Files
clang-p2996/mlir/lib/Conversion/AsyncToLLVM/AsyncToLLVM.cpp
River Riddle 7ceffae18c [mlir] Convert OpTrait::FunctionLike to FunctionOpInterface
This commit refactors the FunctionLike trait into an interface (FunctionOpInterface).
FunctionLike as it is today is already a pseudo-interface, with many users checking the
presence of the trait and then manually into functionality implemented in the
function_like_impl namespace. By transitioning to an interface, these accesses are much
cleaner (ideally with no direct calls to the impl namespace outside of the implementation
of the derived function operations, e.g. for parsing/printing utilities).

I've tried to maintain as much compatability with the current state as possible, while
also trying to clean up as much of the cruft as possible. The general migration plan for
current users of FunctionLike is as follows:

* function_like_impl -> function_interface_impl
Realistically most user calls should remove references to functions within this namespace
outside of a vary narrow set (e.g. parsing/printing utilities). Calls to the attribute name
accessors should be migrated to the `FunctionOpInterface::` equivalent, most everything
else should be updated to be driven through an instance of the interface.

* OpTrait::FunctionLike -> FunctionOpInterface
`hasTrait` checks will need to be moved to isa, along with the other various Trait vs
Interface API differences.

* populateFunctionLikeTypeConversionPattern -> populateFunctionOpInterfaceTypeConversionPattern

Fixes #52917

Differential Revision: https://reviews.llvm.org/D117272
2022-01-18 20:56:53 -08:00

1092 lines
42 KiB
C++

//===- AsyncToLLVM.cpp - Convert Async to LLVM dialect --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/AsyncToLLVM/AsyncToLLVM.h"
#include "../PassDetail.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/TypeSwitch.h"
#define DEBUG_TYPE "convert-async-to-llvm"
using namespace mlir;
using namespace mlir::async;
//===----------------------------------------------------------------------===//
// Async Runtime C API declaration.
//===----------------------------------------------------------------------===//
static constexpr const char *kAddRef = "mlirAsyncRuntimeAddRef";
static constexpr const char *kDropRef = "mlirAsyncRuntimeDropRef";
static constexpr const char *kCreateToken = "mlirAsyncRuntimeCreateToken";
static constexpr const char *kCreateValue = "mlirAsyncRuntimeCreateValue";
static constexpr const char *kCreateGroup = "mlirAsyncRuntimeCreateGroup";
static constexpr const char *kEmplaceToken = "mlirAsyncRuntimeEmplaceToken";
static constexpr const char *kEmplaceValue = "mlirAsyncRuntimeEmplaceValue";
static constexpr const char *kSetTokenError = "mlirAsyncRuntimeSetTokenError";
static constexpr const char *kSetValueError = "mlirAsyncRuntimeSetValueError";
static constexpr const char *kIsTokenError = "mlirAsyncRuntimeIsTokenError";
static constexpr const char *kIsValueError = "mlirAsyncRuntimeIsValueError";
static constexpr const char *kIsGroupError = "mlirAsyncRuntimeIsGroupError";
static constexpr const char *kAwaitToken = "mlirAsyncRuntimeAwaitToken";
static constexpr const char *kAwaitValue = "mlirAsyncRuntimeAwaitValue";
static constexpr const char *kAwaitGroup = "mlirAsyncRuntimeAwaitAllInGroup";
static constexpr const char *kExecute = "mlirAsyncRuntimeExecute";
static constexpr const char *kGetValueStorage =
"mlirAsyncRuntimeGetValueStorage";
static constexpr const char *kAddTokenToGroup =
"mlirAsyncRuntimeAddTokenToGroup";
static constexpr const char *kAwaitTokenAndExecute =
"mlirAsyncRuntimeAwaitTokenAndExecute";
static constexpr const char *kAwaitValueAndExecute =
"mlirAsyncRuntimeAwaitValueAndExecute";
static constexpr const char *kAwaitAllAndExecute =
"mlirAsyncRuntimeAwaitAllInGroupAndExecute";
namespace {
/// Async Runtime API function types.
