Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/Detensorize.cpp
River Riddle 7ceffae18c [mlir] Convert OpTrait::FunctionLike to FunctionOpInterface
This commit refactors the FunctionLike trait into an interface (FunctionOpInterface).
FunctionLike as it is today is already a pseudo-interface, with many users checking the
presence of the trait and then manually into functionality implemented in the
function_like_impl namespace. By transitioning to an interface, these accesses are much
cleaner (ideally with no direct calls to the impl namespace outside of the implementation
of the derived function operations, e.g. for parsing/printing utilities).

I've tried to maintain as much compatability with the current state as possible, while
also trying to clean up as much of the cruft as possible. The general migration plan for
current users of FunctionLike is as follows:

* function_like_impl -> function_interface_impl
Realistically most user calls should remove references to functions within this namespace
outside of a vary narrow set (e.g. parsing/printing utilities). Calls to the attribute name
accessors should be migrated to the `FunctionOpInterface::` equivalent, most everything
else should be updated to be driven through an instance of the interface.

* OpTrait::FunctionLike -> FunctionOpInterface
`hasTrait` checks will need to be moved to isa, along with the other various Trait vs
Interface API differences.

* populateFunctionLikeTypeConversionPattern -> populateFunctionOpInterfaceTypeConversionPattern

Fixes #52917

Differential Revision: https://reviews.llvm.org/D117272
2022-01-18 20:56:53 -08:00

566 lines
22 KiB
C++

//===- Detensorize.cpp - Linalg transformations as patterns ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <iterator>
#include <memory>
#include <utility>
using namespace mlir;
using namespace mlir::linalg;
static Value sourceMaterializationCallback(OpBuilder &builder, Type type,
ValueRange inputs, Location loc) {
assert(inputs.size() == 1);
auto inputType = inputs[0].getType();
if (inputType.isa<TensorType>())
return nullptr;
// A detensored value is converted back by creating a new tensor from its
// element(s).
return builder.create<tensor::FromElementsOp>(
loc, RankedTensorType::get({}, inputType), inputs[0]);
}
namespace {
/// Defines the criteria a TensorType must follow in order to be considered
/// "detensorable".
///
/// NOTE: For now, only 0-D tensors are supported.
///
/// Returns true if tensorType can be detensored.
bool canBeDetensored(TensorType tensorType) {
return tensorType.hasRank() && tensorType.getRank() == 0;
}
bool shouldBeDetensored(Operation *op, TypeConverter typeConverter) {
GenericOp genericOp = dyn_cast_or_null<GenericOp>(op);
return genericOp &&
llvm::all_of(
genericOp.getInputAndOutputOperands(), [&](OpOperand *opOperand) {
return !typeConverter.isLegal(opOperand->get().getType());
});
}
/// A conversion patttern for detensoring `linalg.generic` ops.
class DetensorizeGenericOp : public OpConversionPattern<GenericOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(GenericOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Block *originalBlock = op->getBlock();
// Gather some information about the op before inling its region.
Block *opEntryBlock = &*op.region().begin();
YieldOp yieldOp = dyn_cast<YieldOp>(op.region().back().getTerminator());
// Split the op's region before the op. This way, we have a clear insertion
// point in which the op can be inlined.
Block *newBlock = rewriter.splitBlock(originalBlock, Block::iterator(op));
rewriter.inlineRegionBefore(op.region(), newBlock);
// Now that op's region is inlined, the operands of its YieldOp are mapped
// to the materialized target values. Therefore, we can replace the op's
// uses with those of its YielOp's operands.
rewriter.replaceOp(op, yieldOp->getOperands());
// No need for these intermediate blocks, merge them into 1.
rewriter.mergeBlocks(opEntryBlock, originalBlock, adaptor.getOperands());
rewriter.mergeBlocks(newBlock, originalBlock, {});
rewriter.eraseOp(&*Block::iterator(yieldOp));
return success();
}
};
/// A conversion pattern for detensoring internal (non-entry) blocks within a
/// function.
