Files
clang-p2996/compiler-rt/lib/memprof/memprof_rawprofile.cpp
Snehasish Kumar a1bbf5ac3c [memprof] Record BuildIDs in the raw profile.
This patch adds support for recording BuildIds usng the sanitizer
ListOfModules API. We add another entry to the SegmentEntry struct and
change the memprof raw version.

Reviewed By: tejohnson

Differential Revision: https://reviews.llvm.org/D145190
2023-03-14 18:16:38 +00:00

252 lines
7.5 KiB
C++

#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "memprof_rawprofile.h"
#include "profile/MemProfData.inc"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_linux.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stackdepotbase.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_vector.h"
namespace __memprof {
using ::__sanitizer::Vector;
using ::llvm::memprof::MemInfoBlock;
using SegmentEntry = ::llvm::memprof::SegmentEntry;
using Header = ::llvm::memprof::Header;
namespace {
template <class T> char *WriteBytes(const T &Pod, char *Buffer) {
*(T *)Buffer = Pod;
return Buffer + sizeof(T);
}
void RecordStackId(const uptr Key, UNUSED LockedMemInfoBlock *const &MIB,
void *Arg) {
// No need to touch the MIB value here since we are only recording the key.
auto *StackIds = reinterpret_cast<Vector<u64> *>(Arg);
StackIds->PushBack(Key);
}
} // namespace
u64 SegmentSizeBytes(ArrayRef<LoadedModule> Modules) {
u64 NumSegmentsToRecord = 0;
for (const auto &Module : Modules) {
for (const auto &Segment : Module.ranges()) {
if (Segment.executable)
NumSegmentsToRecord++;
}
}
return sizeof(u64) // A header which stores the number of records.
+ sizeof(SegmentEntry) * NumSegmentsToRecord;
}
// The segment section uses the following format:
// ---------- Segment Info
// Num Entries
// ---------- Segment Entry
// Start
// End
// Offset
// UuidSize
// Uuid 32B
// ----------
// ...
void SerializeSegmentsToBuffer(ArrayRef<LoadedModule> Modules,
const u64 ExpectedNumBytes, char *&Buffer) {
char *Ptr = Buffer;
// Reserve space for the final count.
Ptr += sizeof(u64);
u64 NumSegmentsRecorded = 0;
for (const auto &Module : Modules) {
for (const auto &Segment : Module.ranges()) {
if (Segment.executable) {
SegmentEntry Entry(Segment.beg, Segment.end, Module.base_address());
CHECK(Module.uuid_size() <= MEMPROF_BUILDID_MAX_SIZE);
Entry.BuildIdSize = Module.uuid_size();
memcpy(Entry.BuildId, Module.uuid(), Module.uuid_size());
memcpy(Ptr, &Entry, sizeof(SegmentEntry));
Ptr += sizeof(SegmentEntry);
NumSegmentsRecorded++;
}
}
}
// Store the number of segments we recorded in the space we reserved.
*((u64 *)Buffer) = NumSegmentsRecorded;
CHECK(ExpectedNumBytes >= static_cast<u64>(Ptr - Buffer) &&
"Expected num bytes != actual bytes written");
}
u64 StackSizeBytes(const Vector<u64> &StackIds) {
u64 NumBytesToWrite = sizeof(u64);
const u64 NumIds = StackIds.Size();
for (unsigned k = 0; k < NumIds; ++k) {
const u64 Id = StackIds[k];
// One entry for the id and then one more for the number of stack pcs.
NumBytesToWrite += 2 * sizeof(u64);
const StackTrace St = StackDepotGet(Id);
CHECK(St.trace != nullptr && St.size > 0 && "Empty stack trace");
for (uptr i = 0; i < St.size && St.trace[i] != 0; i++) {
NumBytesToWrite += sizeof(u64);
}
}
return NumBytesToWrite;
}
// The stack info section uses the following format:
//
// ---------- Stack Info
// Num Entries
// ---------- Stack Entry
// Num Stacks
// PC1
// PC2
// ...
// ----------
void SerializeStackToBuffer(const Vector<u64> &StackIds,
const u64 ExpectedNumBytes, char *&Buffer) {
const u64 NumIds = StackIds.Size();
char *Ptr = Buffer;
Ptr = WriteBytes(static_cast<u64>(NumIds), Ptr);
for (unsigned k = 0; k < NumIds; ++k) {
const u64 Id = StackIds[k];