///
/// Because we can't create API function signature for type parametrized
/// async.value type, we use opaque pointers (!llvm.ptr<i8>) instead. After
/// lowering all async data types become opaque pointers at runtime.
struct AsyncAPI {
// All async types are lowered to opaque i8* LLVM pointers at runtime.
static LLVM::LLVMPointerType opaquePointerType(MLIRContext *ctx) {
return LLVM::LLVMPointerType::get(IntegerType::get(ctx, 8));
}
static LLVM::LLVMTokenType tokenType(MLIRContext *ctx) {
return LLVM::LLVMTokenType::get(ctx);
}
static FunctionType addOrDropRefFunctionType(MLIRContext *ctx) {
auto ref = opaquePointerType(ctx);
auto count = IntegerType::get(ctx, 64);
return FunctionType::get(ctx, {ref, count}, {});
}
static FunctionType createTokenFunctionType(MLIRContext *ctx) {
return FunctionType::get(ctx, {}, {TokenType::get(ctx)});
}
static FunctionType createValueFunctionType(MLIRContext *ctx) {
auto i64 = IntegerType::get(ctx, 64);
auto value = opaquePointerType(ctx);
return FunctionType::get(ctx, {i64}, {value});
}
static FunctionType createGroupFunctionType(MLIRContext *ctx) {
auto i64 = IntegerType::get(ctx, 64);
return FunctionType::get(ctx, {i64}, {GroupType::get(ctx)});
}
static FunctionType getValueStorageFunctionType(MLIRContext *ctx) {
auto value = opaquePointerType(ctx);
auto storage = opaquePointerType(ctx);
return FunctionType::get(ctx, {value}, {storage});
}
static FunctionType emplaceTokenFunctionType(MLIRContext *ctx) {
return FunctionType::get(ctx, {TokenType::get(ctx)}, {});
}
static FunctionType emplaceValueFunctionType(MLIRContext *ctx) {
auto value = opaquePointerType(ctx);
return FunctionType::get(ctx, {value}, {});
}
static FunctionType setTokenErrorFunctionType(MLIRContext *ctx) {
return FunctionType::get(ctx, {TokenType::get(ctx)}, {});
}
static FunctionType setValueErrorFunctionType(MLIRContext *ctx) {
auto value = opaquePointerType(ctx);
return FunctionType::get(ctx, {value}, {});
}
static FunctionType isTokenErrorFunctionType(MLIRContext *ctx) {
auto i1 = IntegerType::get(ctx, 1);
return FunctionType::get(ctx, {TokenType::get(ctx)}, {i1});
}
static FunctionType isValueErrorFunctionType(MLIRContext *ctx) {
auto value = opaquePointerType(ctx);
auto i1 = IntegerType::get(ctx, 1);
return FunctionType::get(ctx, {value}, {i1});
}
static FunctionType isGroupErrorFunctionType(MLIRContext *ctx) {
auto i1 = IntegerType::get(ctx, 1);
return FunctionType::get(ctx, {GroupType::get(ctx)}, {i1});
}
static FunctionType awaitTokenFunctionType(MLIRContext *ctx) {
return FunctionType::get(ctx, {TokenType::get(ctx)}, {});
}
static FunctionType awaitValueFunctionType(MLIRContext *ctx) {
auto value = opaquePointerType(ctx);
return FunctionType::get(ctx, {value}, {});
}
static FunctionType awaitGroupFunctionType(MLIRContext *ctx) {
return FunctionType::get(ctx, {GroupType::get(ctx)}, {});
}
static FunctionType executeFunctionType(MLIRContext *ctx) {
auto hdl = opaquePointerType(ctx);
auto resume = LLVM::LLVMPointerType::get(resumeFunctionType(ctx));
return FunctionType::get(ctx, {hdl, resume}, {});
}
static FunctionType addTokenToGroupFunctionType(MLIRContext *ctx) {
auto i64 = IntegerType::get(ctx, 64);
return FunctionType::get(ctx, {TokenType::get(ctx), GroupType::get(ctx)},
{i64});
}
static FunctionType awaitTokenAndExecuteFunctionType(MLIRContext *ctx) {
auto hdl = opaquePointerType(ctx);
auto resume = LLVM::LLVMPointerType::get(resumeFunctionType(ctx));
return FunctionType::get(ctx, {TokenType::get(ctx), hdl, resume}, {});
}
static FunctionType awaitValueAndExecuteFunctionType(MLIRContext *ctx) {
auto value = opaquePointerType(ctx);
auto hdl = opaquePointerType(ctx);
auto resume = LLVM::LLVMPointerType::get(resumeFunctionType(ctx));
return FunctionType::get(ctx, {value, hdl, resume}, {});
}
static FunctionType awaitAllAndExecuteFunctionType(MLIRContext *ctx) {
auto hdl = opaquePointerType(ctx);
auto resume = LLVM::LLVMPointerType::get(resumeFunctionType(ctx));
return FunctionType::get(ctx, {GroupType::get(ctx), hdl, resume}, {});
}
// Auxiliary coroutine resume intrinsic wrapper.
