOffloadMappingFlags(memberClause.getMapType());
mapFlag &= ~llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
ompBuilder.setCorrectMemberOfFlag(mapFlag, memberOfFlag);
if (checkIfPointerMap(memberClause))
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.DevicePointers.emplace_back(
mapData.DevicePointers[memberDataIdx]);
combinedInfo.Mappers.emplace_back(mapData.Mappers[memberDataIdx]);
combinedInfo.Names.emplace_back(
LLVM::createMappingInformation(memberClause.getLoc(), ompBuilder));
uint64_t basePointerIndex =
checkIfPointerMap(memberClause) ? memberDataIdx : mapDataIndex;
combinedInfo.BasePointers.emplace_back(
mapData.BasePointers[basePointerIndex]);
combinedInfo.Pointers.emplace_back(mapData.Pointers[memberDataIdx]);
llvm::Value *size = mapData.Sizes[memberDataIdx];
if (checkIfPointerMap(memberClause)) {
size = builder.CreateSelect(
builder.CreateIsNull(mapData.Pointers[memberDataIdx]),
builder.getInt64(0), size);
}
combinedInfo.Sizes.emplace_back(size);
}
}
static void processIndividualMap(MapInfoData &mapData, size_t mapDataIdx,
MapInfosTy &combinedInfo, bool isTargetParams,
int mapDataParentIdx = -1) {
// Declare Target Mappings are excluded from being marked as
// OMP_MAP_TARGET_PARAM as they are not passed as parameters, they're
// marked with OMP_MAP_PTR_AND_OBJ instead.
auto mapFlag = mapData.Types[mapDataIdx];
auto mapInfoOp = llvm::cast<omp::MapInfoOp>(mapData.MapClause[mapDataIdx]);
bool isPtrTy = checkIfPointerMap(mapInfoOp);
if (isPtrTy)
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
if (isTargetParams && !mapData.IsDeclareTarget[mapDataIdx])
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
if (mapInfoOp.getMapCaptureType() == omp::VariableCaptureKind::ByCopy &&
!isPtrTy)
mapFlag |= llvm::omp::OpenMPOffloadMappingFlags::OMP_MAP_LITERAL;
// if we're provided a mapDataParentIdx, then the data being mapped is
// part of a larger object (in a parent <-> member mapping) and in this
// case our BasePointer should be the parent.
if (mapDataParentIdx >= 0)
combinedInfo.BasePointers.emplace_back(
mapData.BasePointers[mapDataParentIdx]);
else
combinedInfo.BasePointers.emplace_back(mapData.BasePointers[mapDataIdx]);
combinedInfo.Pointers.emplace_back(mapData.Pointers[mapDataIdx]);
combinedInfo.DevicePointers.emplace_back(mapData.DevicePointers[mapDataIdx]);
combinedInfo.Mappers.emplace_back(mapData.Mappers[mapDataIdx]);
combinedInfo.Names.emplace_back(mapData.Names[mapDataIdx]);
combinedInfo.Types.emplace_back(mapFlag);
combinedInfo.Sizes.emplace_back(mapData.Sizes[mapDataIdx]);
}
static void processMapWithMembersOf(LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder,
DataLayout &dl, MapInfosTy &combinedInfo,
MapInfoData &mapData, uint64_t mapDataIndex,
bool isTargetParams) {
auto parentClause =
llvm::cast<omp::MapInfoOp>(mapData.MapClause[mapDataIndex]);
// If we have a partial map (no parent referenced in the map clauses of the
// directive, only members) and only a single member, we do not need to bind
// the map of the member to the parent, we can pass the member separately.
if (parentClause.getMembers().size() == 1 && parentClause.getPartialMap()) {
auto memberClause = llvm::cast<omp::MapInfoOp>(
parentClause.getMembers()[0].getDefiningOp());
int memberDataIdx = getMapDataMemberIdx(mapData, memberClause);
// Note: Clang treats arrays with explicit bounds that fall into this
// category as a parent with map case, however, it seems this isn't a
// requirement, and processing them as an individual map is fine. So,
// we will handle them as individual maps for the moment, as it's
// difficult for us to check this as we always require bounds to be
// specified currently and it's also marginally more optimal (single
// map rather than two). The difference may come from the fact that
// Clang maps array without bounds as pointers (which we do not
// currently do), whereas we treat them as arrays in all cases
// currently.
processIndividualMap(mapData, memberDataIdx, combinedInfo, isTargetParams,
mapDataIndex);
return;
}
llvm::omp::OpenMPOffloadMappingFlags memberOfParentFlag =
mapParentWithMembers(moduleTranslation, builder, ompBuilder, dl,
combinedInfo, mapData, mapDataIndex, isTargetParams);
processMapMembersWithParent(moduleTranslation, builder, ompBuilder, dl,
combinedInfo, mapData, mapDataIndex,
memberOfParentFlag);
}
// This is a variation on Clang's GenerateOpenMPCapturedVars, which
// generates different operation (e.g. load/store) combinations for
// arguments to the kernel, based on map capture kinds which are then
// utilised in the combinedInfo in place of the original Map value.
static void
createAlteredByCaptureMap(MapInfoData &mapData,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder) {
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
// if it's declare target, skip it, it's handled separately.
if (!mapData.IsDeclareTarget[i]) {
auto mapOp = cast<omp::MapInfoOp>(mapData.MapClause[i]);
omp::VariableCaptureKind captureKind = mapOp.getMapCaptureType();
bool isPtrTy = checkIfPointerMap(mapOp);
// Currently handles array sectioning lowerbound case, but more
// logic may be required in the future. Clang invokes EmitLValue,
// which has specialised logic for special Clang types such as user
// defines, so it is possible we will have to extend this for
// structures or other complex types. As the general idea is that this
// function mimics some of the logic from Clang that we require for
// kernel argument passing from host -> device.
switch (captureKind) {
case omp::VariableCaptureKind::ByRef: {
llvm::Value *newV = mapData.Pointers[i];
std::vector<llvm::Value *> offsetIdx = calculateBoundsOffset(
moduleTranslation, builder, mapData.BaseType[i]->isArrayTy(),
mapOp.getBounds());
if (isPtrTy)
newV = builder.CreateLoad(builder.getPtrTy(), newV);
if (!offsetIdx.empty())
newV = builder.CreateInBoundsGEP(mapData.BaseType[i], newV, offsetIdx,
"array_offset");
mapData.Pointers[i] = newV;
} break;
case omp::VariableCaptureKind::ByCopy: {
llvm::Type *type = mapData.BaseType[i];
llvm::Value *newV;
if (mapData.Pointers[i]->getType()->isPointerTy())
newV = builder.CreateLoad(type, mapData.Pointers[i]);
else
newV = mapData.Pointers[i];
if (!isPtrTy) {
auto curInsert = builder.saveIP();
builder.restoreIP(findAllocaInsertPoint(builder, moduleTranslation));
auto *memTempAlloc =
builder.CreateAlloca(builder.getPtrTy(), nullptr, ".casted");
builder.restoreIP(curInsert);
builder.CreateStore(newV, memTempAlloc);
newV = builder.CreateLoad(builder.getPtrTy(), memTempAlloc);
}
mapData.Pointers[i] = newV;
mapData.BasePointers[i] = newV;
} break;
case omp::VariableCaptureKind::This:
case omp::VariableCaptureKind::VLAType:
mapData.MapClause[i]->emitOpError("Unhandled capture kind");
break;
}
}
}
}
// Generate all map related information and fill the combinedInfo.
static void genMapInfos(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
DataLayout &dl, MapInfosTy &combinedInfo,
MapInfoData &mapData, bool isTargetParams = false) {
// We wish to modify some of the methods in which arguments are
// passed based on their capture type by the target region, this can
// involve generating new loads and stores, which changes the
// MLIR value to LLVM value mapping, however, we only wish to do this
// locally for the current function/target and also avoid altering
// ModuleTranslation, so we remap the base pointer or pointer stored
// in the map infos corresponding MapInfoData, which is later accessed
// by genMapInfos and createTarget to help generate the kernel and
// kernel arg structure. It primarily becomes relevant in cases like
// bycopy, or byref range'd arrays. In the default case, we simply
// pass thee pointer byref as both basePointer and pointer.
if (!moduleTranslation.getOpenMPBuilder()->Config.isTargetDevice())
createAlteredByCaptureMap(mapData, moduleTranslation, builder);
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// We operate under the assumption that all vectors that are
// required in MapInfoData are of equal lengths (either filled with
// default constructed data or appropiate information) so we can
// utilise the size from any component of MapInfoData, if we can't
// something is missing from the initial MapInfoData construction.
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
// NOTE/TODO: We currently do not support arbitrary depth record
// type mapping.
if (mapData.IsAMember[i])
continue;
auto mapInfoOp = dyn_cast<omp::MapInfoOp>(mapData.MapClause[i]);
if (!mapInfoOp.getMembers().empty()) {
processMapWithMembersOf(moduleTranslation, builder, *ompBuilder, dl,
combinedInfo, mapData, i, isTargetParams);
continue;
}
processIndividualMap(mapData, i, combinedInfo, isTargetParams);
}
}
static llvm::Expected<llvm::Function *>
emitUserDefinedMapper(Operation *declMapperOp, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::StringRef mapperFuncName);
static llvm::Expected<llvm::Function *>
getOrCreateUserDefinedMapperFunc(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto declMapperOp = cast<omp::DeclareMapperOp>(op);
std::string mapperFuncName =
moduleTranslation.getOpenMPBuilder()->createPlatformSpecificName(
{"omp_mapper", declMapperOp.getSymName()});
if (auto *lookupFunc = moduleTranslation.lookupFunction(mapperFuncName))
return lookupFunc;
return emitUserDefinedMapper(declMapperOp, builder, moduleTranslation,
mapperFuncName);
}
static llvm::Expected<llvm::Function *>
emitUserDefinedMapper(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::StringRef mapperFuncName) {
auto declMapperOp = cast<omp::DeclareMapperOp>(op);
auto declMapperInfoOp = declMapperOp.getDeclareMapperInfo();
DataLayout dl = DataLayout(declMapperOp->getParentOfType<ModuleOp>());
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::Type *varType = moduleTranslation.convertType(declMapperOp.getType());
SmallVector<Value> mapVars = declMapperInfoOp.getMapVars();
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
// Fill up the arrays with all the mapped variables.