struct FunctionNonEntryBlockConversion
: public OpInterfaceConversionPattern<FunctionOpInterface> {
FunctionNonEntryBlockConversion(MLIRContext *ctx, TypeConverter &converter,
DenseSet<BlockArgument> blockArgsToDetensor)
: OpInterfaceConversionPattern(converter, ctx),
blockArgsToDetensor(std::move(blockArgsToDetensor)) {}
LogicalResult
matchAndRewrite(FunctionOpInterface op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.startRootUpdate(op);
Region &region = op.getBody();
SmallVector<TypeConverter::SignatureConversion, 2> conversions;
for (Block &block : llvm::drop_begin(region, 1)) {
conversions.emplace_back(block.getNumArguments());
TypeConverter::SignatureConversion &back = conversions.back();
for (BlockArgument blockArgument : block.getArguments()) {
int idx = blockArgument.getArgNumber();
if (blockArgsToDetensor.count(blockArgument))
back.addInputs(idx, {getTypeConverter()->convertType(
block.getArgumentTypes()[idx])});
else
back.addInputs(idx, {block.getArgumentTypes()[idx]});
}
}
if (failed(rewriter.convertNonEntryRegionTypes(&region, *typeConverter,
conversions))) {
rewriter.cancelRootUpdate(op);
return failure();
}
rewriter.finalizeRootUpdate(op);
return success();
}
private:
const DenseSet<BlockArgument> blockArgsToDetensor;
};
class DetensorizeTypeConverter : public TypeConverter {
public:
DetensorizeTypeConverter() {
addConversion([](Type type) { return type; });
// A TensorType that can be detensored, is converted to the underlying
// element type.
addConversion([](TensorType tensorType) -> Type {
if (canBeDetensored(tensorType))
return tensorType.getElementType();
return tensorType;
});
// A tensor value is detensoried by extracting its element(s).
addTargetMaterialization([](OpBuilder &builder, Type type,
ValueRange inputs, Location loc) -> Value {
return builder.create<tensor::ExtractOp>(loc, inputs[0], ValueRange{});
});
addSourceMaterialization(sourceMaterializationCallback);
addArgumentMaterialization(sourceMaterializationCallback);
}
};
/// @see LinalgDetensorize in Linalg/Passes.td for more details.
struct LinalgDetensorize : public LinalgDetensorizeBase<LinalgDetensorize> {
LinalgDetensorize() = default;
class CostModel {
public:
virtual ~CostModel() = default;
/// A cost model algorithm computes the following outputs:
///
/// - opsToDetensor: the list of linalg ops that should be
/// detensored.
///
/// - blockArgsToDetensor: since the operands and results of detensored
/// linalg ops can cross the BB boundary (e.g. a linalg op's input can come
/// from a BB argument and a linalg op's output can be passed to successor
/// BBs), we need to maintain the sub-set of arguments that should be
/// detensored (i.e. converted by typeConverter) for each affected BB.
///
/// Example:
///
/// For the following snippet:
/// ...
/// ^bb1(%6: tensor<i32>, %9: tensor<i32>):
/// %7 = linalg.init_tensor [] : tensor<i32>
/// %8 = linalg.generic #attrs
/// ins(%6, %6 : tensor<i32>, tensor<i32>)
/// outs(%7 : tensor<i32>) {
/// ^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
/// %9 = arith.addi %arg0, %arg1 : i32
/// linalg.yield %9 : i32
/// } -> tensor<i32>
/// %10 = "some.op"(%9)
/// br ^bb2(%8 : tensor<i32>)
/// ...
///
/// if the cost model decides that the linalg.generic op should be
/// detensored, then:
/// - opsToDetensor should be = {linalg.generic{add}}.
/// - blockArgsToDetensor should be = {bb1 -> {0}, bb2 -> {0}}.
virtual void compute(FunctionOpInterface func,
DetensorizeTypeConverter typeConverter,
DenseSet<Operation *> &opsToDetensor,
DenseSet<BlockArgument> &blockArgsToDetensor) = 0;
/// From the blockArgsToDetensor set computed by a CostModel
/// implementation, this method computes the corresponding branch op
/// detensoring. The result is a map from a branch op to a subset of indices
/// of its operands. The indices specify which of the branch op's operands
/// should be detensored.