static Type resumeFunctionType(MLIRContext *ctx) {
auto voidTy = LLVM::LLVMVoidType::get(ctx);
auto i8Ptr = opaquePointerType(ctx);
return LLVM::LLVMFunctionType::get(voidTy, {i8Ptr}, false);
}
};
} // namespace
/// Adds Async Runtime C API declarations to the module.
static void addAsyncRuntimeApiDeclarations(ModuleOp module) {
auto builder =
ImplicitLocOpBuilder::atBlockEnd(module.getLoc(), module.getBody());
auto addFuncDecl = [&](StringRef name, FunctionType type) {
if (module.lookupSymbol(name))
return;
builder.create<FuncOp>(name, type).setPrivate();
};
MLIRContext *ctx = module.getContext();
addFuncDecl(kAddRef, AsyncAPI::addOrDropRefFunctionType(ctx));
addFuncDecl(kDropRef, AsyncAPI::addOrDropRefFunctionType(ctx));
addFuncDecl(kCreateToken, AsyncAPI::createTokenFunctionType(ctx));
addFuncDecl(kCreateValue, AsyncAPI::createValueFunctionType(ctx));
addFuncDecl(kCreateGroup, AsyncAPI::createGroupFunctionType(ctx));
addFuncDecl(kEmplaceToken, AsyncAPI::emplaceTokenFunctionType(ctx));
addFuncDecl(kEmplaceValue, AsyncAPI::emplaceValueFunctionType(ctx));
addFuncDecl(kSetTokenError, AsyncAPI::setTokenErrorFunctionType(ctx));
addFuncDecl(kSetValueError, AsyncAPI::setValueErrorFunctionType(ctx));
addFuncDecl(kIsTokenError, AsyncAPI::isTokenErrorFunctionType(ctx));
addFuncDecl(kIsValueError, AsyncAPI::isValueErrorFunctionType(ctx));
addFuncDecl(kIsGroupError, AsyncAPI::isGroupErrorFunctionType(ctx));
addFuncDecl(kAwaitToken, AsyncAPI::awaitTokenFunctionType(ctx));
addFuncDecl(kAwaitValue, AsyncAPI::awaitValueFunctionType(ctx));
addFuncDecl(kAwaitGroup, AsyncAPI::awaitGroupFunctionType(ctx));
addFuncDecl(kExecute, AsyncAPI::executeFunctionType(ctx));
addFuncDecl(kGetValueStorage, AsyncAPI::getValueStorageFunctionType(ctx));
addFuncDecl(kAddTokenToGroup, AsyncAPI::addTokenToGroupFunctionType(ctx));
addFuncDecl(kAwaitTokenAndExecute,
AsyncAPI::awaitTokenAndExecuteFunctionType(ctx));
addFuncDecl(kAwaitValueAndExecute,
AsyncAPI::awaitValueAndExecuteFunctionType(ctx));
addFuncDecl(kAwaitAllAndExecute,
AsyncAPI::awaitAllAndExecuteFunctionType(ctx));
}
//===----------------------------------------------------------------------===//
// Coroutine resume function wrapper.
//===----------------------------------------------------------------------===//
static constexpr const char *kResume = "__resume";
/// A function that takes a coroutine handle and calls a `llvm.coro.resume`
/// intrinsics. We need this function to be able to pass it to the async
/// runtime execute API.
static void addResumeFunction(ModuleOp module) {
if (module.lookupSymbol(kResume))
return;
MLIRContext *ctx = module.getContext();
auto loc = module.getLoc();
auto moduleBuilder = ImplicitLocOpBuilder::atBlockEnd(loc, module.getBody());
auto voidTy = LLVM::LLVMVoidType::get(ctx);
auto i8Ptr = LLVM::LLVMPointerType::get(IntegerType::get(ctx, 8));
auto resumeOp = moduleBuilder.create<LLVM::LLVMFuncOp>(
kResume, LLVM::LLVMFunctionType::get(voidTy, {i8Ptr}));
resumeOp.setPrivate();
auto *block = resumeOp.addEntryBlock();
auto blockBuilder = ImplicitLocOpBuilder::atBlockEnd(loc, block);
blockBuilder.create<LLVM::CoroResumeOp>(resumeOp.getArgument(0));
blockBuilder.create<LLVM::ReturnOp>(ValueRange());
}
//===----------------------------------------------------------------------===//
// Convert Async dialect types to LLVM types.