MapInfosTy combinedInfo;
auto genMapInfoCB =
[&](InsertPointTy codeGenIP, llvm::Value *ptrPHI,
llvm::Value *unused2) -> llvm::OpenMPIRBuilder::MapInfosOrErrorTy {
builder.restoreIP(codeGenIP);
moduleTranslation.mapValue(declMapperOp.getSymVal(), ptrPHI);
moduleTranslation.mapBlock(&declMapperOp.getRegion().front(),
builder.GetInsertBlock());
if (failed(moduleTranslation.convertBlock(declMapperOp.getRegion().front(),
/*ignoreArguments=*/true,
builder)))
return llvm::make_error<PreviouslyReportedError>();
MapInfoData mapData;
collectMapDataFromMapOperands(mapData, mapVars, moduleTranslation, dl,
builder);
genMapInfos(builder, moduleTranslation, dl, combinedInfo, mapData);
// Drop the mapping that is no longer necessary so that the same region can
// be processed multiple times.
moduleTranslation.forgetMapping(declMapperOp.getRegion());
return combinedInfo;
};
auto customMapperCB = [&](unsigned i) -> llvm::Expected<llvm::Function *> {
if (!combinedInfo.Mappers[i])
return nullptr;
return getOrCreateUserDefinedMapperFunc(combinedInfo.Mappers[i], builder,
moduleTranslation);
};
llvm::Expected<llvm::Function *> newFn = ompBuilder->emitUserDefinedMapper(
genMapInfoCB, varType, mapperFuncName, customMapperCB);
if (!newFn)
return newFn.takeError();
moduleTranslation.mapFunction(mapperFuncName, *newFn);
return *newFn;
}
static LogicalResult
convertOmpTargetData(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::Value *ifCond = nullptr;
int64_t deviceID = llvm::omp::OMP_DEVICEID_UNDEF;
SmallVector<Value> mapVars;
SmallVector<Value> useDevicePtrVars;
SmallVector<Value> useDeviceAddrVars;
llvm::omp::RuntimeFunction RTLFn;
DataLayout DL = DataLayout(op->getParentOfType<ModuleOp>());
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::TargetDataInfo info(/*RequiresDevicePointerInfo=*/true,
/*SeparateBeginEndCalls=*/true);
LogicalResult result =
llvm::TypeSwitch<Operation *, LogicalResult>(op)
.Case([&](omp::TargetDataOp dataOp) {
if (failed(checkImplementationStatus(*dataOp)))
return failure();
if (auto ifVar = dataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifVar);
if (auto devId = dataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
mapVars = dataOp.getMapVars();
useDevicePtrVars = dataOp.getUseDevicePtrVars();
useDeviceAddrVars = dataOp.getUseDeviceAddrVars();
return success();
})
.Case([&](omp::TargetEnterDataOp enterDataOp) -> LogicalResult {
if (failed(checkImplementationStatus(*enterDataOp)))
return failure();
if (auto ifVar = enterDataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifVar);
if (auto devId = enterDataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
RTLFn =
enterDataOp.getNowait()
? llvm::omp::OMPRTL___tgt_target_data_begin_nowait_mapper
: llvm::omp::OMPRTL___tgt_target_data_begin_mapper;
mapVars = enterDataOp.getMapVars();
info.HasNoWait = enterDataOp.getNowait();
return success();
})
.Case([&](omp::TargetExitDataOp exitDataOp) -> LogicalResult {
if (failed(checkImplementationStatus(*exitDataOp)))
return failure();
if (auto ifVar = exitDataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifVar);
if (auto devId = exitDataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
RTLFn = exitDataOp.getNowait()
? llvm::omp::OMPRTL___tgt_target_data_end_nowait_mapper
: llvm::omp::OMPRTL___tgt_target_data_end_mapper;
mapVars = exitDataOp.getMapVars();
info.HasNoWait = exitDataOp.getNowait();
return success();
})
.Case([&](omp::TargetUpdateOp updateDataOp) -> LogicalResult {
if (failed(checkImplementationStatus(*updateDataOp)))
return failure();
if (auto ifVar = updateDataOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(ifVar);
if (auto devId = updateDataOp.getDevice())
if (auto constOp =
dyn_cast<LLVM::ConstantOp>(devId.getDefiningOp()))
if (auto intAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
deviceID = intAttr.getInt();
RTLFn =
updateDataOp.getNowait()
? llvm::omp::OMPRTL___tgt_target_data_update_nowait_mapper
: llvm::omp::OMPRTL___tgt_target_data_update_mapper;
mapVars = updateDataOp.getMapVars();
info.HasNoWait = updateDataOp.getNowait();
return success();
})
.Default([&](Operation *op) {
llvm_unreachable("unexpected operation");
return failure();
});
if (failed(result))
return failure();
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
MapInfoData mapData;
collectMapDataFromMapOperands(mapData, mapVars, moduleTranslation, DL,
builder, useDevicePtrVars, useDeviceAddrVars);
// Fill up the arrays with all the mapped variables.
MapInfosTy combinedInfo;
auto genMapInfoCB = [&](InsertPointTy codeGenIP) -> MapInfosTy & {
builder.restoreIP(codeGenIP);
genMapInfos(builder, moduleTranslation, DL, combinedInfo, mapData);
return combinedInfo;
};
// Define a lambda to apply mappings between use_device_addr and
// use_device_ptr base pointers, and their associated block arguments.
auto mapUseDevice =
[&moduleTranslation](
llvm::OpenMPIRBuilder::DeviceInfoTy type,
llvm::ArrayRef<BlockArgument> blockArgs,
llvm::SmallVectorImpl<Value> &useDeviceVars, MapInfoData &mapInfoData,
llvm::function_ref<llvm::Value *(llvm::Value *)> mapper = nullptr) {
for (auto [arg, useDevVar] :
llvm::zip_equal(blockArgs, useDeviceVars)) {
auto getMapBasePtr = [](omp::MapInfoOp mapInfoOp) {
return mapInfoOp.getVarPtrPtr() ? mapInfoOp.getVarPtrPtr()
: mapInfoOp.getVarPtr();
};
auto useDevMap = cast<omp::MapInfoOp>(useDevVar.getDefiningOp());
for (auto [mapClause, devicePointer, basePointer] : llvm::zip_equal(
mapInfoData.MapClause, mapInfoData.DevicePointers,
mapInfoData.BasePointers)) {
auto mapOp = cast<omp::MapInfoOp>(mapClause);
if (getMapBasePtr(mapOp) != getMapBasePtr(useDevMap) ||
devicePointer != type)
continue;
if (llvm::Value *devPtrInfoMap =
mapper ? mapper(basePointer) : basePointer) {
moduleTranslation.mapValue(arg, devPtrInfoMap);
break;
}
}
}
};
using BodyGenTy = llvm::OpenMPIRBuilder::BodyGenTy;
auto bodyGenCB = [&](InsertPointTy codeGenIP, BodyGenTy bodyGenType)
-> llvm::OpenMPIRBuilder::InsertPointOrErrorTy {
builder.restoreIP(codeGenIP);
assert(isa<omp::TargetDataOp>(op) &&
"BodyGen requested for non TargetDataOp");
auto blockArgIface = cast<omp::BlockArgOpenMPOpInterface>(op);
Region &region = cast<omp::TargetDataOp>(op).getRegion();
switch (bodyGenType) {
case BodyGenTy::Priv:
// Check if any device ptr/addr info is available
if (!info.DevicePtrInfoMap.empty()) {
mapUseDevice(llvm::OpenMPIRBuilder::DeviceInfoTy::Address,
blockArgIface.getUseDeviceAddrBlockArgs(),
useDeviceAddrVars, mapData,
[&](llvm::Value *basePointer) -> llvm::Value * {
if (!info.DevicePtrInfoMap[basePointer].second)
return nullptr;
return builder.CreateLoad(
builder.getPtrTy(),
info.DevicePtrInfoMap[basePointer].second);
});
mapUseDevice(llvm::OpenMPIRBuilder::DeviceInfoTy::Pointer,
blockArgIface.getUseDevicePtrBlockArgs(), useDevicePtrVars,
mapData, [&](llvm::Value *basePointer) {
return info.DevicePtrInfoMap[basePointer].second;
});
if (failed(inlineConvertOmpRegions(region, "omp.data.region", builder,
moduleTranslation)))
return llvm::make_error<PreviouslyReportedError>();
}
break;
case BodyGenTy::DupNoPriv:
// We must always restoreIP regardless of doing anything the caller
// does not restore it, leading to incorrect (no) branch generation.
builder.restoreIP(codeGenIP);
break;
case BodyGenTy::NoPriv:
// If device info is available then region has already been generated
if (info.DevicePtrInfoMap.empty()) {
// For device pass, if use_device_ptr(addr) mappings were present,
// we need to link them here before codegen.
