Files
clang-p2996/flang/runtime/tools.h
Peter Klausler 52a0b02c25 [flang][runtime] Reset the left tab limit when flushing output
When flushing output to a non-positionable tty or socket file, reset the
left tab limit.  Otherwise, non-advancing output to that file will contain
an increasing amount of leading spaces in each flush.  Also, detect
newline characters in stream output, and treat them as record
advancement.

Differential Revision: https://reviews.llvm.org/D148157
2023-04-13 09:43:40 -07:00

381 lines
12 KiB
C++

//===-- runtime/tools.h -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_RUNTIME_TOOLS_H_
#define FORTRAN_RUNTIME_TOOLS_H_
#include "terminator.h"
#include "flang/Runtime/cpp-type.h"
#include "flang/Runtime/descriptor.h"
#include "flang/Runtime/memory.h"
#include <cstring>
#include <functional>
#include <map>
#include <type_traits>
namespace Fortran::runtime {
class Terminator;
std::size_t TrimTrailingSpaces(const char *, std::size_t);
OwningPtr<char> SaveDefaultCharacter(
const char *, std::size_t, const Terminator &);
// For validating and recognizing default CHARACTER values in a
// case-insensitive manner. Returns the zero-based index into the
// null-terminated array of upper-case possibilities when the value is valid,
// or -1 when it has no match.
int IdentifyValue(
const char *value, std::size_t length, const char *possibilities[]);
// Truncates or pads as necessary
void ToFortranDefaultCharacter(
char *to, std::size_t toLength, const char *from);
// Utility for dealing with elemental LOGICAL arguments
inline bool IsLogicalElementTrue(
const Descriptor &logical, const SubscriptValue at[]) {
// A LOGICAL value is false if and only if all of its bytes are zero.
const char *p{logical.Element<char>(at)};
for (std::size_t j{logical.ElementBytes()}; j-- > 0; ++p) {
if (*p) {
return true;
}
}
return false;
}
// Check array conformability; a scalar 'x' conforms. Crashes on error.
void CheckConformability(const Descriptor &to, const Descriptor &x,
Terminator &, const char *funcName, const char *toName,
const char *fromName);
// Helper to store integer value in result[at].
template <int KIND> struct StoreIntegerAt {
void operator()(const Fortran::runtime::Descriptor &result, std::size_t at,
std::int64_t value) const {
*result.ZeroBasedIndexedElement<Fortran::runtime::CppTypeFor<
Fortran::common::TypeCategory::Integer, KIND>>(at) = value;
}
};
// Validate a KIND= argument
void CheckIntegerKind(Terminator &, int kind, const char *intrinsic);
template <typename TO, typename FROM>
inline void PutContiguousConverted(TO *to, FROM *from, std::size_t count) {
while (count-- > 0) {
*to++ = *from++;
}
}
static inline std::int64_t GetInt64(
const char *p, std::size_t bytes, Terminator &terminator) {
switch (bytes) {
case 1:
return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 1> *>(p);
case 2:
return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 2> *>(p);
case 4:
return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 4> *>(p);
case 8:
return *reinterpret_cast<const CppTypeFor<TypeCategory::Integer, 8> *>(p);
default:
terminator.Crash("GetInt64: no case for %zd bytes", bytes);
}
}
template <typename INT>
inline bool SetInteger(INT &x, int kind, std::int64_t value) {
switch (kind) {
case 1:
reinterpret_cast<CppTypeFor<TypeCategory::Integer, 1> &>(x) = value;
return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 1> &>(x);
case 2:
reinterpret_cast<CppTypeFor<TypeCategory::Integer, 2> &>(x) = value;
return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 2> &>(x);
case 4:
reinterpret_cast<CppTypeFor<TypeCategory::Integer, 4> &>(x) = value;
return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 4> &>(x);
case 8:
reinterpret_cast<CppTypeFor<TypeCategory::Integer, 8> &>(x) = value;
return value == reinterpret_cast<CppTypeFor<TypeCategory::Integer, 8> &>(x);
default:
return false;
}
}
// Maps intrinsic runtime type category and kind values to the appropriate
// instantiation of a function object template and calls it with the supplied
// arguments.