//===----------------------------------------------------------------------===//
namespace {
/// AsyncRuntimeTypeConverter only converts types from the Async dialect to
/// their runtime type (opaque pointers) and does not convert any other types.
class AsyncRuntimeTypeConverter : public TypeConverter {
public:
AsyncRuntimeTypeConverter() {
addConversion([](Type type) { return type; });
addConversion(convertAsyncTypes);
}
static Optional<Type> convertAsyncTypes(Type type) {
if (type.isa<TokenType, GroupType, ValueType>())
return AsyncAPI::opaquePointerType(type.getContext());
if (type.isa<CoroIdType, CoroStateType>())
return AsyncAPI::tokenType(type.getContext());
if (type.isa<CoroHandleType>())
return AsyncAPI::opaquePointerType(type.getContext());
return llvm::None;
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.coro.id to @llvm.coro.id intrinsic.
//===----------------------------------------------------------------------===//
namespace {
class CoroIdOpConversion : public OpConversionPattern<CoroIdOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CoroIdOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto token = AsyncAPI::tokenType(op->getContext());
auto i8Ptr = AsyncAPI::opaquePointerType(op->getContext());
auto loc = op->getLoc();
// Constants for initializing coroutine frame.
auto constZero = rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getI32Type(), rewriter.getI32IntegerAttr(0));
auto nullPtr = rewriter.create<LLVM::NullOp>(loc, i8Ptr);
// Get coroutine id: @llvm.coro.id.
rewriter.replaceOpWithNewOp<LLVM::CoroIdOp>(
op, token, ValueRange({constZero, nullPtr, nullPtr, nullPtr}));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.coro.begin to @llvm.coro.begin intrinsic.
//===----------------------------------------------------------------------===//
namespace {
class CoroBeginOpConversion : public OpConversionPattern<CoroBeginOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CoroBeginOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto i8Ptr = AsyncAPI::opaquePointerType(op->getContext());
auto loc = op->getLoc();
// Get coroutine frame size: @llvm.coro.size.i64.
Value coroSize =
rewriter.create<LLVM::CoroSizeOp>(loc, rewriter.getI64Type());
// The coroutine lowering doesn't properly account for alignment of the
// frame, so align everything to 64 bytes which ought to be enough for
// everyone. https://llvm.org/PR53148
constexpr int64_t coroAlign = 64;
auto makeConstant = [&](uint64_t c) {
return rewriter.create<LLVM::ConstantOp>(
op->getLoc(), rewriter.getI64Type(), rewriter.getI64IntegerAttr(c));
};
// Round up the size to the alignment. This is a requirement of
// aligned_alloc.
coroSize = rewriter.create<LLVM::AddOp>(op->getLoc(), coroSize,
makeConstant(coroAlign - 1));
coroSize = rewriter.create<LLVM::AndOp>(op->getLoc(), coroSize,
makeConstant(-coroAlign));
// Allocate memory for the coroutine frame.
auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn(
op->getParentOfType<ModuleOp>(), rewriter.getI64Type());
auto coroAlloc = rewriter.create<LLVM::CallOp>(
loc, i8Ptr, SymbolRefAttr::get(allocFuncOp),
ValueRange{makeConstant(coroAlign), coroSize});
// Begin a coroutine: @llvm.coro.begin.
auto coroId = CoroBeginOpAdaptor(adaptor.getOperands()).id();
rewriter.replaceOpWithNewOp<LLVM::CoroBeginOp>(
op, i8Ptr, ValueRange({coroId, coroAlloc.getResult(0)}));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.coro.free to @llvm.coro.free intrinsic.
//===----------------------------------------------------------------------===//
namespace {
class CoroFreeOpConversion : public OpConversionPattern<CoroFreeOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CoroFreeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto i8Ptr = AsyncAPI::opaquePointerType(op->getContext());
auto loc = op->getLoc();
// Get a pointer to the coroutine frame memory: @llvm.coro.free.
auto coroMem =
rewriter.create<LLVM::CoroFreeOp>(loc, i8Ptr, adaptor.getOperands());
// Free the memory.
auto freeFuncOp =
LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>());
rewriter.replaceOpWithNewOp<LLVM::CallOp>(op, TypeRange(),
SymbolRefAttr::get(freeFuncOp),
ValueRange(coroMem.getResult()));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.coro.end to @llvm.coro.end intrinsic.
//===----------------------------------------------------------------------===//
namespace {
class CoroEndOpConversion : public OpConversionPattern<CoroEndOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CoroEndOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// We are not in the block that is part of the unwind sequence.
auto constFalse = rewriter.create<LLVM::ConstantOp>(
op->getLoc(), rewriter.getI1Type(), rewriter.getBoolAttr(false));
// Mark the end of a coroutine: @llvm.coro.end.
auto coroHdl = adaptor.handle();
rewriter.create<LLVM::CoroEndOp>(op->getLoc(), rewriter.getI1Type(),
ValueRange({coroHdl, constFalse}));
rewriter.eraseOp(op);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.coro.save to @llvm.coro.save intrinsic.