if (ompBuilder->Config.IsTargetDevice.value_or(false)) {
mapUseDevice(llvm::OpenMPIRBuilder::DeviceInfoTy::Address,
blockArgIface.getUseDeviceAddrBlockArgs(),
useDeviceAddrVars, mapData);
mapUseDevice(llvm::OpenMPIRBuilder::DeviceInfoTy::Pointer,
blockArgIface.getUseDevicePtrBlockArgs(),
useDevicePtrVars, mapData);
}
if (failed(inlineConvertOmpRegions(region, "omp.data.region", builder,
moduleTranslation)))
return llvm::make_error<PreviouslyReportedError>();
}
break;
}
return builder.saveIP();
};
auto customMapperCB =
[&](unsigned int i) -> llvm::Expected<llvm::Function *> {
if (!combinedInfo.Mappers[i])
return nullptr;
info.HasMapper = true;
return getOrCreateUserDefinedMapperFunc(combinedInfo.Mappers[i], builder,
moduleTranslation);
};
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP = [&]() {
if (isa<omp::TargetDataOp>(op))
return ompBuilder->createTargetData(ompLoc, allocaIP, builder.saveIP(),
builder.getInt64(deviceID), ifCond,
info, genMapInfoCB, customMapperCB,
/*MapperFunc=*/nullptr, bodyGenCB,
/*DeviceAddrCB=*/nullptr);
return ompBuilder->createTargetData(
ompLoc, allocaIP, builder.saveIP(), builder.getInt64(deviceID), ifCond,
info, genMapInfoCB, customMapperCB, &RTLFn);
}();
if (failed(handleError(afterIP, *op)))
return failure();
builder.restoreIP(*afterIP);
return success();
}
static LogicalResult
convertOmpDistribute(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
auto distributeOp = cast<omp::DistributeOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
/// Process teams op reduction in distribute if the reduction is contained in
/// the distribute op.
omp::TeamsOp teamsOp = opInst.getParentOfType<omp::TeamsOp>();
bool doDistributeReduction =
teamsOp ? teamsReductionContainedInDistribute(teamsOp) : false;
DenseMap<Value, llvm::Value *> reductionVariableMap;
unsigned numReductionVars = teamsOp ? teamsOp.getNumReductionVars() : 0;
SmallVector<omp::DeclareReductionOp> reductionDecls;
SmallVector<llvm::Value *> privateReductionVariables(numReductionVars);
llvm::ArrayRef<bool> isByRef;
if (doDistributeReduction) {
isByRef = getIsByRef(teamsOp.getReductionByref());
assert(isByRef.size() == teamsOp.getNumReductionVars());
collectReductionDecls(teamsOp, reductionDecls);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
MutableArrayRef<BlockArgument> reductionArgs =
llvm::cast<omp::BlockArgOpenMPOpInterface>(*teamsOp)
.getReductionBlockArgs();
if (failed(allocAndInitializeReductionVars(
teamsOp, reductionArgs, builder, moduleTranslation, allocaIP,
reductionDecls, privateReductionVariables, reductionVariableMap,
isByRef)))
return failure();
}
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto bodyGenCB = [&](InsertPointTy allocaIP,
InsertPointTy codeGenIP) -> llvm::Error {
// Save the alloca insertion point on ModuleTranslation stack for use in
// nested regions.
LLVM::ModuleTranslation::SaveStack<OpenMPAllocaStackFrame> frame(
moduleTranslation, allocaIP);
// DistributeOp has only one region associated with it.
builder.restoreIP(codeGenIP);
PrivateVarsInfo privVarsInfo(distributeOp);
llvm::Expected<llvm::BasicBlock *> afterAllocas =
allocatePrivateVars(builder, moduleTranslation, privVarsInfo, allocaIP);
if (handleError(afterAllocas, opInst).failed())
return llvm::make_error<PreviouslyReportedError>();
if (handleError(initPrivateVars(builder, moduleTranslation, privVarsInfo),
opInst)
.failed())
return llvm::make_error<PreviouslyReportedError>();
if (failed(copyFirstPrivateVars(
builder, moduleTranslation, privVarsInfo.mlirVars,
privVarsInfo.llvmVars, privVarsInfo.privatizers)))
return llvm::make_error<PreviouslyReportedError>();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::Expected<llvm::BasicBlock *> regionBlock =
convertOmpOpRegions(distributeOp.getRegion(), "omp.distribute.region",
builder, moduleTranslation);
if (!regionBlock)
return regionBlock.takeError();
builder.SetInsertPoint(*regionBlock, (*regionBlock)->begin());
// Skip applying a workshare loop below when translating 'distribute
// parallel do' (it's been already handled by this point while translating
// the nested omp.wsloop).
if (!isa_and_present<omp::WsloopOp>(distributeOp.getNestedWrapper())) {
// TODO: Add support for clauses which are valid for DISTRIBUTE
// constructs. Static schedule is the default.
auto schedule = omp::ClauseScheduleKind::Static;
bool isOrdered = false;
std::optional<omp::ScheduleModifier> scheduleMod;
bool isSimd = false;
llvm::omp::WorksharingLoopType workshareLoopType =
llvm::omp::WorksharingLoopType::DistributeStaticLoop;
bool loopNeedsBarrier = false;
llvm::Value *chunk = nullptr;
llvm::CanonicalLoopInfo *loopInfo =
findCurrentLoopInfo(moduleTranslation);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy wsloopIP =
ompBuilder->applyWorkshareLoop(
ompLoc.DL, loopInfo, allocaIP, loopNeedsBarrier,
convertToScheduleKind(schedule), chunk, isSimd,
scheduleMod == omp::ScheduleModifier::monotonic,
scheduleMod == omp::ScheduleModifier::nonmonotonic, isOrdered,
workshareLoopType);
if (!wsloopIP)
return wsloopIP.takeError();
}
if (failed(cleanupPrivateVars(builder, moduleTranslation,
distributeOp.getLoc(), privVarsInfo.llvmVars,
privVarsInfo.privatizers)))
return llvm::make_error<PreviouslyReportedError>();
return llvm::Error::success();
};
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
ompBuilder->createDistribute(ompLoc, allocaIP, bodyGenCB);
if (failed(handleError(afterIP, opInst)))
return failure();
builder.restoreIP(*afterIP);
if (doDistributeReduction) {
// Process the reductions if required.
return createReductionsAndCleanup(
teamsOp, builder, moduleTranslation, allocaIP, reductionDecls,
privateReductionVariables, isByRef,
/*isNoWait*/ false, /*isTeamsReduction*/ true);
}
return success();
}
/// Lowers the FlagsAttr which is applied to the module on the device
/// pass when offloading, this attribute contains OpenMP RTL globals that can
/// be passed as flags to the frontend, otherwise they are set to default
LogicalResult convertFlagsAttr(Operation *op, mlir::omp::FlagsAttr attribute,
LLVM::ModuleTranslation &moduleTranslation) {
if (!cast<mlir::ModuleOp>(op))
return failure();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
ompBuilder->M.addModuleFlag(llvm::Module::Max, "openmp-device",
attribute.getOpenmpDeviceVersion());
if (attribute.getNoGpuLib())
return success();
ompBuilder->createGlobalFlag(
attribute.getDebugKind() /*LangOpts().OpenMPTargetDebug*/,
"__omp_rtl_debug_kind");
ompBuilder->createGlobalFlag(
attribute
.getAssumeTeamsOversubscription() /*LangOpts().OpenMPTeamSubscription*/
,
"__omp_rtl_assume_teams_oversubscription");
ompBuilder->createGlobalFlag(
attribute
.getAssumeThreadsOversubscription() /*LangOpts().OpenMPThreadSubscription*/
,
"__omp_rtl_assume_threads_oversubscription");
ompBuilder->createGlobalFlag(
attribute.getAssumeNoThreadState() /*LangOpts().OpenMPNoThreadState*/,
"__omp_rtl_assume_no_thread_state");
ompBuilder->createGlobalFlag(
attribute
.getAssumeNoNestedParallelism() /*LangOpts().OpenMPNoNestedParallelism*/
,
"__omp_rtl_assume_no_nested_parallelism");
return success();
}
static void getTargetEntryUniqueInfo(llvm::TargetRegionEntryInfo &targetInfo,
omp::TargetOp targetOp,
llvm::StringRef parentName = "") {
auto fileLoc = targetOp.getLoc()->findInstanceOf<FileLineColLoc>();
assert(fileLoc && "No file found from location");
StringRef fileName = fileLoc.getFilename().getValue();
llvm::sys::fs::UniqueID id;
uint64_t line = fileLoc.getLine();
if (auto ec = llvm::sys::fs::getUniqueID(fileName, id)) {
size_t fileHash = llvm::hash_value(fileName.str());
size_t deviceId = 0xdeadf17e;
targetInfo =
llvm::TargetRegionEntryInfo(parentName, deviceId, fileHash, line);
} else {
targetInfo = llvm::TargetRegionEntryInfo(parentName, id.getDevice(),
id.getFile(), line);
}
}
static void
handleDeclareTargetMapVar(MapInfoData &mapData,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase &builder, llvm::Function *func) {
for (size_t i = 0; i < mapData.MapClause.size(); ++i) {
// In the case of declare target mapped variables, the basePointer is
// the reference pointer generated by the convertDeclareTargetAttr
// method. Whereas the kernelValue is the original variable, so for
// the device we must replace all uses of this original global variable
// (stored in kernelValue) with the reference pointer (stored in
// basePointer for declare target mapped variables), as for device the
// data is mapped into this reference pointer and should be loaded
// from it, the original variable is discarded. On host both exist and
// metadata is generated (elsewhere in the convertDeclareTargetAttr)
// function to link the two variables in the runtime and then both the
// reference pointer and the pointer are assigned in the kernel argument
// structure for the host.
if (mapData.IsDeclareTarget[i]) {
// If the original map value is a constant, then we have to make sure all
// of it's uses within the current kernel/function that we are going to
// rewrite are converted to instructions, as we will be altering the old
// use (OriginalValue) from a constant to an instruction, which will be
// illegal and ICE the compiler if the user is a constant expression of
// some kind e.g. a constant GEP.
if (auto *constant = dyn_cast<llvm::Constant>(mapData.OriginalValue[i]))
convertUsersOfConstantsToInstructions(constant, func, false);
// The users iterator will get invalidated if we modify an element,
// so we populate this vector of uses to alter each user on an
// individual basis to emit its own load (rather than one load for
// all).
llvm::SmallVector<llvm::User *> userVec;
for (llvm::User *user : mapData.OriginalValue[i]->users())
userVec.push_back(user);
for (llvm::User *user : userVec) {
if (auto *insn = dyn_cast<llvm::Instruction>(user)) {
if (insn->getFunction() == func) {
auto *load = builder.CreateLoad(mapData.BasePointers[i]->getType(),
mapData.BasePointers[i]);
load->moveBefore(insn->getIterator());
user->replaceUsesOfWith(mapData.OriginalValue[i], load);
}
}
}
}
}
}
// The createDeviceArgumentAccessor function generates
// instructions for retrieving (acessing) kernel
// arguments inside of the device kernel for use by
// the kernel. This enables different semantics such as
// the creation of temporary copies of data allowing
// semantics like read-only/no host write back kernel
// arguments.
