Files
clang-p2996/mlir/lib/Dialect/SCF/Transforms/TileUsingInterface.cpp

475 lines
19 KiB
C++

//===- Tiling.cpp - Implementation of tiling using TilingInterface -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the tiling using TilingInterface.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/TilingInterface.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "tile-using-interface"
using namespace mlir;
scf::SCFTilingOptions &
scf::SCFTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
assert(!tileSizeComputationFunction && "tile sizes already set");
SmallVector<int64_t> tileSizes(ts.begin(), ts.end());
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
OpBuilder::InsertionGuard guard(b);
b.setInsertionPointToStart(
&op->getParentOfType<func::FuncOp>().getBody().front());
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
return v;
}));
};
return *this;
}
/// Helper method to adjust the interchange vector to match the iteration
/// domain.
static SmallVector<unsigned>
fillInterchangeVector(ArrayRef<unsigned> interchangeVector,
size_t iterationDomainSize) {
SmallVector<unsigned> filledVector = llvm::to_vector(interchangeVector);
if (filledVector.size() < iterationDomainSize) {
auto range = llvm::seq<unsigned>(filledVector.size(), iterationDomainSize);
filledVector.append(range.begin(), range.end());
}
if (filledVector.size() > iterationDomainSize)
filledVector.resize(iterationDomainSize);
return filledVector;
}
/// Helper method to apply permutation to a vector
template <typename T>
static SmallVector<T> applyPermutationToVector(const SmallVector<T> &vector,
ArrayRef<unsigned> interchange) {
assert(interchange.size() == vector.size());
return llvm::to_vector(
llvm::map_range(interchange, [&](unsigned val) { return vector[val]; }));
}
/// Helper method to apply to invert a permutation.
static SmallVector<unsigned>
invertPermutationVector(ArrayRef<unsigned> interchange) {
SmallVector<unsigned> inversion(interchange.size());
for (auto pos : llvm::enumerate(interchange)) {
inversion[pos.value()] = pos.index();
}
return inversion;
}
/// Method to check if an interchange vector is a permutation.
static bool isPermutation(ArrayRef<unsigned> interchange) {
llvm::SmallDenseSet<unsigned, 4> seenVals;
for (auto val : interchange) {
if (seenVals.count(val))
return false;
seenVals.insert(val);
}
return seenVals.size() == interchange.size();
}
//===----------------------------------------------------------------------===//
// TileUsingSCFForOp pattern implementation.
//===----------------------------------------------------------------------===//
/// Generate an empty loop nest that represents the tiled loop nest shell.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizeVals` is the tile sizes to use. Zero represent untiled loops.
/// - In `offsets` and `sizes` return the multi-dimensional offset and size of
/// the
/// tile processed within the inner most loop.
static SmallVector<scf::ForOp>
generateTileLoopNest(OpBuilder &builder, Location loc,
ArrayRef<Range> loopRanges, ArrayRef<Value> tileSizeVals,
SmallVector<OpFoldResult> &offsets,
SmallVector<OpFoldResult> &sizes) {
assert(!loopRanges.empty() && "expected at least one loop range");
assert(loopRanges.size() == tileSizeVals.size() &&
"expected as many tile sizes as loop ranges");
OpBuilder::InsertionGuard guard(builder);
SmallVector<scf::ForOp> loops;
offsets.resize(loopRanges.size());
sizes.resize(loopRanges.size());
// The tile size to use (to avoid out of bounds access) is minimum of
// `tileSize` and `ub - iv`, where `iv` is the induction variable
// of the tiled loop.
AffineExpr s0, s1, d0;
bindDims(builder.getContext(), d0);
bindSymbols(builder.getContext(), s0, s1);
AffineMap minMap = AffineMap::get(1, 2, {s0, s1 - d0}, builder.getContext());
for (auto loopRange : llvm::enumerate(loopRanges)) {
// No loops if tile size is zero. Set offset and size to the loop
// offset and size.