//===----------------------------------------------------------------------===//
namespace {
class CoroSaveOpConversion : public OpConversionPattern<CoroSaveOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CoroSaveOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Save the coroutine state: @llvm.coro.save
rewriter.replaceOpWithNewOp<LLVM::CoroSaveOp>(
op, AsyncAPI::tokenType(op->getContext()), adaptor.getOperands());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.coro.suspend to @llvm.coro.suspend intrinsic.
//===----------------------------------------------------------------------===//
namespace {
/// Convert async.coro.suspend to the @llvm.coro.suspend intrinsic call, and
/// branch to the appropriate block based on the return code.
///
/// Before:
///
/// ^suspended:
/// "opBefore"(...)
/// async.coro.suspend %state, ^suspend, ^resume, ^cleanup
/// ^resume:
/// "op"(...)
/// ^cleanup: ...
/// ^suspend: ...
///
/// After:
///
/// ^suspended:
/// "opBefore"(...)
/// %suspend = llmv.intr.coro.suspend ...
/// switch %suspend [-1: ^suspend, 0: ^resume, 1: ^cleanup]
/// ^resume:
/// "op"(...)
/// ^cleanup: ...
/// ^suspend: ...
///
class CoroSuspendOpConversion : public OpConversionPattern<CoroSuspendOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CoroSuspendOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto i8 = rewriter.getIntegerType(8);
auto i32 = rewriter.getI32Type();
auto loc = op->getLoc();
// This is not a final suspension point.
auto constFalse = rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getI1Type(), rewriter.getBoolAttr(false));
// Suspend a coroutine: @llvm.coro.suspend
auto coroState = adaptor.state();
auto coroSuspend = rewriter.create<LLVM::CoroSuspendOp>(
loc, i8, ValueRange({coroState, constFalse}));
// Cast return code to i32.
// After a suspension point decide if we should branch into resume, cleanup
// or suspend block of the coroutine (see @llvm.coro.suspend return code
// documentation).
llvm::SmallVector<int32_t, 2> caseValues = {0, 1};
llvm::SmallVector<Block *, 2> caseDest = {op.resumeDest(),
op.cleanupDest()};
rewriter.replaceOpWithNewOp<LLVM::SwitchOp>(
op, rewriter.create<LLVM::SExtOp>(loc, i32, coroSuspend.getResult()),
/*defaultDestination=*/op.suspendDest(),
/*defaultOperands=*/ValueRange(),
/*caseValues=*/caseValues,
/*caseDestinations=*/caseDest,
/*caseOperands=*/ArrayRef<ValueRange>({ValueRange(), ValueRange()}),
/*branchWeights=*/ArrayRef<int32_t>());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.create to the corresponding runtime API call.
//
// To allocate storage for the async values we use getelementptr trick:
// http://nondot.org/sabre/LLVMNotes/SizeOf-OffsetOf-VariableSizedStructs.txt
//===----------------------------------------------------------------------===//
namespace {
class RuntimeCreateOpLowering : public OpConversionPattern<RuntimeCreateOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeCreateOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
TypeConverter *converter = getTypeConverter();
Type resultType = op->getResultTypes()[0];
// Tokens creation maps to a simple function call.
if (resultType.isa<TokenType>()) {
rewriter.replaceOpWithNewOp<CallOp>(op, kCreateToken,
converter->convertType(resultType));
return success();
}
// To create a value we need to compute the storage requirement.
if (auto value = resultType.dyn_cast<ValueType>()) {
// Returns the size requirements for the async value storage.