//
// This currently implements a very light version of Clang's
// EmitParmDecl's handling of direct argument handling as well
// as a portion of the argument access generation based on
// capture types found at the end of emitOutlinedFunctionPrologue
// in Clang. The indirect path handling of EmitParmDecl's may be
// required for future work, but a direct 1-to-1 copy doesn't seem
// possible as the logic is rather scattered throughout Clang's
// lowering and perhaps we wish to deviate slightly.
//
// \param mapData - A container containing vectors of information
// corresponding to the input argument, which should have a
// corresponding entry in the MapInfoData containers
// OrigialValue's.
// \param arg - This is the generated kernel function argument that
// corresponds to the passed in input argument. We generated different
// accesses of this Argument, based on capture type and other Input
// related information.
// \param input - This is the host side value that will be passed to
// the kernel i.e. the kernel input, we rewrite all uses of this within
// the kernel (as we generate the kernel body based on the target's region
// which maintians references to the original input) to the retVal argument
// apon exit of this function inside of the OMPIRBuilder. This interlinks
// the kernel argument to future uses of it in the function providing
// appropriate "glue" instructions inbetween.
// \param retVal - This is the value that all uses of input inside of the
// kernel will be re-written to, the goal of this function is to generate
// an appropriate location for the kernel argument to be accessed from,
// e.g. ByRef will result in a temporary allocation location and then
// a store of the kernel argument into this allocated memory which
// will then be loaded from, ByCopy will use the allocated memory
// directly.
static llvm::IRBuilderBase::InsertPoint
createDeviceArgumentAccessor(MapInfoData &mapData, llvm::Argument &arg,
llvm::Value *input, llvm::Value *&retVal,
llvm::IRBuilderBase &builder,
llvm::OpenMPIRBuilder &ompBuilder,
LLVM::ModuleTranslation &moduleTranslation,
llvm::IRBuilderBase::InsertPoint allocaIP,
llvm::IRBuilderBase::InsertPoint codeGenIP) {
builder.restoreIP(allocaIP);
omp::VariableCaptureKind capture = omp::VariableCaptureKind::ByRef;
LLVM::TypeToLLVMIRTranslator typeToLLVMIRTranslator(
ompBuilder.M.getContext());
unsigned alignmentValue = 0;
// Find the associated MapInfoData entry for the current input
for (size_t i = 0; i < mapData.MapClause.size(); ++i)
if (mapData.OriginalValue[i] == input) {
auto mapOp = cast<omp::MapInfoOp>(mapData.MapClause[i]);
capture = mapOp.getMapCaptureType();
// Get information of alignment of mapped object
alignmentValue = typeToLLVMIRTranslator.getPreferredAlignment(
mapOp.getVarType(), ompBuilder.M.getDataLayout());
break;
}
unsigned int allocaAS = ompBuilder.M.getDataLayout().getAllocaAddrSpace();
unsigned int defaultAS =
ompBuilder.M.getDataLayout().getProgramAddressSpace();
// Create the alloca for the argument the current point.
llvm::Value *v = builder.CreateAlloca(arg.getType(), allocaAS);
if (allocaAS != defaultAS && arg.getType()->isPointerTy())
v = builder.CreateAddrSpaceCast(v, builder.getPtrTy(defaultAS));
builder.CreateStore(&arg, v);
builder.restoreIP(codeGenIP);
switch (capture) {
case omp::VariableCaptureKind::ByCopy: {
retVal = v;
break;
}
case omp::VariableCaptureKind::ByRef: {
llvm::LoadInst *loadInst = builder.CreateAlignedLoad(
v->getType(), v,
ompBuilder.M.getDataLayout().getPrefTypeAlign(v->getType()));
// CreateAlignedLoad function creates similar LLVM IR:
// %res = load ptr, ptr %input, align 8
// This LLVM IR does not contain information about alignment
// of the loaded value. We need to add !align metadata to unblock
// optimizer. The existence of the !align metadata on the instruction
// tells the optimizer that the value loaded is known to be aligned to
// a boundary specified by the integer value in the metadata node.
// Example:
// %res = load ptr, ptr %input, align 8, !align !align_md_node
// ^ ^
// | |
// alignment of %input address |
// |
// alignment of %res object
if (v->getType()->isPointerTy() && alignmentValue) {
llvm::MDBuilder MDB(builder.getContext());
loadInst->setMetadata(
llvm::LLVMContext::MD_align,
llvm::MDNode::get(builder.getContext(),
MDB.createConstant(llvm::ConstantInt::get(
llvm::Type::getInt64Ty(builder.getContext()),
alignmentValue))));
}
retVal = loadInst;
break;
}
case omp::VariableCaptureKind::This:
case omp::VariableCaptureKind::VLAType:
// TODO: Consider returning error to use standard reporting for
// unimplemented features.
assert(false && "Currently unsupported capture kind");
break;
}
return builder.saveIP();
}
/// Follow uses of `host_eval`-defined block arguments of the given `omp.target`
/// operation and populate output variables with their corresponding host value
/// (i.e. operand evaluated outside of the target region), based on their uses
/// inside of the target region.
///
/// Loop bounds and steps are only optionally populated, if output vectors are
/// provided.
static void
extractHostEvalClauses(omp::TargetOp targetOp, Value &numThreads,
Value &numTeamsLower, Value &numTeamsUpper,
Value &threadLimit,
llvm::SmallVectorImpl<Value> *lowerBounds = nullptr,
llvm::SmallVectorImpl<Value> *upperBounds = nullptr,
llvm::SmallVectorImpl<Value> *steps = nullptr) {
auto blockArgIface = llvm::cast<omp::BlockArgOpenMPOpInterface>(*targetOp);
for (auto item : llvm::zip_equal(targetOp.getHostEvalVars(),
blockArgIface.getHostEvalBlockArgs())) {
Value hostEvalVar = std::get<0>(item), blockArg = std::get<1>(item);
for (Operation *user : blockArg.getUsers()) {
llvm::TypeSwitch<Operation *>(user)
.Case([&](omp::TeamsOp teamsOp) {
if (teamsOp.getNumTeamsLower() == blockArg)
numTeamsLower = hostEvalVar;
else if (teamsOp.getNumTeamsUpper() == blockArg)
numTeamsUpper = hostEvalVar;
else if (teamsOp.getThreadLimit() == blockArg)
threadLimit = hostEvalVar;
else
llvm_unreachable("unsupported host_eval use");
})
.Case([&](omp::ParallelOp parallelOp) {
if (parallelOp.getNumThreads() == blockArg)
numThreads = hostEvalVar;
else
llvm_unreachable("unsupported host_eval use");
})
.Case([&](omp::LoopNestOp loopOp) {
auto processBounds =
[&](OperandRange opBounds,
llvm::SmallVectorImpl<Value> *outBounds) -> bool {
bool found = false;
for (auto [i, lb] : llvm::enumerate(opBounds)) {
if (lb == blockArg) {
found = true;
if (outBounds)
(*outBounds)[i] = hostEvalVar;
}
}
return found;
};
bool found =
processBounds(loopOp.getLoopLowerBounds(), lowerBounds);
found = processBounds(loopOp.getLoopUpperBounds(), upperBounds) ||
found;
found = processBounds(loopOp.getLoopSteps(), steps) || found;
(void)found;
assert(found && "unsupported host_eval use");
})
.Default([](Operation *) {
llvm_unreachable("unsupported host_eval use");
});
}
}
}
/// If \p op is of the given type parameter, return it casted to that type.
/// Otherwise, if its immediate parent operation (or some other higher-level
/// parent, if \p immediateParent is false) is of that type, return that parent
/// casted to the given type.
///
/// If \p op is \c null or neither it or its parent(s) are of the specified
/// type, return a \c null operation.
template <typename OpTy>
static OpTy castOrGetParentOfType(Operation *op, bool immediateParent = false) {
if (!op)
return OpTy();
if (OpTy casted = dyn_cast<OpTy>(op))
return casted;
if (immediateParent)
return dyn_cast_if_present<OpTy>(op->getParentOp());
return op->getParentOfType<OpTy>();
}
/// If the given \p value is defined by an \c llvm.mlir.constant operation and
/// it is of an integer type, return its value.
static std::optional<int64_t> extractConstInteger(Value value) {
if (!value)
return std::nullopt;
if (auto constOp =
dyn_cast_if_present<LLVM::ConstantOp>(value.getDefiningOp()))
if (auto constAttr = dyn_cast<IntegerAttr>(constOp.getValue()))
return constAttr.getInt();
return std::nullopt;
}
static uint64_t getTypeByteSize(mlir::Type type, const DataLayout &dl) {
uint64_t sizeInBits = dl.getTypeSizeInBits(type);
uint64_t sizeInBytes = sizeInBits / 8;
return sizeInBytes;
}
template <typename OpTy>
static uint64_t getReductionDataSize(OpTy &op) {
if (op.getNumReductionVars() > 0) {
SmallVector<omp::DeclareReductionOp> reductions;
collectReductionDecls(op, reductions);
llvm::SmallVector<mlir::Type> members;
members.reserve(reductions.size());
for (omp::DeclareReductionOp &red : reductions)
members.push_back(red.getType());
Operation *opp = op.getOperation();
auto structType = mlir::LLVM::LLVMStructType::getLiteral(
opp->getContext(), members, /*isPacked=*/false);
DataLayout dl = DataLayout(opp->getParentOfType<ModuleOp>());
return getTypeByteSize(structType, dl);
}
return 0;
}
/// Populate default `MinTeams`, `MaxTeams` and `MaxThreads` to their default
/// values as stated by the corresponding clauses, if constant.