///
/// For the previous example, this method would compute: {bb2 -> {0}}.
static DenseMap<Operation *, DenseSet<int>> computeBranchOpDetensoring(
const DenseSet<BlockArgument> &blockArgsToDetensor) {
DenseMap<Operation *, DenseSet<int>> detensorableBranchOps;
for (auto blockArgumentElem : blockArgsToDetensor) {
Block *block = blockArgumentElem.getOwner();
for (PredecessorIterator pred = block->pred_begin();
pred != block->pred_end(); ++pred) {
BranchOpInterface terminator =
dyn_cast<BranchOpInterface>((*pred)->getTerminator());
auto blockOperands =
terminator.getSuccessorOperands(pred.getSuccessorIndex());
if (!blockOperands || blockOperands->empty())
continue;
detensorableBranchOps[terminator].insert(
blockOperands->getBeginOperandIndex() +
blockArgumentElem.getArgNumber());
}
}
return detensorableBranchOps;
}
};
/// Detensorize linalg ops involved in control-flow within a function.
///
/// This model starts from BranchOps and CondBranchOps within a function. For
/// each such branch, the model then walks the use-def chain for the branch's
/// condition backwards in order to understand where the condition's value
/// comes from. If the condition value is (indirectly) computed by a linalg op
/// that can be detensored, the model then continues walking the use-def chain
/// in order to understand where the linalg op's operands come from. This
/// leads to discovering a "detensoring component". A detensoring component is
/// the set of operations + block arguments that are involved in control-flow
/// AND can be detensored.
class ControlFlowDetectionModel : public CostModel {
public:
void compute(FunctionOpInterface func,
DetensorizeTypeConverter typeConverter,
DenseSet<Operation *> &opsToDetensor,
DenseSet<BlockArgument> &blockArgsToDetensor) override {
SmallVector<Value> workList;
func->walk([&](CondBranchOp condBr) {
for (auto operand : condBr.getOperands()) {
workList.push_back(operand);
}
});
func->walk([&](BranchOp br) {
for (auto operand : br.getOperands()) {
workList.push_back(operand);
}
});
DenseSet<Value> visitedValues;
DenseSet<Operation *> visitedOps;
// For a (to-be-detesored) value, check if it "escapes" the block by being
// passed to terminator. If it does, then workList is updated with the
// corresponding argument to the successor block.
auto updateWorkListWithSuccessorArguments =
[&](Value value, BranchOpInterface terminator) {
if (!terminator)
return;
for (auto operandIdx :
llvm::seq<unsigned>(0, terminator->getOperands().size())) {
Value operand = terminator->getOperand(operandIdx);
if (operand == value) {
auto succBlockArg =
terminator.getSuccessorBlockArgument(operandIdx);
if (succBlockArg && !blockArgsToDetensor.count(*succBlockArg))
workList.push_back(*succBlockArg);
}
}
};
while (!workList.empty()) {
Value currentItem = workList.pop_back_val();
if (!visitedValues.insert(currentItem).second)
continue;
// 1 - Look forward:
// 1.1 - If currentItem escapes to one or more successors, add
// the corresponding successor arguments to workList.
updateWorkListWithSuccessorArguments(
currentItem, dyn_cast<BranchOpInterface>(
currentItem.getParentBlock()->getTerminator()));
// 1.2 - For each user of currentItem, add the defined values to
// workList. This way, the user ops can be inspected later if they are
// detensorable and if so, their operands will be added to workList to
// potentially discover other parts of the detensorable component.
for (auto *user : currentItem.getUsers())
for (Value result : user->getResults())
workList.push_back(result);
// 2 - Look backward:
// 2.1 - The current item is defined by a block argument. If the owner
// block is a non-entry one, then:
// * Add the argument to blockArgsToDetensor.