auto sizeOf = [&](ValueType valueType) -> Value {
auto loc = op->getLoc();
auto i64 = rewriter.getI64Type();
auto storedType = converter->convertType(valueType.getValueType());
auto storagePtrType = LLVM::LLVMPointerType::get(storedType);
// %Size = getelementptr %T* null, int 1
// %SizeI = ptrtoint %T* %Size to i64
auto nullPtr = rewriter.create<LLVM::NullOp>(loc, storagePtrType);
auto one = rewriter.create<LLVM::ConstantOp>(
loc, i64, rewriter.getI64IntegerAttr(1));
auto gep = rewriter.create<LLVM::GEPOp>(loc, storagePtrType, nullPtr,
one.getResult());
return rewriter.create<LLVM::PtrToIntOp>(loc, i64, gep);
};
rewriter.replaceOpWithNewOp<CallOp>(op, kCreateValue, resultType,
sizeOf(value));
return success();
}
return rewriter.notifyMatchFailure(op, "unsupported async type");
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.create_group to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeCreateGroupOpLowering
: public OpConversionPattern<RuntimeCreateGroupOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeCreateGroupOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
TypeConverter *converter = getTypeConverter();
Type resultType = op.getResult().getType();
rewriter.replaceOpWithNewOp<CallOp>(op, kCreateGroup,
converter->convertType(resultType),
adaptor.getOperands());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.set_available to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeSetAvailableOpLowering
: public OpConversionPattern<RuntimeSetAvailableOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeSetAvailableOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
StringRef apiFuncName =
TypeSwitch<Type, StringRef>(op.operand().getType())
.Case<TokenType>([](Type) { return kEmplaceToken; })
.Case<ValueType>([](Type) { return kEmplaceValue; });
rewriter.replaceOpWithNewOp<CallOp>(op, apiFuncName, TypeRange(),
adaptor.getOperands());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.set_error to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeSetErrorOpLowering
: public OpConversionPattern<RuntimeSetErrorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeSetErrorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
StringRef apiFuncName =
TypeSwitch<Type, StringRef>(op.operand().getType())
.Case<TokenType>([](Type) { return kSetTokenError; })
.Case<ValueType>([](Type) { return kSetValueError; });
rewriter.replaceOpWithNewOp<CallOp>(op, apiFuncName, TypeRange(),
adaptor.getOperands());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.is_error to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeIsErrorOpLowering : public OpConversionPattern<RuntimeIsErrorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeIsErrorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
StringRef apiFuncName =
TypeSwitch<Type, StringRef>(op.operand().getType())
.Case<TokenType>([](Type) { return kIsTokenError; })
.Case<GroupType>([](Type) { return kIsGroupError; })
.Case<ValueType>([](Type) { return kIsValueError; });
rewriter.replaceOpWithNewOp<CallOp>(op, apiFuncName, rewriter.getI1Type(),
adaptor.getOperands());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.await to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeAwaitOpLowering : public OpConversionPattern<RuntimeAwaitOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeAwaitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
StringRef apiFuncName =
TypeSwitch<Type, StringRef>(op.operand().getType())
.Case<TokenType>([](Type) { return kAwaitToken; })
.Case<ValueType>([](Type) { return kAwaitValue; })
.Case<GroupType>([](Type) { return kAwaitGroup; });
rewriter.create<CallOp>(op->getLoc(), apiFuncName, TypeRange(),
adaptor.getOperands());
rewriter.eraseOp(op);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.await_and_resume to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeAwaitAndResumeOpLowering
: public OpConversionPattern<RuntimeAwaitAndResumeOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeAwaitAndResumeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
StringRef apiFuncName =
TypeSwitch<Type, StringRef>(op.operand().getType())
.Case<TokenType>([](Type) { return kAwaitTokenAndExecute; })
.Case<ValueType>([](Type) { return kAwaitValueAndExecute; })
.Case<GroupType>([](Type) { return kAwaitAllAndExecute; });
Value operand = adaptor.operand();
Value handle = adaptor.handle();
// A pointer to coroutine resume intrinsic wrapper.
addResumeFunction(op->getParentOfType<ModuleOp>());
auto resumeFnTy = AsyncAPI::resumeFunctionType(op->getContext());
auto resumePtr = rewriter.create<LLVM::AddressOfOp>(
op->getLoc(), LLVM::LLVMPointerType::get(resumeFnTy), kResume);
rewriter.create<CallOp>(op->getLoc(), apiFuncName, TypeRange(),
ValueRange({operand, handle, resumePtr.getRes()}));
rewriter.eraseOp(op);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.resume to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeResumeOpLowering : public OpConversionPattern<RuntimeResumeOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeResumeOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// A pointer to coroutine resume intrinsic wrapper.
addResumeFunction(op->getParentOfType<ModuleOp>());
auto resumeFnTy = AsyncAPI::resumeFunctionType(op->getContext());
auto resumePtr = rewriter.create<LLVM::AddressOfOp>(
op->getLoc(), LLVM::LLVMPointerType::get(resumeFnTy), kResume);
// Call async runtime API to execute a coroutine in the managed thread.
auto coroHdl = adaptor.handle();
rewriter.replaceOpWithNewOp<CallOp>(
op, TypeRange(), kExecute, ValueRange({coroHdl, resumePtr.getRes()}));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.store to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeStoreOpLowering : public OpConversionPattern<RuntimeStoreOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Get a pointer to the async value storage from the runtime.
auto i8Ptr = AsyncAPI::opaquePointerType(rewriter.getContext());
auto storage = adaptor.storage();
auto storagePtr = rewriter.create<CallOp>(loc, kGetValueStorage,
TypeRange(i8Ptr), storage);
// Cast from i8* to the LLVM pointer type.