template <template <TypeCategory, int> class FUNC, typename RESULT,
typename... A>
inline RESULT ApplyType(
TypeCategory cat, int kind, Terminator &terminator, A &&...x) {
switch (cat) {
case TypeCategory::Integer:
switch (kind) {
case 1:
return FUNC<TypeCategory::Integer, 1>{}(std::forward<A>(x)...);
case 2:
return FUNC<TypeCategory::Integer, 2>{}(std::forward<A>(x)...);
case 4:
return FUNC<TypeCategory::Integer, 4>{}(std::forward<A>(x)...);
case 8:
return FUNC<TypeCategory::Integer, 8>{}(std::forward<A>(x)...);
#ifdef __SIZEOF_INT128__
case 16:
return FUNC<TypeCategory::Integer, 16>{}(std::forward<A>(x)...);
#endif
default:
terminator.Crash("not yet implemented: INTEGER(KIND=%d)", kind);
}
case TypeCategory::Real:
switch (kind) {
#if 0 // TODO: REAL(2 & 3)
case 2:
return FUNC<TypeCategory::Real, 2>{}(std::forward<A>(x)...);
case 3:
return FUNC<TypeCategory::Real, 3>{}(std::forward<A>(x)...);
#endif
case 4:
return FUNC<TypeCategory::Real, 4>{}(std::forward<A>(x)...);
case 8:
return FUNC<TypeCategory::Real, 8>{}(std::forward<A>(x)...);
case 10:
if constexpr (HasCppTypeFor<TypeCategory::Real, 10>) {
return FUNC<TypeCategory::Real, 10>{}(std::forward<A>(x)...);
}
break;
case 16:
if constexpr (HasCppTypeFor<TypeCategory::Real, 16>) {
return FUNC<TypeCategory::Real, 16>{}(std::forward<A>(x)...);
}
break;
}
terminator.Crash("not yet implemented: REAL(KIND=%d)", kind);
case TypeCategory::Complex:
switch (kind) {
#if 0 // TODO: COMPLEX(2 & 3)
case 2:
return FUNC<TypeCategory::Complex, 2>{}(std::forward<A>(x)...);
case 3:
return FUNC<TypeCategory::Complex, 3>{}(std::forward<A>(x)...);
#endif
case 4:
return FUNC<TypeCategory::Complex, 4>{}(std::forward<A>(x)...);
case 8:
return FUNC<TypeCategory::Complex, 8>{}(std::forward<A>(x)...);
case 10:
if constexpr (HasCppTypeFor<TypeCategory::Real, 10>) {
return FUNC<TypeCategory::Complex, 10>{}(std::forward<A>(x)...);
}
break;
case 16:
if constexpr (HasCppTypeFor<TypeCategory::Real, 16>) {
return FUNC<TypeCategory::Complex, 16>{}(std::forward<A>(x)...);
}
break;
}
terminator.Crash("not yet implemented: COMPLEX(KIND=%d)", kind);
case TypeCategory::Character:
switch (kind) {
case 1:
return FUNC<TypeCategory::Character, 1>{}(std::forward<A>(x)...);
case 2:
return FUNC<TypeCategory::Character, 2>{}(std::forward<A>(x)...);
case 4:
return FUNC<TypeCategory::Character, 4>{}(std::forward<A>(x)...);
default:
terminator.Crash("not yet implemented: CHARACTER(KIND=%d)", kind);
}
case TypeCategory::Logical:
switch (kind) {
case 1:
return FUNC<TypeCategory::Logical, 1>{}(std::forward<A>(x)...);
case 2:
return FUNC<TypeCategory::Logical, 2>{}(std::forward<A>(x)...);
case 4:
return FUNC<TypeCategory::Logical, 4>{}(std::forward<A>(x)...);
case 8:
return FUNC<TypeCategory::Logical, 8>{}(std::forward<A>(x)...);
default:
terminator.Crash("not yet implemented: LOGICAL(KIND=%d)", kind);
}
default:
terminator.Crash(
"not yet implemented: type category(%d)", static_cast<int>(cat));
}
}
// Maps a runtime INTEGER kind value to the appropriate instantiation of
// a function object template and calls it with the supplied arguments.