// * Walk the use-def chain backwards to add each predecessor's
// terminator-operands corresponding to currentItem to workList.
if (currentItem.dyn_cast<BlockArgument>()) {
BlockArgument currentItemBlockArgument =
currentItem.cast<BlockArgument>();
Block *ownerBlock = currentItemBlockArgument.getOwner();
// Function arguments are not detensored/converted.
if (&*ownerBlock->getParent()->begin() == ownerBlock)
continue;
// This inner-block argument is involved in control-flow, it should be
// detensored.
blockArgsToDetensor.insert(currentItemBlockArgument);
for (PredecessorIterator pred = ownerBlock->pred_begin();
pred != ownerBlock->pred_end(); ++pred) {
BranchOpInterface predTerminator =
dyn_cast<BranchOpInterface>((*pred)->getTerminator());
// TODO: For now, we give up if any of the control-flow components
// in a function is not detensorable. Fix that.
if (!predTerminator) {
opsToDetensor.clear();
blockArgsToDetensor.clear();
return;
}
auto ownerBlockOperands =
predTerminator.getSuccessorOperands(pred.getSuccessorIndex());
if (!ownerBlockOperands || ownerBlockOperands->empty())
continue;
// For each predecessor, add the value it passes to that argument to
// workList to find out how it's computed.
workList.push_back(
ownerBlockOperands
.getValue()[currentItemBlockArgument.getArgNumber()]);
}
continue;
}
Operation *currentItemDefiningOp = currentItem.getDefiningOp();
if (!visitedOps.insert(currentItemDefiningOp).second)
continue;
// 2.2 - The current item is computed by a GenericOp. If the op should
// be detensored, then:
// * Add it to opsToDetensor.
// * Add its operands to workList to discover other parts of the
// potentially detensorable component.
if (auto genericOp = dyn_cast<GenericOp>(currentItemDefiningOp)) {
// The op was encountered already, no need to inspect it again.
if (opsToDetensor.count(genericOp))
continue;
// The op should not be detensored, give up on it but continue with
// discovering the rest of the control-flow component.
if (!shouldBeDetensored(genericOp, typeConverter)) {
continue;
}
opsToDetensor.insert(genericOp);
for (Value genericOpOperand : genericOp.inputs())
workList.push_back(genericOpOperand);
continue;
}
// 2.3 - The current item is the result of a FromElementsOp, it will be
// trivially detensored later as part of canonicalization patterns
// applied at the end of detensoring.
//
// Note: No need to check whether the result type of this op is
// detensorable since if it wasn't we wouldn't reach that point in the
// work list.
if (dyn_cast<tensor::FromElementsOp>(currentItemDefiningOp))
continue;
// 2.4 - The current item is the result of a scalar op, add all its
// operands to the work list.
if (llvm::all_of(
currentItemDefiningOp->getResultTypes(),
[&](Type resultType) { return resultType.isIntOrFloat(); }))
for (Value scalarOpOperand : currentItemDefiningOp->getOperands())
workList.push_back(scalarOpOperand);
}
// Since the cost model gives up on some ops (see the details of step 2.2
// above), block arguments that correspond to the values produced by those
// ops should not be detensored as well.
DenseSet<BlockArgument> blockArgsToRemove;
for (auto &blockArg : blockArgsToDetensor) {
Block *block = blockArg.getParentBlock();
// For the potentially detensorable block argument, find the
// correpsonding operands in predecessor blocks.
for (PredecessorIterator pred = block->pred_begin();
pred != block->pred_end(); ++pred) {
BranchOpInterface terminator =
dyn_cast<BranchOpInterface>((*pred)->getTerminator());
auto blockOperands =
terminator.getSuccessorOperands(pred.getSuccessorIndex());
if (!blockOperands || blockOperands->empty())
continue;
Operation *definingOp =
terminator
->getOperand(blockOperands->getBeginOperandIndex() +
blockArg.getArgNumber())
.getDefiningOp();
// If the operand is defined by a GenericOp that will not be
// detensored, then do not detensor the corresponding block argument.