auto valueType = op.value().getType();
auto llvmValueType = getTypeConverter()->convertType(valueType);
if (!llvmValueType)
return rewriter.notifyMatchFailure(
op, "failed to convert stored value type to LLVM type");
auto castedStoragePtr = rewriter.create<LLVM::BitcastOp>(
loc, LLVM::LLVMPointerType::get(llvmValueType),
storagePtr.getResult(0));
// Store the yielded value into the async value storage.
auto value = adaptor.value();
rewriter.create<LLVM::StoreOp>(loc, value, castedStoragePtr.getResult());
// Erase the original runtime store operation.
rewriter.eraseOp(op);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.load to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeLoadOpLowering : public OpConversionPattern<RuntimeLoadOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeLoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
// Get a pointer to the async value storage from the runtime.
auto i8Ptr = AsyncAPI::opaquePointerType(rewriter.getContext());
auto storage = adaptor.storage();
auto storagePtr = rewriter.create<CallOp>(loc, kGetValueStorage,
TypeRange(i8Ptr), storage);
// Cast from i8* to the LLVM pointer type.
auto valueType = op.result().getType();
auto llvmValueType = getTypeConverter()->convertType(valueType);
if (!llvmValueType)
return rewriter.notifyMatchFailure(
op, "failed to convert loaded value type to LLVM type");
auto castedStoragePtr = rewriter.create<LLVM::BitcastOp>(
loc, LLVM::LLVMPointerType::get(llvmValueType),
storagePtr.getResult(0));
// Load from the casted pointer.
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(op, castedStoragePtr.getResult());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.runtime.add_to_group to the corresponding runtime API call.
//===----------------------------------------------------------------------===//
namespace {
class RuntimeAddToGroupOpLowering
: public OpConversionPattern<RuntimeAddToGroupOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(RuntimeAddToGroupOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Currently we can only add tokens to the group.
if (!op.operand().getType().isa<TokenType>())
return rewriter.notifyMatchFailure(op, "only token type is supported");
// Replace with a runtime API function call.
rewriter.replaceOpWithNewOp<CallOp>(
op, kAddTokenToGroup, rewriter.getI64Type(), adaptor.getOperands());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Async reference counting ops lowering (`async.runtime.add_ref` and
// `async.runtime.drop_ref` to the corresponding API calls).
//===----------------------------------------------------------------------===//
namespace {
template <typename RefCountingOp>
class RefCountingOpLowering : public OpConversionPattern<RefCountingOp> {
public:
explicit RefCountingOpLowering(TypeConverter &converter, MLIRContext *ctx,
StringRef apiFunctionName)
: OpConversionPattern<RefCountingOp>(converter, ctx),
apiFunctionName(apiFunctionName) {}
LogicalResult
matchAndRewrite(RefCountingOp op, typename RefCountingOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto count = rewriter.create<arith::ConstantOp>(
op->getLoc(), rewriter.getI64Type(),
rewriter.getI64IntegerAttr(op.count()));
auto operand = adaptor.operand();
rewriter.replaceOpWithNewOp<CallOp>(op, TypeRange(), apiFunctionName,
ValueRange({operand, count}));
return success();
}
private:
StringRef apiFunctionName;
};
class RuntimeAddRefOpLowering : public RefCountingOpLowering<RuntimeAddRefOp> {
public:
explicit RuntimeAddRefOpLowering(TypeConverter &converter, MLIRContext *ctx)
: RefCountingOpLowering(converter, ctx, kAddRef) {}
};
class RuntimeDropRefOpLowering
: public RefCountingOpLowering<RuntimeDropRefOp> {
public:
explicit RuntimeDropRefOpLowering(TypeConverter &converter, MLIRContext *ctx)
: RefCountingOpLowering(converter, ctx, kDropRef) {}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert return operations that return async values from async regions.
//===----------------------------------------------------------------------===//
namespace {
class ReturnOpOpConversion : public OpConversionPattern<ReturnOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<ReturnOp>(op, adaptor.getOperands());
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
namespace {
struct ConvertAsyncToLLVMPass
: public ConvertAsyncToLLVMBase<ConvertAsyncToLLVMPass> {
void runOnOperation() override;
};
} // namespace
void ConvertAsyncToLLVMPass::runOnOperation() {
ModuleOp module = getOperation();
MLIRContext *ctx = module->getContext();
// Add declarations for most functions required by the coroutines lowering.
// We delay adding the resume function until it's needed because it currently
// fails to compile unless '-O0' is specified.
addAsyncRuntimeApiDeclarations(module);
// Lower async.runtime and async.coro operations to Async Runtime API and
// LLVM coroutine intrinsics.