///
/// These default values must be set before the creation of the outlined LLVM
/// function for the target region, so that they can be used to initialize the
/// corresponding global `ConfigurationEnvironmentTy` structure.
static void
initTargetDefaultAttrs(omp::TargetOp targetOp, Operation *capturedOp,
llvm::OpenMPIRBuilder::TargetKernelDefaultAttrs &attrs,
bool isTargetDevice, bool isGPU) {
// TODO: Handle constant 'if' clauses.
Value numThreads, numTeamsLower, numTeamsUpper, threadLimit;
if (!isTargetDevice) {
extractHostEvalClauses(targetOp, numThreads, numTeamsLower, numTeamsUpper,
threadLimit);
} else {
// In the target device, values for these clauses are not passed as
// host_eval, but instead evaluated prior to entry to the region. This
// ensures values are mapped and available inside of the target region.
if (auto teamsOp = castOrGetParentOfType<omp::TeamsOp>(capturedOp)) {
numTeamsLower = teamsOp.getNumTeamsLower();
numTeamsUpper = teamsOp.getNumTeamsUpper();
threadLimit = teamsOp.getThreadLimit();
}
if (auto parallelOp = castOrGetParentOfType<omp::ParallelOp>(capturedOp))
numThreads = parallelOp.getNumThreads();
}
// Handle clauses impacting the number of teams.
int32_t minTeamsVal = 1, maxTeamsVal = -1;
if (castOrGetParentOfType<omp::TeamsOp>(capturedOp)) {
// TODO: Use `hostNumTeamsLower` to initialize `minTeamsVal`. For now, match
// clang and set min and max to the same value.
if (numTeamsUpper) {
if (auto val = extractConstInteger(numTeamsUpper))
minTeamsVal = maxTeamsVal = *val;
} else {
minTeamsVal = maxTeamsVal = 0;
}
} else if (castOrGetParentOfType<omp::ParallelOp>(capturedOp,
/*immediateParent=*/true) ||
castOrGetParentOfType<omp::SimdOp>(capturedOp,
/*immediateParent=*/true)) {
minTeamsVal = maxTeamsVal = 1;
} else {
minTeamsVal = maxTeamsVal = -1;
}
// Handle clauses impacting the number of threads.
auto setMaxValueFromClause = [](Value clauseValue, int32_t &result) {
if (!clauseValue)
return;
if (auto val = extractConstInteger(clauseValue))
result = *val;
// Found an applicable clause, so it's not undefined. Mark as unknown
// because it's not constant.
if (result < 0)
result = 0;
};
// Extract 'thread_limit' clause from 'target' and 'teams' directives.
int32_t targetThreadLimitVal = -1, teamsThreadLimitVal = -1;
setMaxValueFromClause(targetOp.getThreadLimit(), targetThreadLimitVal);
setMaxValueFromClause(threadLimit, teamsThreadLimitVal);
// Extract 'max_threads' clause from 'parallel' or set to 1 if it's SIMD.
int32_t maxThreadsVal = -1;
if (castOrGetParentOfType<omp::ParallelOp>(capturedOp))
setMaxValueFromClause(numThreads, maxThreadsVal);
else if (castOrGetParentOfType<omp::SimdOp>(capturedOp,
/*immediateParent=*/true))
maxThreadsVal = 1;
// For max values, < 0 means unset, == 0 means set but unknown. Select the
// minimum value between 'max_threads' and 'thread_limit' clauses that were
// set.
int32_t combinedMaxThreadsVal = targetThreadLimitVal;
if (combinedMaxThreadsVal < 0 ||
(teamsThreadLimitVal >= 0 && teamsThreadLimitVal < combinedMaxThreadsVal))
combinedMaxThreadsVal = teamsThreadLimitVal;
if (combinedMaxThreadsVal < 0 ||
(maxThreadsVal >= 0 && maxThreadsVal < combinedMaxThreadsVal))
combinedMaxThreadsVal = maxThreadsVal;
int32_t reductionDataSize = 0;
if (isGPU && capturedOp) {
if (auto teamsOp = castOrGetParentOfType<omp::TeamsOp>(capturedOp))
reductionDataSize = getReductionDataSize(teamsOp);
}
// Update kernel bounds structure for the `OpenMPIRBuilder` to use.
omp::TargetRegionFlags kernelFlags = targetOp.getKernelExecFlags(capturedOp);
assert(
omp::bitEnumContainsAny(kernelFlags, omp::TargetRegionFlags::generic |
omp::TargetRegionFlags::spmd) &&
"invalid kernel flags");
attrs.ExecFlags =
omp::bitEnumContainsAny(kernelFlags, omp::TargetRegionFlags::generic)
? omp::bitEnumContainsAny(kernelFlags, omp::TargetRegionFlags::spmd)
? llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD
: llvm::omp::OMP_TGT_EXEC_MODE_GENERIC
: llvm::omp::OMP_TGT_EXEC_MODE_SPMD;
attrs.MinTeams = minTeamsVal;
attrs.MaxTeams.front() = maxTeamsVal;
attrs.MinThreads = 1;
attrs.MaxThreads.front() = combinedMaxThreadsVal;
attrs.ReductionDataSize = reductionDataSize;
// TODO: Allow modified buffer length similar to
// fopenmp-cuda-teams-reduction-recs-num flag in clang.
if (attrs.ReductionDataSize != 0)
attrs.ReductionBufferLength = 1024;
}
/// Gather LLVM runtime values for all clauses evaluated in the host that are
/// passed to the kernel invocation.
///
/// This function must be called only when compiling for the host. Also, it will
/// only provide correct results if it's called after the body of \c targetOp
/// has been fully generated.
static void
initTargetRuntimeAttrs(llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation,
omp::TargetOp targetOp, Operation *capturedOp,
llvm::OpenMPIRBuilder::TargetKernelRuntimeAttrs &attrs) {
omp::LoopNestOp loopOp = castOrGetParentOfType<omp::LoopNestOp>(capturedOp);
unsigned numLoops = loopOp ? loopOp.getNumLoops() : 0;
Value numThreads, numTeamsLower, numTeamsUpper, teamsThreadLimit;
llvm::SmallVector<Value> lowerBounds(numLoops), upperBounds(numLoops),
steps(numLoops);
extractHostEvalClauses(targetOp, numThreads, numTeamsLower, numTeamsUpper,
teamsThreadLimit, &lowerBounds, &upperBounds, &steps);
// TODO: Handle constant 'if' clauses.
if (Value targetThreadLimit = targetOp.getThreadLimit())
attrs.TargetThreadLimit.front() =
moduleTranslation.lookupValue(targetThreadLimit);
if (numTeamsLower)
attrs.MinTeams = moduleTranslation.lookupValue(numTeamsLower);
if (numTeamsUpper)
attrs.MaxTeams.front() = moduleTranslation.lookupValue(numTeamsUpper);
if (teamsThreadLimit)
attrs.TeamsThreadLimit.front() =
moduleTranslation.lookupValue(teamsThreadLimit);
if (numThreads)
attrs.MaxThreads = moduleTranslation.lookupValue(numThreads);
if (omp::bitEnumContainsAny(targetOp.getKernelExecFlags(capturedOp),
omp::TargetRegionFlags::trip_count)) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
attrs.LoopTripCount = nullptr;
// To calculate the trip count, we multiply together the trip counts of
// every collapsed canonical loop. We don't need to create the loop nests
// here, since we're only interested in the trip count.
for (auto [loopLower, loopUpper, loopStep] :
llvm::zip_equal(lowerBounds, upperBounds, steps)) {
llvm::Value *lowerBound = moduleTranslation.lookupValue(loopLower);
llvm::Value *upperBound = moduleTranslation.lookupValue(loopUpper);
llvm::Value *step = moduleTranslation.lookupValue(loopStep);
llvm::OpenMPIRBuilder::LocationDescription loc(builder);
llvm::Value *tripCount = ompBuilder->calculateCanonicalLoopTripCount(
loc, lowerBound, upperBound, step, /*IsSigned=*/true,
loopOp.getLoopInclusive());
if (!attrs.LoopTripCount) {
attrs.LoopTripCount = tripCount;
continue;
}
// TODO: Enable UndefinedSanitizer to diagnose an overflow here.
attrs.LoopTripCount = builder.CreateMul(attrs.LoopTripCount, tripCount,
{}, /*HasNUW=*/true);
}
}
}
static LogicalResult
convertOmpTarget(Operation &opInst, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
auto targetOp = cast<omp::TargetOp>(opInst);
if (failed(checkImplementationStatus(opInst)))
return failure();
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
bool isTargetDevice = ompBuilder->Config.isTargetDevice();
bool isGPU = ompBuilder->Config.isGPU();
auto parentFn = opInst.getParentOfType<LLVM::LLVMFuncOp>();
auto argIface = cast<omp::BlockArgOpenMPOpInterface>(opInst);
auto &targetRegion = targetOp.getRegion();
// Holds the private vars that have been mapped along with the block argument
// that corresponds to the MapInfoOp corresponding to the private var in
// question. So, for instance:
//
// %10 = omp.map.info var_ptr(%6#0 : !fir.ref<!fir.box<!fir.heap<i32>>>, ..)
