Files
clang-p2996/lld/ELF/LTO.cpp
Shoaib Meenai 1af25a9860 [ELF] Fix wrapping symbols produced during LTO codegen
We were previously not correctly wrapping symbols that were only
produced during LTO codegen and unreferenced before then, or symbols
only referenced from such symbols. The root cause was that we weren't
marking the wrapped symbol as used if we only saw the use after LTO
codegen, leading to the failed wrapping.

Fix this by explicitly tracking whether a symbol will become referenced
after wrapping is done. We can use this property to tell LTO to preserve
such symbols, instead of overload isUsedInRegularObj for this purpose.
Since we're no longer setting isUsedInRegularObj for all symbols which
will be wrapped, its value at the time of performing the wrapping in the
symbol table will accurately reflect whether the symbol was actually
used in an object (including in an LTO-generated object), and we can
propagate that value to the wrapped symbol and thereby ensure we wrap
correctly.

This incorrect wrapping was the only scenario I was aware of where we
produced an invalid PLT relocation, which D123985 started diagnosing,
and with it fixed, we lose the test for that diagnosis. I think it's
worth keeping the diagnosis though, in case we run into other issues in
the future which would be caught by it.

Fixes PR50675.

Reviewed By: MaskRay

Differential Revision: https://reviews.llvm.org/D124056
2022-04-22 16:45:21 -07:00