if (matchPattern(tileSizeVals[loopRange.index()], m_Zero())) {
offsets[loopRange.index()] = loopRange.value().offset;
sizes[loopRange.index()] = loopRange.value().size;
continue;
}
auto loop = builder.create<scf::ForOp>(
loc, loopRange.value().offset, loopRange.value().size,
tileSizeVals[loopRange.index()], ValueRange{},
[&](OpBuilder &bodyBuilder, Location bodyLoc, Value iv,
ValueRange /*iterArgs*/) {
Value boundedTileSize = builder.create<AffineMinOp>(
bodyLoc, minMap,
ValueRange{iv, tileSizeVals[loopRange.index()],
loopRange.value().size});
sizes[loopRange.index()] = boundedTileSize;
builder.create<scf::YieldOp>(loc);
});
offsets[loopRange.index()] = loop.getInductionVar();
loops.push_back(loop);
builder.setInsertionPoint(loop.getBody()->getTerminator());
}
return loops;
}
scf::TileUsingSCFForOp::TileUsingSCFForOp(MLIRContext *context,
scf::SCFTilingOptions options,
PatternBenefit benefit)
: OpInterfaceRewritePattern<TilingInterface>(context, benefit),
options(std::move(options)) {}
scf::TileUsingSCFForOp::TileUsingSCFForOp(StringRef opName,
MLIRContext *context,
scf::SCFTilingOptions options,
PatternBenefit benefit)
: OpInterfaceRewritePattern<TilingInterface>(context, benefit),
options(std::move(options)) {}
FailureOr<scf::SCFTilingResult>
scf::TileUsingSCFForOp::returningMatchAndRewrite(
TilingInterface op, PatternRewriter &rewriter) const {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfter(op);
if (!options.tileSizeComputationFunction) {
return rewriter.notifyMatchFailure(
op, "missing tile size computation function");
}
// 1. Get the range of the loops that are represented by the operation.
SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter);
size_t numLoops = iterationDomain.size();
if (numLoops == 0) {
return rewriter.notifyMatchFailure(
op, "unable to tile op with no iteration domain");
}
// 2. Materialize the tile sizes. Enforce the convention that "tiling by zero"
// skips tiling a particular dimension. This convention is significantly
// simpler to handle instead of adjusting affine maps to account for missing
// dimensions.
SmallVector<Value> tileSizeVector =
options.tileSizeComputationFunction(rewriter, op);
if (tileSizeVector.size() < iterationDomain.size()) {
auto zero = rewriter.create<arith::ConstantIndexOp>(op.getLoc(), 0);
tileSizeVector.append(numLoops - tileSizeVector.size(), zero);
}
scf::SCFTilingResult tilingResult;
SmallVector<OpFoldResult> offsets, sizes;
{
// If there is an interchange specified, permute the iteration domain and
// the tile sizes.
SmallVector<unsigned> interchangeVector;
if (!options.interchangeVector.empty()) {
interchangeVector = fillInterchangeVector(options.interchangeVector,
iterationDomain.size());
}
if (!interchangeVector.empty()) {
if (!isPermutation(interchangeVector)) {
return rewriter.notifyMatchFailure(
op, "invalid intechange vector, not a permutation of the entire "
"iteration space");
}
iterationDomain =
applyPermutationToVector(iterationDomain, interchangeVector);
tileSizeVector =
applyPermutationToVector(tileSizeVector, interchangeVector);
}
// 3. Materialize an empty loop nest that iterates over the tiles. These
// loops for now do not return any values even if the original operation has
// results.
tilingResult.loops = generateTileLoopNest(
rewriter, op.getLoc(), iterationDomain, tileSizeVector, offsets, sizes);
if (!interchangeVector.empty()) {
auto inversePermutation = invertPermutationVector(interchangeVector);
offsets = applyPermutationToVector(offsets, inversePermutation);
sizes = applyPermutationToVector(sizes, inversePermutation);
}
LLVM_DEBUG({
if (!tilingResult.loops.empty()) {
llvm::errs() << "LoopNest shell :\n";
tilingResult.loops.front().dump();
llvm::errs() << "\n";
}
});
// 4. Generate the tiled implementation within the inner most loop.
if (!tilingResult.loops.empty())
rewriter.setInsertionPoint(
tilingResult.loops.back().getBody()->getTerminator());
SmallVector<Operation *> tiledImplementation = op.getTiledImplementation(
rewriter, op.getDestinationOperands(rewriter), offsets, sizes, true);
if (tiledImplementation.size() != 1) {
return rewriter.notifyMatchFailure(
op, "expected tiled implementation to return a single op");
}
tilingResult.tiledOp = tiledImplementation[0];
LLVM_DEBUG({
if (!tilingResult.loops.empty()) {
llvm::errs() << "After tiled implementation :\n";
tilingResult.loops.front().dump();
llvm::errs() << "\n";
}
});
}
if (op->getNumResults() == 0) {
rewriter.eraseOp(op);
return tilingResult;
}
// 5. If the original operations has results, modify the loop nest to yield
// the replacement values.