// omp.target map_entries(%10 -> %arg0) private(@box.privatizer %6#0-> %arg1)
//
// Then, %10 has been created so that the descriptor can be used by the
// privatizer @box.privatizer on the device side. Here we'd record {%6#0,
// %arg0} in the mappedPrivateVars map.
llvm::DenseMap<Value, Value> mappedPrivateVars;
DataLayout dl = DataLayout(opInst.getParentOfType<ModuleOp>());
SmallVector<Value> mapVars = targetOp.getMapVars();
SmallVector<Value> hdaVars = targetOp.getHasDeviceAddrVars();
ArrayRef<BlockArgument> mapBlockArgs = argIface.getMapBlockArgs();
ArrayRef<BlockArgument> hdaBlockArgs = argIface.getHasDeviceAddrBlockArgs();
llvm::Function *llvmOutlinedFn = nullptr;
// TODO: It can also be false if a compile-time constant `false` IF clause is
// specified.
bool isOffloadEntry =
isTargetDevice || !ompBuilder->Config.TargetTriples.empty();
// For some private variables, the MapsForPrivatizedVariablesPass
// creates MapInfoOp instances. Go through the private variables and
// the mapped variables so that during codegeneration we are able
// to quickly look up the corresponding map variable, if any for each
// private variable.
if (!targetOp.getPrivateVars().empty() && !targetOp.getMapVars().empty()) {
OperandRange privateVars = targetOp.getPrivateVars();
std::optional<ArrayAttr> privateSyms = targetOp.getPrivateSyms();
std::optional<DenseI64ArrayAttr> privateMapIndices =
targetOp.getPrivateMapsAttr();
for (auto [privVarIdx, privVarSymPair] :
llvm::enumerate(llvm::zip_equal(privateVars, *privateSyms))) {
auto privVar = std::get<0>(privVarSymPair);
auto privSym = std::get<1>(privVarSymPair);
SymbolRefAttr privatizerName = llvm::cast<SymbolRefAttr>(privSym);
omp::PrivateClauseOp privatizer =
findPrivatizer(targetOp, privatizerName);
if (!privatizer.needsMap())
continue;
mlir::Value mappedValue =
targetOp.getMappedValueForPrivateVar(privVarIdx);
assert(mappedValue && "Expected to find mapped value for a privatized "
"variable that needs mapping");
// The MapInfoOp defining the map var isn't really needed later.
// So, we don't store it in any datastructure. Instead, we just
// do some sanity checks on it right now.
auto mapInfoOp = mappedValue.getDefiningOp<omp::MapInfoOp>();
[[maybe_unused]] Type varType = mapInfoOp.getVarType();
// Check #1: Check that the type of the private variable matches
// the type of the variable being mapped.
if (!isa<LLVM::LLVMPointerType>(privVar.getType()))
assert(
varType == privVar.getType() &&
"Type of private var doesn't match the type of the mapped value");
// Ok, only 1 sanity check for now.
// Record the block argument corresponding to this mapvar.
mappedPrivateVars.insert(
{privVar,
targetRegion.getArgument(argIface.getMapBlockArgsStart() +
(*privateMapIndices)[privVarIdx])});
}
}
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto bodyCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP)
-> llvm::OpenMPIRBuilder::InsertPointOrErrorTy {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
builder.SetCurrentDebugLocation(llvm::DebugLoc());
// Forward target-cpu and target-features function attributes from the
// original function to the new outlined function.
llvm::Function *llvmParentFn =
moduleTranslation.lookupFunction(parentFn.getName());
llvmOutlinedFn = codeGenIP.getBlock()->getParent();
assert(llvmParentFn && llvmOutlinedFn &&
"Both parent and outlined functions must exist at this point");
if (auto attr = llvmParentFn->getFnAttribute("target-cpu");
attr.isStringAttribute())
llvmOutlinedFn->addFnAttr(attr);
if (auto attr = llvmParentFn->getFnAttribute("target-features");
attr.isStringAttribute())
llvmOutlinedFn->addFnAttr(attr);
for (auto [arg, mapOp] : llvm::zip_equal(mapBlockArgs, mapVars)) {
auto mapInfoOp = cast<omp::MapInfoOp>(mapOp.getDefiningOp());
llvm::Value *mapOpValue =
moduleTranslation.lookupValue(mapInfoOp.getVarPtr());
moduleTranslation.mapValue(arg, mapOpValue);
}
for (auto [arg, mapOp] : llvm::zip_equal(hdaBlockArgs, hdaVars)) {
auto mapInfoOp = cast<omp::MapInfoOp>(mapOp.getDefiningOp());
llvm::Value *mapOpValue =
moduleTranslation.lookupValue(mapInfoOp.getVarPtr());
moduleTranslation.mapValue(arg, mapOpValue);
}
// Do privatization after moduleTranslation has already recorded
// mapped values.
PrivateVarsInfo privateVarsInfo(targetOp);
llvm::Expected<llvm::BasicBlock *> afterAllocas =
allocatePrivateVars(builder, moduleTranslation, privateVarsInfo,
allocaIP, &mappedPrivateVars);
if (failed(handleError(afterAllocas, *targetOp)))
return llvm::make_error<PreviouslyReportedError>();
builder.restoreIP(codeGenIP);
if (handleError(initPrivateVars(builder, moduleTranslation, privateVarsInfo,
&mappedPrivateVars),
*targetOp)
.failed())
return llvm::make_error<PreviouslyReportedError>();
SmallVector<Region *> privateCleanupRegions;
llvm::transform(privateVarsInfo.privatizers,
std::back_inserter(privateCleanupRegions),
[](omp::PrivateClauseOp privatizer) {
return &privatizer.getDeallocRegion();
});
llvm::Expected<llvm::BasicBlock *> exitBlock = convertOmpOpRegions(
targetRegion, "omp.target", builder, moduleTranslation);
if (!exitBlock)
return exitBlock.takeError();
builder.SetInsertPoint(*exitBlock);
if (!privateCleanupRegions.empty()) {
if (failed(inlineOmpRegionCleanup(
privateCleanupRegions, privateVarsInfo.llvmVars,
moduleTranslation, builder, "omp.targetop.private.cleanup",
/*shouldLoadCleanupRegionArg=*/false))) {
return llvm::createStringError(
"failed to inline `dealloc` region of `omp.private` "
"op in the target region");
}
return builder.saveIP();
}
return InsertPointTy(exitBlock.get(), exitBlock.get()->end());
};
StringRef parentName = parentFn.getName();
llvm::TargetRegionEntryInfo entryInfo;
getTargetEntryUniqueInfo(entryInfo, targetOp, parentName);
MapInfoData mapData;
collectMapDataFromMapOperands(mapData, mapVars, moduleTranslation, dl,
builder, /*useDevPtrOperands=*/{},
/*useDevAddrOperands=*/{}, hdaVars);
MapInfosTy combinedInfos;
auto genMapInfoCB =
[&](llvm::OpenMPIRBuilder::InsertPointTy codeGenIP) -> MapInfosTy & {
builder.restoreIP(codeGenIP);
genMapInfos(builder, moduleTranslation, dl, combinedInfos, mapData, true);
return combinedInfos;
};
auto argAccessorCB = [&](llvm::Argument &arg, llvm::Value *input,
llvm::Value *&retVal, InsertPointTy allocaIP,
InsertPointTy codeGenIP)
-> llvm::OpenMPIRBuilder::InsertPointOrErrorTy {
llvm::IRBuilderBase::InsertPointGuard guard(builder);
builder.SetCurrentDebugLocation(llvm::DebugLoc());
// We just return the unaltered argument for the host function
// for now, some alterations may be required in the future to
// keep host fallback functions working identically to the device
// version (e.g. pass ByCopy values should be treated as such on
// host and device, currently not always the case)
if (!isTargetDevice) {
retVal = cast<llvm::Value>(&arg);
return codeGenIP;
}
return createDeviceArgumentAccessor(mapData, arg, input, retVal, builder,
*ompBuilder, moduleTranslation,
allocaIP, codeGenIP);
};
llvm::OpenMPIRBuilder::TargetKernelRuntimeAttrs runtimeAttrs;
llvm::OpenMPIRBuilder::TargetKernelDefaultAttrs defaultAttrs;
Operation *targetCapturedOp = targetOp.getInnermostCapturedOmpOp();
initTargetDefaultAttrs(targetOp, targetCapturedOp, defaultAttrs,
isTargetDevice, isGPU);
// Collect host-evaluated values needed to properly launch the kernel from the
// host.
if (!isTargetDevice)
initTargetRuntimeAttrs(builder, moduleTranslation, targetOp,
targetCapturedOp, runtimeAttrs);
// Pass host-evaluated values as parameters to the kernel / host fallback,
// except if they are constants. In any case, map the MLIR block argument to
// the corresponding LLVM values.
llvm::SmallVector<llvm::Value *, 4> kernelInput;
SmallVector<Value> hostEvalVars = targetOp.getHostEvalVars();
ArrayRef<BlockArgument> hostEvalBlockArgs = argIface.getHostEvalBlockArgs();
for (auto [arg, var] : llvm::zip_equal(hostEvalBlockArgs, hostEvalVars)) {
llvm::Value *value = moduleTranslation.lookupValue(var);
moduleTranslation.mapValue(arg, value);
if (!llvm::isa<llvm::Constant>(value))
kernelInput.push_back(value);
}
for (size_t i = 0, e = mapData.OriginalValue.size(); i != e; ++i) {
// declare target arguments are not passed to kernels as arguments
// TODO: We currently do not handle cases where a member is explicitly
// passed in as an argument, this will likley need to be handled in
// the near future, rather than using IsAMember, it may be better to
// test if the relevant BlockArg is used within the target region and
// then use that as a basis for exclusion in the kernel inputs.