if (dyn_cast_or_null<GenericOp>(definingOp) &&
opsToDetensor.count(definingOp) == 0) {
blockArgsToRemove.insert(blockArg);
break;
}
}
}
for (auto &blockArg : blockArgsToRemove) {
blockArgsToDetensor.erase(blockArg);
}
}
};
/// Detensorize everything that can detensored.
class AggressiveDetensoringModel : public CostModel {
public:
void compute(FunctionOpInterface func,
DetensorizeTypeConverter typeConverter,
DenseSet<Operation *> &opsToDetensor,
DenseSet<BlockArgument> &blockArgsToDetensor) override {
func->walk([&](GenericOp genericOp) {
if (shouldBeDetensored(genericOp, typeConverter))
opsToDetensor.insert(genericOp);
});
for (Block &block : llvm::drop_begin(func.getBody(), 1))
for (BlockArgument blockArgument : block.getArguments())
blockArgsToDetensor.insert(blockArgument);
}
};
void runOnOperation() override {
MLIRContext *context = &getContext();
DetensorizeTypeConverter typeConverter;
RewritePatternSet patterns(context);
ConversionTarget target(*context);
DenseSet<Operation *> opsToDetensor;
DenseMap<Operation *, DenseSet<int>> detensorableBranchOps;
DenseSet<BlockArgument> blockArgsToDetensor;
FunctionOpInterface funcOp = cast<FunctionOpInterface>(getOperation());
if (aggressiveMode.getValue()) {
AggressiveDetensoringModel costModel;
costModel.compute(funcOp, typeConverter, opsToDetensor,
blockArgsToDetensor);
} else {
ControlFlowDetectionModel costModel;
costModel.compute(funcOp, typeConverter, opsToDetensor,
blockArgsToDetensor);
}
detensorableBranchOps =
CostModel::computeBranchOpDetensoring(blockArgsToDetensor);
target.addDynamicallyLegalOp<GenericOp>(
[&](GenericOp op) { return !opsToDetensor.count(op); });
target.markUnknownOpDynamicallyLegal([&](Operation *op) {
// A function is legal if all of its non-entry blocks are legal. We
// don't legalize the entry block (i.e. the function's signature)
// since detensoring can't happen along external calling convention
// boundaries, which we conservatively approximate as all function
// signatures.
if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
Region &body = funcOp.getBody();
return llvm::all_of(llvm::drop_begin(body, 1), [&](Block &block) {
return !llvm::any_of(
blockArgsToDetensor, [&](BlockArgument blockArgument) {
return blockArgument.getOwner() == &block &&
!typeConverter.isLegal(blockArgument.getType());
});
});
}
if (isNotBranchOpInterfaceOrReturnLikeOp(op) ||
isLegalForReturnOpTypeConversionPattern(op, typeConverter,
/*returnOpAlwaysLegal*/ true))
return true;
if (auto branchOp = dyn_cast<BranchOpInterface>(op)) {
if (!detensorableBranchOps.count(branchOp))
return true;
for (auto operandIdx : detensorableBranchOps[branchOp])
if (!typeConverter.isLegal(
branchOp->getOperand(operandIdx).getType()))
return false;
return true;
}
return false;
});
patterns.insert<DetensorizeGenericOp>(typeConverter, context);
patterns.insert<FunctionNonEntryBlockConversion>(context, typeConverter,
blockArgsToDetensor);
// Since non-entry block arguments get detensorized, we also need to
// update the control flow inside the function to reflect the correct
// types.
auto shouldConvertBranchOperand = [&](BranchOpInterface branchOp,
int operandIdx) -> bool {
return detensorableBranchOps.count(branchOp) &&
detensorableBranchOps[branchOp].count(operandIdx);
};
populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter,
shouldConvertBranchOperand);
if (failed(
applyFullConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
RewritePatternSet canonPatterns(context);
tensor::FromElementsOp::getCanonicalizationPatterns(canonPatterns, context);
if (failed(applyPatternsAndFoldGreedily(getOperation(),
std::move(canonPatterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<Pass> mlir::createLinalgDetensorizePass() {
return std::make_unique<LinalgDetensorize>();
}