SmallVector<Value> replacements;
if (tilingResult.loops.empty()) {
// 5a. If there were no loops, the tiled implementation results are the
// replacements.
rewriter.replaceOp(op, tilingResult.tiledOp->getResults());
return tilingResult;
}
// 5b. `scf.for` with tensor semantics requires the loop nest to yield the
// replacement values using destructive updates. Use the `TilingInterface`
// to get the position of the result tiles and use that to generate the
// destructive update pattern, i.e.,
//
// ```mlir
// scf.for %iv0 = ... {
// %0 = tiled_op
// }
// ```
//
// is transformed to
//
// ```mlir
// %result = scf.for %iv0 = ... iter_args(%arg = %init) -> .. {
// %0 = tiled_op
// %1 = tensor.insert_slice %0 into %arg[..] [..] [..]
// scf.yield %1
// }
// ```
NewYieldValueFn yieldValueFn =
[&](OpBuilder &b, Location loc,
ArrayRef<BlockArgument> newBBArgs) -> SmallVector<Value> {
SmallVector<Value> yieldedValues;
Attribute one = b.getIndexAttr(1);
for (auto resultNum : llvm::seq<unsigned>(0, op->getNumResults())) {
SmallVector<OpFoldResult> resultTileOffsets, resultTileSizes;
if (failed(op.getResultTilePosition(b, resultNum, offsets, sizes,
resultTileOffsets,
resultTileSizes))) {
op.emitOpError("unable to get position of result ")
<< resultNum << " of the tiled implementation";
return {};
}
SmallVector<OpFoldResult> resultTileStrides(resultTileOffsets.size(),
one);
Value yieldedValue = b.create<tensor::InsertSliceOp>(
op->getLoc(), tilingResult.tiledOp->getResult(resultNum),
newBBArgs[resultNum], resultTileOffsets, resultTileSizes,
resultTileStrides);
yieldedValues.push_back(yieldedValue);
}
return yieldedValues;
};
SmallVector<scf::ForOp> newLoops = replaceLoopNestWithNewYields(
rewriter, tilingResult.loops, op.getDestinationOperands(rewriter),
yieldValueFn);
for (const auto &loop : llvm::enumerate(tilingResult.loops)) {
rewriter.eraseOp(loop.value());
tilingResult.loops[loop.index()] = newLoops[loop.index()];
}
rewriter.replaceOp(op, tilingResult.loops.front().getResults());
return tilingResult;
}
//===----------------------------------------------------------------------===//
// TileConsumerAndFuseProducersUsingSCFForOp pattern implementation.
//===----------------------------------------------------------------------===//
scf::TileConsumerAndFuseProducersUsingSCFForOp::
TileConsumerAndFuseProducersUsingSCFForOp(MLIRContext *context,
scf::SCFTilingOptions options,
PatternBenefit benefit)
: OpInterfaceRewritePattern<TilingInterface>(context, benefit),
tilingPattern(context, std::move(options)) {}
scf::TileConsumerAndFuseProducersUsingSCFForOp::
TileConsumerAndFuseProducersUsingSCFForOp(StringRef opName,
MLIRContext *context,
scf::SCFTilingOptions options,
PatternBenefit benefit)
: OpInterfaceRewritePattern<TilingInterface>(context, benefit),
tilingPattern(context, std::move(options)) {}
/// Return the `Value` that is defined by an operation that implements
/// the `TilingInterface`. Looks through `iter_args` of scf.for nest
/// if required.
static Optional<OpResult> getFusableProducer(Value v) {
while (auto blockArg = v.dyn_cast<BlockArgument>()) {
auto loopOp = dyn_cast<scf::ForOp>(blockArg.getOwner()->getParentOp());
if (!loopOp)
return llvm::None;
v = loopOp.getOpOperandForRegionIterArg(blockArg).get();
}
if (!isa_and_nonnull<TilingInterface>(v.getDefiningOp()))
return llvm::None;
return v.cast<OpResult>();
}
FailureOr<scf::SCFTileAndFuseResult>
scf::TileConsumerAndFuseProducersUsingSCFForOp::returningMatchAndRewrite(
TilingInterface op, PatternRewriter &rewriter) const {
// This transformation is only valid for ops that return values (i.e. not
// valid to use with operations that have memref operands).
if (!op->getNumResults()) {
return rewriter.notifyMatchFailure(
op, "invalid pattern for op with no results");
}
// 1. First tile the consumer.
