The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
125 lines
4.6 KiB
C++
125 lines
4.6 KiB
C++
//===- FusePadOpWithLinalgProducer.cpp ---- Fuse pad with linalg producer -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements patterns that fuses a linalg.generic -> tensor.pad op
|
|
// chain into a tensor.extract_slice -> linalg.generic -> tensor.insert_slice
|
|
// op chain.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
/// A sequence of operations
|
|
///
|
|
/// ```mlir
|
|
/// %0 = linalg. ...
|
|
/// %1 = tensor.pad %0 ...
|
|
/// ```
|
|
///
|
|
/// can be replaced with
|
|
///
|
|
/// ```mlir
|
|
/// %0 = linalg.fill
|
|
/// %1 = tensor.extract_slice %0 ...
|
|
/// %2 = linalg. .... outs(..., %1, ....) ....
|
|
/// %3 = tensor.insert_slice %2 into %1 ...
|
|
/// ```
|
|
///
|
|
/// if the `linalg.generic` has all parallel iterator types.
|
|
struct FusePadOp : OpRewritePattern<tensor::PadOp> {
|
|
using OpRewritePattern<tensor::PadOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tensor::PadOp padOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// Only works on padding op that sets the padded value to a constant.
|
|
Value padValue = padOp.getConstantPaddingValue();
|
|
if (!padValue)
|
|
return rewriter.notifyMatchFailure(padOp, "non constant padding");
|
|
|
|
// This pattern could work for any Linalg op. For now restrict it to generic
|
|
// ops.
|
|
Value source = padOp.getSource();
|
|
auto linalgOp = source.getDefiningOp<linalg::GenericOp>();
|
|
if (!linalgOp) {
|
|
return rewriter.notifyMatchFailure(
|
|
padOp, "expected source to be linalg.generic op");
|
|
}
|
|
// All iterator types need to be parallel.
|
|
if (linalgOp.getNumLoops() != linalgOp.getNumParallelLoops()) {
|
|
return rewriter.notifyMatchFailure(
|
|
padOp, "only supported for ops with all parallel iterator types");
|
|
}
|
|
ReifiedRankedShapedTypeDims resultShape;
|
|
if (failed(reifyResultShapes(rewriter, padOp, resultShape)) ||
|
|
resultShape.size() != 1) {
|
|
return rewriter.notifyMatchFailure(
|
|
padOp, "failed to get shape of pad op result");
|
|
}
|
|
|
|
Location loc = padOp.getLoc();
|
|
|
|
// Create the tensor of same size as output of the pad op.
|
|
RankedTensorType padResultType = padOp.getResultType();
|
|
auto resultSizes = resultShape[0];
|
|
auto emptyTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, resultSizes, padResultType.getElementType());
|
|
|
|
// Fill the tensor with the pad value.
|
|
// TODO: There is an option to fill only the boundaries. For now just
|
|
// filling the whole tensor.
|
|
auto fillTensor =
|
|
rewriter.create<linalg::FillOp>(loc, padValue, emptyTensor.getResult());
|
|
|
|
// Construct a slice of the fill result that is to be replaced with the
|
|
// result of the generic op. The low pad values are the offsets, the size of
|
|
// the source is the size of the slice.
|
|
// TODO: This insert/extract could be potentially made a utility method.
|
|
unsigned resultNumber = cast<OpResult>(source).getResultNumber();
|
|
SmallVector<OpFoldResult> offsets = padOp.getMixedLowPad();
|
|
SmallVector<OpFoldResult> sizes;
|
|
sizes.reserve(offsets.size());
|
|
for (const auto &shape :
|
|
llvm::enumerate(cast<RankedTensorType>(source.getType()).getShape())) {
|
|
if (ShapedType::isDynamic(shape.value())) {
|
|
sizes.push_back(
|
|
rewriter.create<tensor::DimOp>(loc, source, shape.index())
|
|
.getResult());
|
|
} else {
|
|
sizes.push_back(rewriter.getIndexAttr(shape.value()));
|
|
}
|
|
}
|
|
SmallVector<OpFoldResult> strides(offsets.size(), rewriter.getIndexAttr(1));
|
|
auto slice = rewriter.create<tensor::ExtractSliceOp>(
|
|
loc, fillTensor.getResult(0), offsets, sizes, strides);
|
|
|
|
// Clone the generic op.
|
|
auto clonedOp =
|
|
cast<linalg::GenericOp>(rewriter.clone(*linalgOp.getOperation()));
|
|
clonedOp.setDpsInitOperand(resultNumber, slice.getResult());
|
|
|
|
// Insert it back into the result of the fill.
|
|
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
|
|
padOp, clonedOp.getResult(resultNumber), fillTensor.getResult(0),
|
|
offsets, sizes, strides);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::linalg::populateFuseTensorPadWithProducerLinalgOpPatterns(
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<FusePadOp>(patterns.getContext());
|
|
}
|