if (!mapData.IsDeclareTarget[i] && !mapData.IsAMember[i])
kernelInput.push_back(mapData.OriginalValue[i]);
}
SmallVector<llvm::OpenMPIRBuilder::DependData> dds;
buildDependData(targetOp.getDependKinds(), targetOp.getDependVars(),
moduleTranslation, dds);
llvm::OpenMPIRBuilder::InsertPointTy allocaIP =
findAllocaInsertPoint(builder, moduleTranslation);
llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder);
llvm::OpenMPIRBuilder::TargetDataInfo info(
/*RequiresDevicePointerInfo=*/false,
/*SeparateBeginEndCalls=*/true);
auto customMapperCB =
[&](unsigned int i) -> llvm::Expected<llvm::Function *> {
if (!combinedInfos.Mappers[i])
return nullptr;
info.HasMapper = true;
return getOrCreateUserDefinedMapperFunc(combinedInfos.Mappers[i], builder,
moduleTranslation);
};
llvm::Value *ifCond = nullptr;
if (Value targetIfCond = targetOp.getIfExpr())
ifCond = moduleTranslation.lookupValue(targetIfCond);
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
moduleTranslation.getOpenMPBuilder()->createTarget(
ompLoc, isOffloadEntry, allocaIP, builder.saveIP(), info, entryInfo,
defaultAttrs, runtimeAttrs, ifCond, kernelInput, genMapInfoCB, bodyCB,
argAccessorCB, customMapperCB, dds, targetOp.getNowait());
if (failed(handleError(afterIP, opInst)))
return failure();
builder.restoreIP(*afterIP);
// Remap access operations to declare target reference pointers for the
// device, essentially generating extra loadop's as necessary
if (moduleTranslation.getOpenMPBuilder()->Config.isTargetDevice())
handleDeclareTargetMapVar(mapData, moduleTranslation, builder,
llvmOutlinedFn);
return success();
}
static LogicalResult
convertDeclareTargetAttr(Operation *op, mlir::omp::DeclareTargetAttr attribute,
LLVM::ModuleTranslation &moduleTranslation) {
// Amend omp.declare_target by deleting the IR of the outlined functions
// created for target regions. They cannot be filtered out from MLIR earlier
// because the omp.target operation inside must be translated to LLVM, but
// the wrapper functions themselves must not remain at the end of the
// process. We know that functions where omp.declare_target does not match
// omp.is_target_device at this stage can only be wrapper functions because
// those that aren't are removed earlier as an MLIR transformation pass.
if (FunctionOpInterface funcOp = dyn_cast<FunctionOpInterface>(op)) {
if (auto offloadMod = dyn_cast<omp::OffloadModuleInterface>(
op->getParentOfType<ModuleOp>().getOperation())) {
if (!offloadMod.getIsTargetDevice())
return success();
omp::DeclareTargetDeviceType declareType =
attribute.getDeviceType().getValue();
if (declareType == omp::DeclareTargetDeviceType::host) {
llvm::Function *llvmFunc =
moduleTranslation.lookupFunction(funcOp.getName());
llvmFunc->dropAllReferences();
llvmFunc->eraseFromParent();
}
}
return success();
}
if (LLVM::GlobalOp gOp = dyn_cast<LLVM::GlobalOp>(op)) {
llvm::Module *llvmModule = moduleTranslation.getLLVMModule();
if (auto *gVal = llvmModule->getNamedValue(gOp.getSymName())) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
bool isDeclaration = gOp.isDeclaration();
bool isExternallyVisible =
gOp.getVisibility() != mlir::SymbolTable::Visibility::Private;
auto loc = op->getLoc()->findInstanceOf<FileLineColLoc>();
llvm::StringRef mangledName = gOp.getSymName();
auto captureClause =
convertToCaptureClauseKind(attribute.getCaptureClause().getValue());
auto deviceClause =
convertToDeviceClauseKind(attribute.getDeviceType().getValue());
// unused for MLIR at the moment, required in Clang for book
// keeping
std::vector<llvm::GlobalVariable *> generatedRefs;
std::vector<llvm::Triple> targetTriple;
auto targetTripleAttr = dyn_cast_or_null<mlir::StringAttr>(
op->getParentOfType<mlir::ModuleOp>()->getAttr(
LLVM::LLVMDialect::getTargetTripleAttrName()));
if (targetTripleAttr)
targetTriple.emplace_back(targetTripleAttr.data());
auto fileInfoCallBack = [&loc]() {
std::string filename = "";
std::uint64_t lineNo = 0;
if (loc) {
filename = loc.getFilename().str();
lineNo = loc.getLine();
}
return std::pair<std::string, std::uint64_t>(llvm::StringRef(filename),
lineNo);
};
ompBuilder->registerTargetGlobalVariable(
captureClause, deviceClause, isDeclaration, isExternallyVisible,
ompBuilder->getTargetEntryUniqueInfo(fileInfoCallBack), mangledName,
generatedRefs, /*OpenMPSimd*/ false, targetTriple,
/*GlobalInitializer*/ nullptr, /*VariableLinkage*/ nullptr,
gVal->getType(), gVal);
if (ompBuilder->Config.isTargetDevice() &&
(attribute.getCaptureClause().getValue() !=
mlir::omp::DeclareTargetCaptureClause::to ||
ompBuilder->Config.hasRequiresUnifiedSharedMemory())) {
ompBuilder->getAddrOfDeclareTargetVar(
captureClause, deviceClause, isDeclaration, isExternallyVisible,
ompBuilder->getTargetEntryUniqueInfo(fileInfoCallBack), mangledName,
generatedRefs, /*OpenMPSimd*/ false, targetTriple, gVal->getType(),
/*GlobalInitializer*/ nullptr,
/*VariableLinkage*/ nullptr);
}
}
}
return success();
}
// Returns true if the operation is inside a TargetOp or
// is part of a declare target function.
static bool isTargetDeviceOp(Operation *op) {
// Assumes no reverse offloading
if (op->getParentOfType<omp::TargetOp>())
return true;
// Certain operations return results, and whether utilised in host or
// target there is a chance an LLVM Dialect operation depends on it
// by taking it in as an operand, so we must always lower these in
// some manner or result in an ICE (whether they end up in a no-op
// or otherwise).
if (mlir::isa<omp::ThreadprivateOp>(op))
return true;
if (auto parentFn = op->getParentOfType<LLVM::LLVMFuncOp>())
if (auto declareTargetIface =
llvm::dyn_cast<mlir::omp::DeclareTargetInterface>(
parentFn.getOperation()))
if (declareTargetIface.isDeclareTarget() &&
declareTargetIface.getDeclareTargetDeviceType() !=
mlir::omp::DeclareTargetDeviceType::host)
return true;
return false;
}
/// Given an OpenMP MLIR operation, create the corresponding LLVM IR (including
/// OpenMP runtime calls).
static LogicalResult
convertHostOrTargetOperation(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
// For each loop, introduce one stack frame to hold loop information. Ensure
// this is only done for the outermost loop wrapper to prevent introducing
// multiple stack frames for a single loop. Initially set to null, the loop
// information structure is initialized during translation of the nested
// omp.loop_nest operation, making it available to translation of all loop
// wrappers after their body has been successfully translated.
bool isOutermostLoopWrapper =
isa_and_present<omp::LoopWrapperInterface>(op) &&
!dyn_cast_if_present<omp::LoopWrapperInterface>(op->getParentOp());
if (isOutermostLoopWrapper)
moduleTranslation.stackPush<OpenMPLoopInfoStackFrame>();
auto result =
llvm::TypeSwitch<Operation *, LogicalResult>(op)
.Case([&](omp::BarrierOp op) -> LogicalResult {
if (failed(checkImplementationStatus(*op)))
return failure();
llvm::OpenMPIRBuilder::InsertPointOrErrorTy afterIP =
ompBuilder->createBarrier(builder.saveIP(),
llvm::omp::OMPD_barrier);
return handleError(afterIP, *op);
})
.Case([&](omp::TaskyieldOp op) {
if (failed(checkImplementationStatus(*op)))
return failure();
ompBuilder->createTaskyield(builder.saveIP());
return success();
})
.Case([&](omp::FlushOp op) {
if (failed(checkImplementationStatus(*op)))
return failure();
// No support in Openmp runtime function (__kmpc_flush) to accept
// the argument list.
// OpenMP standard states the following:
// "An implementation may implement a flush with a list by ignoring
// the list, and treating it the same as a flush without a list."
//
// The argument list is discarded so that, flush with a list is
// treated same as a flush without a list.
ompBuilder->createFlush(builder.saveIP());
return success();
})
.Case([&](omp::ParallelOp op) {
return convertOmpParallel(op, builder, moduleTranslation);
})
.Case([&](omp::MaskedOp) {
return convertOmpMasked(*op, builder, moduleTranslation);
})
.Case([&](omp::MasterOp) {
return convertOmpMaster(*op, builder, moduleTranslation);
})
.Case([&](omp::CriticalOp) {
return convertOmpCritical(*op, builder, moduleTranslation);
})
.Case([&](omp::OrderedRegionOp) {
return convertOmpOrderedRegion(*op, builder, moduleTranslation);
})
.Case([&](omp::OrderedOp) {
return convertOmpOrdered(*op, builder, moduleTranslation);
})
.Case([&](omp::WsloopOp) {
return convertOmpWsloop(*op, builder, moduleTranslation);
})
.Case([&](omp::SimdOp) {
return convertOmpSimd(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicReadOp) {
return convertOmpAtomicRead(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicWriteOp) {
return convertOmpAtomicWrite(*op, builder, moduleTranslation);
})
.Case([&](omp::AtomicUpdateOp op) {
return convertOmpAtomicUpdate(op, builder, moduleTranslation);
})
.Case([&](omp::AtomicCaptureOp op) {
return convertOmpAtomicCapture(op, builder, moduleTranslation);
})
.Case([&](omp::CancelOp op) {
return convertOmpCancel(op, builder, moduleTranslation);
})
.Case([&](omp::SectionsOp) {
return convertOmpSections(*op, builder, moduleTranslation);
})
.Case([&](omp::SingleOp op) {
return convertOmpSingle(op, builder, moduleTranslation);
})
.Case([&](omp::TeamsOp op) {
return convertOmpTeams(op, builder, moduleTranslation);
})
.Case([&](omp::TaskOp op) {
return convertOmpTaskOp(op, builder, moduleTranslation);
})
.Case([&](omp::TaskgroupOp op) {
return convertOmpTaskgroupOp(op, builder, moduleTranslation);
})
.Case([&](omp::TaskwaitOp op) {
return convertOmpTaskwaitOp(op, builder, moduleTranslation);
})
.Case<omp::YieldOp, omp::TerminatorOp, omp::DeclareMapperOp,
omp::DeclareMapperInfoOp, omp::DeclareReductionOp,
omp::CriticalDeclareOp>([](auto op) {
// `yield` and `terminator` can be just omitted. The block structure
// was created in the region that handles their parent operation.
// `declare_reduction` will be used by reductions and is not
// converted directly, skip it.
// `declare_mapper` and `declare_mapper.info` are handled whenever
// they are referred to through a `map` clause.