template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RESULT ApplyIntegerKind(int kind, Terminator &terminator, A &&...x) {
switch (kind) {
case 1:
return FUNC<1>{}(std::forward<A>(x)...);
case 2:
return FUNC<2>{}(std::forward<A>(x)...);
case 4:
return FUNC<4>{}(std::forward<A>(x)...);
case 8:
return FUNC<8>{}(std::forward<A>(x)...);
#ifdef __SIZEOF_INT128__
case 16:
return FUNC<16>{}(std::forward<A>(x)...);
#endif
default:
terminator.Crash("not yet implemented: INTEGER(KIND=%d)", kind);
}
}
template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RESULT ApplyFloatingPointKind(
int kind, Terminator &terminator, A &&...x) {
switch (kind) {
#if 0 // TODO: REAL/COMPLEX (2 & 3)
case 2:
return FUNC<2>{}(std::forward<A>(x)...);
case 3:
return FUNC<3>{}(std::forward<A>(x)...);
#endif
case 4:
return FUNC<4>{}(std::forward<A>(x)...);
case 8:
return FUNC<8>{}(std::forward<A>(x)...);
case 10:
if constexpr (HasCppTypeFor<TypeCategory::Real, 10>) {
return FUNC<10>{}(std::forward<A>(x)...);
}
break;
case 16:
if constexpr (HasCppTypeFor<TypeCategory::Real, 16>) {
return FUNC<16>{}(std::forward<A>(x)...);
}
break;
}
terminator.Crash("not yet implemented: REAL/COMPLEX(KIND=%d)", kind);
}
template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RESULT ApplyCharacterKind(int kind, Terminator &terminator, A &&...x) {
switch (kind) {
case 1:
return FUNC<1>{}(std::forward<A>(x)...);
case 2:
return FUNC<2>{}(std::forward<A>(x)...);
case 4:
return FUNC<4>{}(std::forward<A>(x)...);
default:
terminator.Crash("not yet implemented: CHARACTER(KIND=%d)", kind);
}
}
template <template <int KIND> class FUNC, typename RESULT, typename... A>
inline RESULT ApplyLogicalKind(int kind, Terminator &terminator, A &&...x) {
switch (kind) {
case 1:
return FUNC<1>{}(std::forward<A>(x)...);
case 2:
return FUNC<2>{}(std::forward<A>(x)...);
case 4:
return FUNC<4>{}(std::forward<A>(x)...);
case 8:
return FUNC<8>{}(std::forward<A>(x)...);
default:
terminator.Crash("not yet implemented: LOGICAL(KIND=%d)", kind);
}
}
// Calculate result type of (X op Y) for *, //, DOT_PRODUCT, &c.
std::optional<std::pair<TypeCategory, int>> inline constexpr GetResultType(
TypeCategory xCat, int xKind, TypeCategory yCat, int yKind) {
int maxKind{std::max(xKind, yKind)};
switch (xCat) {
case TypeCategory::Integer:
switch (yCat) {
case TypeCategory::Integer:
return std::make_pair(TypeCategory::Integer, maxKind);
case TypeCategory::Real:
case TypeCategory::Complex:
return std::make_pair(yCat, yKind);
default:
break;
}
break;
case TypeCategory::Real:
switch (yCat) {
case TypeCategory::Integer:
return std::make_pair(TypeCategory::Real, xKind);
case TypeCategory::Real:
case TypeCategory::Complex:
return std::make_pair(yCat, maxKind);
default:
break;
}
break;
case TypeCategory::Complex:
switch (yCat) {
case TypeCategory::Integer:
return std::make_pair(TypeCategory::Complex, xKind);
case TypeCategory::Real:
case TypeCategory::Complex:
return std::make_pair(TypeCategory::Complex, maxKind);
default:
break;
}
break;
case TypeCategory::Character:
if (yCat == TypeCategory::Character) {
return std::make_pair(TypeCategory::Character, maxKind);
} else {
return std::nullopt;
}
case TypeCategory::Logical:
if (yCat == TypeCategory::Logical) {
return std::make_pair(TypeCategory::Logical, maxKind);
} else {
return std::nullopt;
}
default:
break;
}
return std::nullopt;
}
// Accumulate floating-point results in (at least) double precision
template <TypeCategory CAT, int KIND>
using AccumulationType = CppTypeFor<CAT,
CAT == TypeCategory::Real || CAT == TypeCategory::Complex
? std::max(KIND, static_cast<int>(sizeof(double)))
: KIND>;
// memchr() for any character type
template <typename CHAR>
static inline const CHAR *FindCharacter(
const CHAR *data, CHAR ch, std::size_t chars) {
const CHAR *end{data + chars};
for (const CHAR *p{data}; p < end; ++p) {
if (*p == ch) {
return p;
}
}
return nullptr;
}
template <>
inline const char *FindCharacter(const char *data, char ch, std::size_t chars) {
return reinterpret_cast<const char *>(
std::memchr(data, static_cast<int>(ch), chars));
}
} // namespace Fortran::runtime
#endif // FORTRAN_RUNTIME_TOOLS_H_