SCFTileAndFuseResult tileAndFuseResult;
{
FailureOr<SCFTilingResult> tilingResult =
tilingPattern.returningMatchAndRewrite(op, rewriter);
if (failed(tilingResult)) {
return failure();
}
tileAndFuseResult.tiledAndFusedOps.push_back(tilingResult->tiledOp);
tileAndFuseResult.loops = std::move(tilingResult->loops);
}
// 2. Typically, the operands of the tiled operation are slices of the
// operands of the untiled operation. These are expressed in IR using
// `tensor.extract_slice` operations with source being the operands of the
// untiled operation. Create a worklist of these `tensor.extract_slice`
// operations. If the producers of the source of the `tensor.extract_slice`
// can be tiled such that the tiled value is generated in-place, that
// effectively tiles + fuses the operations.
auto addCandidateSlices = [](Operation *fusedOp,
std::deque<tensor::ExtractSliceOp> &candidates) {
for (Value operand : fusedOp->getOperands())
if (auto sliceOp = operand.getDefiningOp<tensor::ExtractSliceOp>())
candidates.push_back(sliceOp);
};
std::deque<tensor::ExtractSliceOp> candidates;
addCandidateSlices(tileAndFuseResult.tiledAndFusedOps.back(), candidates);
OpBuilder::InsertionGuard g(rewriter);
while (!candidates.empty()) {
// 2a. Traverse the slices in BFS fashion.
tensor::ExtractSliceOp candidateSliceOp = candidates.front();
candidates.pop_front();
// 2b. Get the producer of the source (potentially walking through
// `iter_args` of nested `scf.for`)
Optional<OpResult> fusableProducer =
getFusableProducer(candidateSliceOp.getSource());
if (!fusableProducer)
continue;
// 2c. Generate the tiled implementation of the producer of the source
rewriter.setInsertionPoint(candidateSliceOp);
FailureOr<Value> fusedProducerValue =
tensor::replaceExtractSliceWithTiledProducer(rewriter, candidateSliceOp,
fusableProducer.value());
if (failed(fusedProducerValue))
continue;
rewriter.replaceOp(candidateSliceOp, fusedProducerValue.value());
// 2d. The operands of the fused producer might themselved be slices of
// values produced by operations that implement the `TilingInterface`.
// Add these operations to the worklist.
Operation *fusedProducer = fusedProducerValue->getDefiningOp();
tileAndFuseResult.tiledAndFusedOps.push_back(fusedProducer);
addCandidateSlices(fusedProducer, candidates);
// 2e. If the operation being fused creates a value that is used as `outs`
// in the tiled operation, the result of the unfused operation will be
// used in the `iter_args` of the tiled loop generated. When the
// operation is fused, this use in `iter_args` needs to be modified to
// use the destination of the fused operation. For example, starting
// with
//
// ```mlir
// %0 = linalg.init_tensor ...
// %1 = linalg.fill ... outs(%0:...)...
// %2 = linalg.matmul ... outs(%1:...)....
// ```
//
// First the `linalg.matmul` gets tiled
//
// ```mlir
// %0 = linalg.init_tensor
// %1 = linalg.fill
// %2 = scf.for .... iter_args(%arg0 = %1)...
// ...
// ... = linalg.matmul ...
//
// ```
//
// When the `linalg.fill` gets fused, the `iter_args` needs to be
// modified
//
// ```mlir
// %0 = linalg.init_tensor
// %1 = scf.for ... iter_args(%arg0 = %0)...
// ...
// %2 = linalg.fill ...
// %3 = linalg.matmul ... outs(%2: ...)...
// ```
TilingInterface unfusedProducerOp =
cast<TilingInterface>(fusableProducer->getOwner());
scf::ForOp outerMostTiledLoop = tileAndFuseResult.loops.front();
SmallVector<Value> unfusedProducerOpDestValues =
unfusedProducerOp.getDestinationOperands(rewriter);
for (OpOperand &uses : unfusedProducerOp->getUses()) {
if (uses.getOwner() == outerMostTiledLoop.getOperation()) {
unsigned resultNumber = uses.get().cast<OpResult>().getResultNumber();
unsigned operandNumber = uses.getOperandNumber();
outerMostTiledLoop->setOperand(
operandNumber, unfusedProducerOpDestValues[resultNumber]);
}
}
}
return tileAndFuseResult;
}