Ptr = WriteBytes(Id, Ptr);
Ptr += sizeof(u64); // Bump it by u64, we will fill this in later.
u64 Count = 0;
const StackTrace St = StackDepotGet(Id);
for (uptr i = 0; i < St.size && St.trace[i] != 0; i++) {
// PCs in stack traces are actually the return addresses, that is,
// addresses of the next instructions after the call.
uptr pc = StackTrace::GetPreviousInstructionPc(St.trace[i]);
Ptr = WriteBytes(static_cast<u64>(pc), Ptr);
++Count;
}
// Store the count in the space we reserved earlier.
*(u64 *)(Ptr - (Count + 1) * sizeof(u64)) = Count;
}
CHECK(ExpectedNumBytes >= static_cast<u64>(Ptr - Buffer) &&
"Expected num bytes != actual bytes written");
}
// The MIB section has the following format:
// ---------- MIB Info
// Num Entries
// ---------- MIB Entry 0
// Alloc Count
// ...
// ---------- MIB Entry 1
// Alloc Count
// ...
// ----------
void SerializeMIBInfoToBuffer(MIBMapTy &MIBMap, const Vector<u64> &StackIds,
const u64 ExpectedNumBytes, char *&Buffer) {
char *Ptr = Buffer;
const u64 NumEntries = StackIds.Size();
Ptr = WriteBytes(NumEntries, Ptr);
for (u64 i = 0; i < NumEntries; i++) {
const u64 Key = StackIds[i];
MIBMapTy::Handle h(&MIBMap, Key, /*remove=*/true, /*create=*/false);
CHECK(h.exists());
Ptr = WriteBytes(Key, Ptr);
Ptr = WriteBytes((*h)->mib, Ptr);
}
CHECK(ExpectedNumBytes >= static_cast<u64>(Ptr - Buffer) &&
"Expected num bytes != actual bytes written");
}
// Format
// ---------- Header
// Magic
// Version
// Total Size
// Segment Offset
// MIB Info Offset
// Stack Offset
// ---------- Segment Info
// Num Entries
// ---------- Segment Entry
// Start
// End
// Offset
// BuildID 32B
// ----------
// ...
// ----------
// Optional Padding Bytes
// ---------- MIB Info
// Num Entries
// ---------- MIB Entry
// Alloc Count
// ...
// ----------
// Optional Padding Bytes
// ---------- Stack Info
// Num Entries
// ---------- Stack Entry
// Num Stacks
// PC1
// PC2
// ...
// ----------
// Optional Padding Bytes
// ...
u64 SerializeToRawProfile(MIBMapTy &MIBMap, ArrayRef<LoadedModule> Modules,
char *&Buffer) {
// Each section size is rounded up to 8b since the first entry in each section
// is a u64 which holds the number of entries in the section by convention.
const u64 NumSegmentBytes = RoundUpTo(SegmentSizeBytes(Modules), 8);
Vector<u64> StackIds;
MIBMap.ForEach(RecordStackId, reinterpret_cast<void *>(&StackIds));
// The first 8b are for the total number of MIB records. Each MIB record is
// preceded by a 8b stack id which is associated with stack frames in the next
// section.
const u64 NumMIBInfoBytes = RoundUpTo(
sizeof(u64) + StackIds.Size() * (sizeof(u64) + sizeof(MemInfoBlock)), 8);
const u64 NumStackBytes = RoundUpTo(StackSizeBytes(StackIds), 8);
// Ensure that the profile is 8b aligned. We allow for some optional padding
// at the end so that any subsequent profile serialized to the same file does
// not incur unaligned accesses.
const u64 TotalSizeBytes = RoundUpTo(
sizeof(Header) + NumSegmentBytes + NumStackBytes + NumMIBInfoBytes, 8);
// Allocate the memory for the entire buffer incl. info blocks.
Buffer = (char *)InternalAlloc(TotalSizeBytes);
char *Ptr = Buffer;
Header header{MEMPROF_RAW_MAGIC_64,
MEMPROF_RAW_VERSION,
static_cast<u64>(TotalSizeBytes),
sizeof(Header),
sizeof(Header) + NumSegmentBytes,
sizeof(Header) + NumSegmentBytes + NumMIBInfoBytes};
Ptr = WriteBytes(header, Ptr);
SerializeSegmentsToBuffer(Modules, NumSegmentBytes, Ptr);
Ptr += NumSegmentBytes;
SerializeMIBInfoToBuffer(MIBMap, StackIds, NumMIBInfoBytes, Ptr);
Ptr += NumMIBInfoBytes;
SerializeStackToBuffer(StackIds, NumStackBytes, Ptr);
return TotalSizeBytes;
}
} // namespace __memprof