387 lines
14 KiB
C++

//===- LTO.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LTO.h"
#include "Config.h"
#include "InputFiles.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/Args.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Strings.h"
#include "lld/Common/TargetOptionsCommandFlags.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/LTO/Config.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Support/Caching.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include <algorithm>
#include <cstddef>
#include <memory>
#include <string>
#include <system_error>
#include <vector>
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
// Creates an empty file to store a list of object files for final
// linking of distributed ThinLTO.
static std::unique_ptr<raw_fd_ostream> openFile(StringRef file) {
std::error_code ec;
auto ret =
std::make_unique<raw_fd_ostream>(file, ec, sys::fs::OpenFlags::OF_None);
if (ec) {
error("cannot open " + file + ": " + ec.message());
return nullptr;
}
return ret;
}
// The merged bitcode after LTO is large. Try opening a file stream that
// supports reading, seeking and writing. Such a file allows BitcodeWriter to
// flush buffered data to reduce memory consumption. If this fails, open a file
// stream that supports only write.
static std::unique_ptr<raw_fd_ostream> openLTOOutputFile(StringRef file) {
std::error_code ec;
std::unique_ptr<raw_fd_ostream> fs =
std::make_unique<raw_fd_stream>(file, ec);
if (!ec)
return fs;
return openFile(file);
}
static std::string getThinLTOOutputFile(StringRef modulePath) {
return lto::getThinLTOOutputFile(
std::string(modulePath), std::string(config->thinLTOPrefixReplace.first),
std::string(config->thinLTOPrefixReplace.second));
}
static lto::Config createConfig() {
lto::Config c;
// LLD supports the new relocations and address-significance tables.
c.Options = initTargetOptionsFromCodeGenFlags();
c.Options.RelaxELFRelocations = true;
c.Options.EmitAddrsig = true;
// Always emit a section per function/datum with LTO.
c.Options.FunctionSections = true;
c.Options.DataSections = true;
// Check if basic block sections must be used.
// Allowed values for --lto-basic-block-sections are "all", "labels",
// "<file name specifying basic block ids>", or none. This is the equivalent
// of -fbasic-block-sections= flag in clang.
if (!config->ltoBasicBlockSections.empty()) {
if (config->ltoBasicBlockSections == "all") {
c.Options.BBSections = BasicBlockSection::All;
} else if (config->ltoBasicBlockSections == "labels") {
c.Options.BBSections = BasicBlockSection::Labels;
} else if (config->ltoBasicBlockSections == "none") {
c.Options.BBSections = BasicBlockSection::None;
} else {
ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
MemoryBuffer::getFile(config->ltoBasicBlockSections.str());
if (!MBOrErr) {
error("cannot open " + config->ltoBasicBlockSections + ":" +
MBOrErr.getError().message());
} else {
c.Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
}
c.Options.BBSections = BasicBlockSection::List;
}
}
c.Options.UniqueBasicBlockSectionNames =
config->ltoUniqueBasicBlockSectionNames;
if (auto relocModel = getRelocModelFromCMModel())
c.RelocModel = *relocModel;
else if (config->relocatable)
c.RelocModel = None;
else if (config->isPic)
c.RelocModel = Reloc::PIC_;
else
c.RelocModel = Reloc::Static;
c.CodeModel = getCodeModelFromCMModel();
c.DisableVerify = config->disableVerify;
c.DiagHandler = diagnosticHandler;
c.OptLevel = config->ltoo;
c.CPU = getCPUStr();
c.MAttrs = getMAttrs();
c.CGOptLevel = args::getCGOptLevel(config->ltoo);
c.PTO.LoopVectorization = c.OptLevel > 1;
c.PTO.SLPVectorization = c.OptLevel > 1;
// Set up a custom pipeline if we've been asked to.
c.OptPipeline = std::string(config->ltoNewPmPasses);
c.AAPipeline = std::string(config->ltoAAPipeline);
// Set up optimization remarks if we've been asked to.
c.RemarksFilename = std::string(config->optRemarksFilename);
c.RemarksPasses = std::string(config->optRemarksPasses);
c.RemarksWithHotness = config->optRemarksWithHotness;
c.RemarksHotnessThreshold = config->optRemarksHotnessThreshold;
c.RemarksFormat = std::string(config->optRemarksFormat);
// Set up output file to emit statistics.
c.StatsFile = std::string(config->optStatsFilename);
c.SampleProfile = std::string(config->ltoSampleProfile);
for (StringRef pluginFn : config->passPlugins)
c.PassPlugins.push_back(std::string(pluginFn));
c.DebugPassManager = config->ltoDebugPassManager;
c.DwoDir = std::string(config->dwoDir);
c.HasWholeProgramVisibility = config->ltoWholeProgramVisibility;
c.AlwaysEmitRegularLTOObj = !config->ltoObjPath.empty();
for (const llvm::StringRef &name : config->thinLTOModulesToCompile)
c.ThinLTOModulesToCompile.emplace_back(name);
c.TimeTraceEnabled = config->timeTraceEnabled;
c.TimeTraceGranularity = config->timeTraceGranularity;
c.CSIRProfile = std::string(config->ltoCSProfileFile);
c.RunCSIRInstr = config->ltoCSProfileGenerate;
c.PGOWarnMismatch = config->ltoPGOWarnMismatch;
if (config->emitLLVM) {
c.PostInternalizeModuleHook = [](size_t task, const Module &m) {
if (std::unique_ptr<raw_fd_ostream> os =
openLTOOutputFile(config->outputFile))
WriteBitcodeToFile(m, *os, false);
return false;
};
}
if (config->ltoEmitAsm)
c.CGFileType = CGFT_AssemblyFile;
if (config->saveTemps)
checkError(c.addSaveTemps(config->outputFile.str() + ".",
/*UseInputModulePath*/ true));
return c;
}
BitcodeCompiler::BitcodeCompiler() {
// Initialize indexFile.
if (!config->thinLTOIndexOnlyArg.empty())
indexFile = openFile(config->thinLTOIndexOnlyArg);
// Initialize ltoObj.
lto::ThinBackend backend;
if (config->thinLTOIndexOnly) {
auto onIndexWrite = [&](StringRef s) { thinIndices.erase(s); };
backend = lto::createWriteIndexesThinBackend(
std::string(config->thinLTOPrefixReplace.first),
std::string(config->thinLTOPrefixReplace.second),
config->thinLTOEmitImportsFiles, indexFile.get(), onIndexWrite);
} else {
backend = lto::createInProcessThinBackend(
llvm::heavyweight_hardware_concurrency(config->thinLTOJobs));
}
ltoObj = std::make_unique<lto::LTO>(createConfig(), backend,
config->ltoPartitions);