// `critical.declare` is only used to declare names of critical
// sections which will be used by `critical` ops and hence can be
// ignored for lowering. The OpenMP IRBuilder will create unique
// name for critical section names.
return success();
})
.Case([&](omp::ThreadprivateOp) {
return convertOmpThreadprivate(*op, builder, moduleTranslation);
})
.Case<omp::TargetDataOp, omp::TargetEnterDataOp,
omp::TargetExitDataOp, omp::TargetUpdateOp>([&](auto op) {
return convertOmpTargetData(op, builder, moduleTranslation);
})
.Case([&](omp::TargetOp) {
return convertOmpTarget(*op, builder, moduleTranslation);
})
.Case([&](omp::DistributeOp) {
return convertOmpDistribute(*op, builder, moduleTranslation);
})
.Case([&](omp::LoopNestOp) {
return convertOmpLoopNest(*op, builder, moduleTranslation);
})
.Case<omp::MapInfoOp, omp::MapBoundsOp, omp::PrivateClauseOp>(
[&](auto op) {
// No-op, should be handled by relevant owning operations e.g.
// TargetOp, TargetEnterDataOp, TargetExitDataOp, TargetDataOp
// etc. and then discarded
return success();
})
.Default([&](Operation *inst) {
return inst->emitError()
<< "not yet implemented: " << inst->getName();
});
if (isOutermostLoopWrapper)
moduleTranslation.stackPop();
return result;
}
static LogicalResult
convertTargetDeviceOp(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
return convertHostOrTargetOperation(op, builder, moduleTranslation);
}
static LogicalResult
convertTargetOpsInNest(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) {
if (isa<omp::TargetOp>(op))
return convertOmpTarget(*op, builder, moduleTranslation);
if (isa<omp::TargetDataOp>(op))
return convertOmpTargetData(op, builder, moduleTranslation);
bool interrupted =
op->walk<WalkOrder::PreOrder>([&](Operation *oper) {
if (isa<omp::TargetOp>(oper)) {
if (failed(convertOmpTarget(*oper, builder, moduleTranslation)))
return WalkResult::interrupt();
return WalkResult::skip();
}
if (isa<omp::TargetDataOp>(oper)) {
if (failed(convertOmpTargetData(oper, builder, moduleTranslation)))
return WalkResult::interrupt();
return WalkResult::skip();
}
// Non-target ops might nest target-related ops, therefore, we
// translate them as non-OpenMP scopes. Translating them is needed by
// nested target-related ops since they might need LLVM values defined
// in their parent non-target ops.
if (isa<omp::OpenMPDialect>(oper->getDialect()) &&
oper->getParentOfType<LLVM::LLVMFuncOp>() &&
!oper->getRegions().empty()) {
if (auto blockArgsIface =
dyn_cast<omp::BlockArgOpenMPOpInterface>(oper))
forwardArgs(moduleTranslation, blockArgsIface);
else {
// Here we map entry block arguments of
// non-BlockArgOpenMPOpInterface ops if they can be encountered
// inside of a function and they define any of these arguments.
if (isa<mlir::omp::AtomicUpdateOp>(oper))
for (auto [operand, arg] :
llvm::zip_equal(oper->getOperands(),
oper->getRegion(0).getArguments())) {
moduleTranslation.mapValue(
arg, builder.CreateLoad(
moduleTranslation.convertType(arg.getType()),
moduleTranslation.lookupValue(operand)));
}
}
if (auto loopNest = dyn_cast<omp::LoopNestOp>(oper)) {
assert(builder.GetInsertBlock() &&
"No insert block is set for the builder");
for (auto iv : loopNest.getIVs()) {
// Map iv to an undefined value just to keep the IR validity.
moduleTranslation.mapValue(
iv, llvm::PoisonValue::get(
moduleTranslation.convertType(iv.getType())));
}
}
for (Region &region : oper->getRegions()) {
// Regions are fake in the sense that they are not a truthful
// translation of the OpenMP construct being converted (e.g. no
// OpenMP runtime calls will be generated). We just need this to
// prepare the kernel invocation args.
SmallVector<llvm::PHINode *> phis;
auto result = convertOmpOpRegions(
region, oper->getName().getStringRef().str() + ".fake.region",
builder, moduleTranslation, &phis);
if (failed(handleError(result, *oper)))
return WalkResult::interrupt();
builder.SetInsertPoint(result.get(), result.get()->end());
}
return WalkResult::skip();
}
return WalkResult::advance();
}).wasInterrupted();
return failure(interrupted);
}
namespace {
/// Implementation of the dialect interface that converts operations belonging
/// to the OpenMP dialect to LLVM IR.
class OpenMPDialectLLVMIRTranslationInterface
: public LLVMTranslationDialectInterface {
public:
using LLVMTranslationDialectInterface::LLVMTranslationDialectInterface;
/// Translates the given operation to LLVM IR using the provided IR builder
/// and saving the state in `moduleTranslation`.
LogicalResult
convertOperation(Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) const final;
/// Given an OpenMP MLIR attribute, create the corresponding LLVM-IR,
/// runtime calls, or operation amendments
LogicalResult
amendOperation(Operation *op, ArrayRef<llvm::Instruction *> instructions,
NamedAttribute attribute,
LLVM::ModuleTranslation &moduleTranslation) const final;
};
} // namespace
LogicalResult OpenMPDialectLLVMIRTranslationInterface::amendOperation(
Operation *op, ArrayRef<llvm::Instruction *> instructions,
NamedAttribute attribute,
LLVM::ModuleTranslation &moduleTranslation) const {
return llvm::StringSwitch<llvm::function_ref<LogicalResult(Attribute)>>(
attribute.getName())
.Case("omp.is_target_device",
[&](Attribute attr) {
if (auto deviceAttr = dyn_cast<BoolAttr>(attr)) {
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.setIsTargetDevice(deviceAttr.getValue());
return success();
}
return failure();
})
.Case("omp.is_gpu",
[&](Attribute attr) {
if (auto gpuAttr = dyn_cast<BoolAttr>(attr)) {
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.setIsGPU(gpuAttr.getValue());
return success();
}
return failure();
})
.Case("omp.host_ir_filepath",
[&](Attribute attr) {
if (auto filepathAttr = dyn_cast<StringAttr>(attr)) {
llvm::OpenMPIRBuilder *ompBuilder =
moduleTranslation.getOpenMPBuilder();
ompBuilder->loadOffloadInfoMetadata(filepathAttr.getValue());
return success();
}
return failure();
})
.Case("omp.flags",
[&](Attribute attr) {
if (auto rtlAttr = dyn_cast<omp::FlagsAttr>(attr))
return convertFlagsAttr(op, rtlAttr, moduleTranslation);
return failure();
})
.Case("omp.version",
[&](Attribute attr) {
if (auto versionAttr = dyn_cast<omp::VersionAttr>(attr)) {
llvm::OpenMPIRBuilder *ompBuilder =
moduleTranslation.getOpenMPBuilder();
ompBuilder->M.addModuleFlag(llvm::Module::Max, "openmp",
versionAttr.getVersion());
return success();
}
return failure();
})
.Case("omp.declare_target",
[&](Attribute attr) {
if (auto declareTargetAttr =
dyn_cast<omp::DeclareTargetAttr>(attr))
return convertDeclareTargetAttr(op, declareTargetAttr,
moduleTranslation);
return failure();
})
.Case("omp.requires",
[&](Attribute attr) {
if (auto requiresAttr = dyn_cast<omp::ClauseRequiresAttr>(attr)) {
using Requires = omp::ClauseRequires;
Requires flags = requiresAttr.getValue();
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.setHasRequiresReverseOffload(
bitEnumContainsAll(flags, Requires::reverse_offload));
config.setHasRequiresUnifiedAddress(
bitEnumContainsAll(flags, Requires::unified_address));
config.setHasRequiresUnifiedSharedMemory(
bitEnumContainsAll(flags, Requires::unified_shared_memory));
config.setHasRequiresDynamicAllocators(
bitEnumContainsAll(flags, Requires::dynamic_allocators));
return success();
}
return failure();
})
.Case("omp.target_triples",
[&](Attribute attr) {
if (auto triplesAttr = dyn_cast<ArrayAttr>(attr)) {
llvm::OpenMPIRBuilderConfig &config =
moduleTranslation.getOpenMPBuilder()->Config;
config.TargetTriples.clear();
config.TargetTriples.reserve(triplesAttr.size());
for (Attribute tripleAttr : triplesAttr) {
if (auto tripleStrAttr = dyn_cast<StringAttr>(tripleAttr))
config.TargetTriples.emplace_back(tripleStrAttr.getValue());
else
return failure();
}
return success();
}
return failure();
})
.Default([](Attribute) {
// Fall through for omp attributes that do not require lowering.
return success();
})(attribute.getValue());
return failure();
}
/// Given an OpenMP MLIR operation, create the corresponding LLVM IR
/// (including OpenMP runtime calls).
LogicalResult OpenMPDialectLLVMIRTranslationInterface::convertOperation(
Operation *op, llvm::IRBuilderBase &builder,
LLVM::ModuleTranslation &moduleTranslation) const {
llvm::OpenMPIRBuilder *ompBuilder = moduleTranslation.getOpenMPBuilder();
if (ompBuilder->Config.isTargetDevice()) {
if (isTargetDeviceOp(op)) {
return convertTargetDeviceOp(op, builder, moduleTranslation);
} else {
return convertTargetOpsInNest(op, builder, moduleTranslation);
}
}
return convertHostOrTargetOperation(op, builder, moduleTranslation);
}
void mlir::registerOpenMPDialectTranslation(DialectRegistry &registry) {
registry.insert<omp::OpenMPDialect>();
registry.addExtension(+[](MLIRContext *ctx, omp::OpenMPDialect *dialect) {
dialect->addInterfaces<OpenMPDialectLLVMIRTranslationInterface>();
});
}
void mlir::registerOpenMPDialectTranslation(MLIRContext &context) {
DialectRegistry registry;
registerOpenMPDialectTranslation(registry);
context.appendDialectRegistry(registry);
}