// Convert async dialect types and operations to LLVM dialect.
AsyncRuntimeTypeConverter converter;
RewritePatternSet patterns(ctx);
// We use conversion to LLVM type to lower async.runtime load and store
// operations.
LLVMTypeConverter llvmConverter(ctx);
llvmConverter.addConversion(AsyncRuntimeTypeConverter::convertAsyncTypes);
// Convert async types in function signatures and function calls.
populateFunctionOpInterfaceTypeConversionPattern<FuncOp>(patterns, converter);
populateCallOpTypeConversionPattern(patterns, converter);
// Convert return operations inside async.execute regions.
patterns.add<ReturnOpOpConversion>(converter, ctx);
// Lower async.runtime operations to the async runtime API calls.
patterns.add<RuntimeSetAvailableOpLowering, RuntimeSetErrorOpLowering,
RuntimeIsErrorOpLowering, RuntimeAwaitOpLowering,
RuntimeAwaitAndResumeOpLowering, RuntimeResumeOpLowering,
RuntimeAddToGroupOpLowering, RuntimeAddRefOpLowering,
RuntimeDropRefOpLowering>(converter, ctx);
// Lower async.runtime operations that rely on LLVM type converter to convert
// from async value payload type to the LLVM type.
patterns.add<RuntimeCreateOpLowering, RuntimeCreateGroupOpLowering,
RuntimeStoreOpLowering, RuntimeLoadOpLowering>(llvmConverter,
ctx);
// Lower async coroutine operations to LLVM coroutine intrinsics.
patterns
.add<CoroIdOpConversion, CoroBeginOpConversion, CoroFreeOpConversion,
CoroEndOpConversion, CoroSaveOpConversion, CoroSuspendOpConversion>(
converter, ctx);
ConversionTarget target(*ctx);
target
.addLegalOp<arith::ConstantOp, ConstantOp, UnrealizedConversionCastOp>();
target.addLegalDialect<LLVM::LLVMDialect>();
// All operations from Async dialect must be lowered to the runtime API and
// LLVM intrinsics calls.
target.addIllegalDialect<AsyncDialect>();
// Add dynamic legality constraints to apply conversions defined above.
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
target.addDynamicallyLegalOp<ReturnOp>(
[&](ReturnOp op) { return converter.isLegal(op.getOperandTypes()); });
target.addDynamicallyLegalOp<CallOp>([&](CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
//===----------------------------------------------------------------------===//
// Patterns for structural type conversions for the Async dialect operations.
//===----------------------------------------------------------------------===//
namespace {
class ConvertExecuteOpTypes : public OpConversionPattern<ExecuteOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(ExecuteOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ExecuteOp newOp =
cast<ExecuteOp>(rewriter.cloneWithoutRegions(*op.getOperation()));
rewriter.inlineRegionBefore(op.getRegion(), newOp.getRegion(),
newOp.getRegion().end());
// Set operands and update block argument and result types.
newOp->setOperands(adaptor.getOperands());
if (failed(rewriter.convertRegionTypes(&newOp.getRegion(), *typeConverter)))
return failure();
for (auto result : newOp.getResults())
result.setType(typeConverter->convertType(result.getType()));
rewriter.replaceOp(op, newOp.getResults());
return success();
}
};
// Dummy pattern to trigger the appropriate type conversion / materialization.
class ConvertAwaitOpTypes : public OpConversionPattern<AwaitOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AwaitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<AwaitOp>(op, adaptor.getOperands().front());
return success();
}
};
// Dummy pattern to trigger the appropriate type conversion / materialization.
class ConvertYieldOpTypes : public OpConversionPattern<async::YieldOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(async::YieldOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<async::YieldOp>(op, adaptor.getOperands());
return success();
}
};
} // namespace
std::unique_ptr<OperationPass<ModuleOp>> mlir::createConvertAsyncToLLVMPass() {
return std::make_unique<ConvertAsyncToLLVMPass>();
}
void mlir::populateAsyncStructuralTypeConversionsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target) {
typeConverter.addConversion([&](TokenType type) { return type; });
typeConverter.addConversion([&](ValueType type) {
Type converted = typeConverter.convertType(type.getValueType());
return converted ? ValueType::get(converted) : converted;
});
patterns.add<ConvertExecuteOpTypes, ConvertAwaitOpTypes, ConvertYieldOpTypes>(
typeConverter, patterns.getContext());
target.addDynamicallyLegalOp<AwaitOp, ExecuteOp, async::YieldOp>(
[&](Operation *op) { return typeConverter.isLegal(op); });
}