// Initialize usedStartStop.
if (bitcodeFiles.empty())
return;
for (Symbol *sym : symtab->symbols()) {
if (sym->isPlaceholder())
continue;
StringRef s = sym->getName();
for (StringRef prefix : {"__start_", "__stop_"})
if (s.startswith(prefix))
usedStartStop.insert(s.substr(prefix.size()));
}
}
BitcodeCompiler::~BitcodeCompiler() = default;
void BitcodeCompiler::add(BitcodeFile &f) {
lto::InputFile &obj = *f.obj;
bool isExec = !config->shared && !config->relocatable;
if (config->thinLTOIndexOnly)
thinIndices.insert(obj.getName());
ArrayRef<Symbol *> syms = f.getSymbols();
ArrayRef<lto::InputFile::Symbol> objSyms = obj.symbols();
std::vector<lto::SymbolResolution> resols(syms.size());
// Provide a resolution to the LTO API for each symbol.
for (size_t i = 0, e = syms.size(); i != e; ++i) {
Symbol *sym = syms[i];
const lto::InputFile::Symbol &objSym = objSyms[i];
lto::SymbolResolution &r = resols[i];
// Ideally we shouldn't check for SF_Undefined but currently IRObjectFile
// reports two symbols for module ASM defined. Without this check, lld
// flags an undefined in IR with a definition in ASM as prevailing.
// Once IRObjectFile is fixed to report only one symbol this hack can
// be removed.
r.Prevailing = !objSym.isUndefined() && sym->file == &f;
// We ask LTO to preserve following global symbols:
// 1) All symbols when doing relocatable link, so that them can be used
// for doing final link.
// 2) Symbols that are used in regular objects.
// 3) C named sections if we have corresponding __start_/__stop_ symbol.
// 4) Symbols that are defined in bitcode files and used for dynamic
// linking.
// 5) Symbols that will be referenced after linker wrapping is performed.
r.VisibleToRegularObj = config->relocatable || sym->isUsedInRegularObj ||
sym->referencedAfterWrap ||
(r.Prevailing && sym->includeInDynsym()) ||
usedStartStop.count(objSym.getSectionName());
// Identify symbols exported dynamically, and that therefore could be
// referenced by a shared library not visible to the linker.
r.ExportDynamic =
sym->computeBinding() != STB_LOCAL &&
(config->exportDynamic || sym->exportDynamic || sym->inDynamicList);
const auto *dr = dyn_cast<Defined>(sym);
r.FinalDefinitionInLinkageUnit =
(isExec || sym->visibility != STV_DEFAULT) && dr &&
// Skip absolute symbols from ELF objects, otherwise PC-rel relocations
// will be generated by for them, triggering linker errors.
// Symbol section is always null for bitcode symbols, hence the check
// for isElf(). Skip linker script defined symbols as well: they have
// no File defined.
!(dr->section == nullptr && (!sym->file || sym->file->isElf()));
if (r.Prevailing)
sym->replace(
Undefined{nullptr, StringRef(), STB_GLOBAL, STV_DEFAULT, sym->type});
// We tell LTO to not apply interprocedural optimization for wrapped
// (with --wrap) symbols because otherwise LTO would inline them while
// their values are still not final.
r.LinkerRedefined = sym->scriptDefined;
}
checkError(ltoObj->add(std::move(f.obj), resols));
}
// If LazyObjFile has not been added to link, emit empty index files.
// This is needed because this is what GNU gold plugin does and we have a
// distributed build system that depends on that behavior.
static void thinLTOCreateEmptyIndexFiles() {
for (BitcodeFile *f : lazyBitcodeFiles) {
if (!f->lazy)
continue;
std::string path = replaceThinLTOSuffix(getThinLTOOutputFile(f->getName()));
std::unique_ptr<raw_fd_ostream> os = openFile(path + ".thinlto.bc");
if (!os)
continue;
ModuleSummaryIndex m(/*HaveGVs*/ false);
m.setSkipModuleByDistributedBackend();
writeIndexToFile(m, *os);
if (config->thinLTOEmitImportsFiles)
openFile(path + ".imports");
}
}
// Merge all the bitcode files we have seen, codegen the result
// and return the resulting ObjectFile(s).
std::vector<InputFile *> BitcodeCompiler::compile() {
unsigned maxTasks = ltoObj->getMaxTasks();
buf.resize(maxTasks);
files.resize(maxTasks);
// The --thinlto-cache-dir option specifies the path to a directory in which
// to cache native object files for ThinLTO incremental builds. If a path was
// specified, configure LTO to use it as the cache directory.
FileCache cache;
if (!config->thinLTOCacheDir.empty())
cache =
check(localCache("ThinLTO", "Thin", config->thinLTOCacheDir,
[&](size_t task, std::unique_ptr<MemoryBuffer> mb) {
files[task] = std::move(mb);
}));
if (!bitcodeFiles.empty())
checkError(ltoObj->run(
[&](size_t task) {
return std::make_unique<CachedFileStream>(
std::make_unique<raw_svector_ostream>(buf[task]));
},
cache));
// Emit empty index files for non-indexed files but not in single-module mode.
if (config->thinLTOModulesToCompile.empty()) {
for (StringRef s : thinIndices) {
std::string path = getThinLTOOutputFile(s);
openFile(path + ".thinlto.bc");
if (config->thinLTOEmitImportsFiles)
openFile(path + ".imports");
}
}
if (config->thinLTOIndexOnly) {
thinLTOCreateEmptyIndexFiles();
if (!config->ltoObjPath.empty())
saveBuffer(buf[0], config->ltoObjPath);
// ThinLTO with index only option is required to generate only the index
// files. After that, we exit from linker and ThinLTO backend runs in a
// distributed environment.
if (indexFile)
indexFile->close();
return {};
}
if (!config->thinLTOCacheDir.empty())
pruneCache(config->thinLTOCacheDir, config->thinLTOCachePolicy);
if (!config->ltoObjPath.empty()) {
saveBuffer(buf[0], config->ltoObjPath);
for (unsigned i = 1; i != maxTasks; ++i)
saveBuffer(buf[i], config->ltoObjPath + Twine(i));
}
if (config->saveTemps) {
if (!buf[0].empty())
saveBuffer(buf[0], config->outputFile + ".lto.o");
for (unsigned i = 1; i != maxTasks; ++i)
saveBuffer(buf[i], config->outputFile + Twine(i) + ".lto.o");
}
if (config->ltoEmitAsm) {
saveBuffer(buf[0], config->outputFile);
for (unsigned i = 1; i != maxTasks; ++i)
saveBuffer(buf[i], config->outputFile + Twine(i));
return {};
}
std::vector<InputFile *> ret;
for (unsigned i = 0; i != maxTasks; ++i)
if (!buf[i].empty())
ret.push_back(createObjectFile(MemoryBufferRef(buf[i], "lto.tmp")));
for (std::unique_ptr<MemoryBuffer> &file : files)
if (file)
ret.push_back(createObjectFile(*file));
return ret;
}