Insert a cast if the two tensors with identical layout (that are passed to `arith.select`) have different layout maps after bufferization. Differential Revision: https://reviews.llvm.org/D123321
184 lines
7.3 KiB
C++
184 lines
7.3 KiB
C++
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Arithmetic/Transforms/BufferizableOpInterfaceImpl.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/BufferUtils.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Operation.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
|
|
namespace {
|
|
/// Bufferization of arith.constant. Replace with memref.get_global.
|
|
struct ConstantOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<ConstantOpInterface,
|
|
arith::ConstantOp> {
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
BufferizationState &state) const {
|
|
auto constantOp = cast<arith::ConstantOp>(op);
|
|
|
|
// Only ranked tensors are supported.
|
|
if (!constantOp.getType().isa<RankedTensorType>())
|
|
return failure();
|
|
|
|
// Only constants inside a module are supported.
|
|
auto moduleOp = constantOp->getParentOfType<ModuleOp>();
|
|
if (!moduleOp)
|
|
return failure();
|
|
|
|
// Create global memory segment and replace tensor with memref pointing to
|
|
// that memory segment.
|
|
FailureOr<memref::GlobalOp> globalOp =
|
|
getGlobalFor(constantOp, state.getOptions().bufferAlignment);
|
|
if (failed(globalOp))
|
|
return failure();
|
|
memref::GlobalOp globalMemref = globalOp.getValue();
|
|
replaceOpWithNewBufferizedOp<memref::GetGlobalOp>(
|
|
rewriter, op, globalMemref.type(), globalMemref.getName());
|
|
|
|
return success();
|
|
}
|
|
|
|
bool isWritable(Operation *op, Value value,
|
|
const AnalysisState &state) const {
|
|
// Memory locations returned by memref::GetGlobalOp may not be written to.
|
|
assert(value.isa<OpResult>());
|
|
return false;
|
|
}
|
|
};
|
|
|
|
struct IndexCastOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<IndexCastOpInterface,
|
|
arith::IndexCastOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return {op->getResult(0)};
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
return BufferRelation::Equivalent;
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
BufferizationState &state) const {
|
|
auto castOp = cast<arith::IndexCastOp>(op);
|
|
|
|
Value source = *state.getBuffer(rewriter, op->getOpOperand(0) /*in*/);
|
|
auto sourceType = source.getType().cast<BaseMemRefType>();
|
|
|
|
// Result type should have same layout and address space as the source type.
|
|
MemRefLayoutAttrInterface layout = {};
|
|
if (auto rankedMemRefType = sourceType.dyn_cast<MemRefType>())
|
|
layout = rankedMemRefType.getLayout();
|
|
Type resultType =
|
|
getMemRefType(castOp.getType().cast<TensorType>(), state.getOptions(),
|
|
layout, sourceType.getMemorySpace());
|
|
|
|
replaceOpWithNewBufferizedOp<arith::IndexCastOp>(rewriter, op, resultType,
|
|
source);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Bufferization of arith.select. Just replace the operands.
|
|
struct SelectOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<SelectOpInterface,
|
|
arith::SelectOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return {op->getOpResult(0) /*result*/};
|
|
}
|
|
|
|
SmallVector<OpOperand *>
|
|
getAliasingOpOperand(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
return {&op->getOpOperand(1) /*true_value*/,
|
|
&op->getOpOperand(2) /*false_value*/};
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
BufferizationState &state) const {
|
|
auto selectOp = cast<arith::SelectOp>(op);
|
|
Location loc = selectOp.getLoc();
|
|
|
|
// `getBuffer` introduces copies if an OpOperand bufferizes out-of-place.
|
|
// TODO: It would be more efficient to copy the result of the `select` op
|
|
// instead of its OpOperands. In the worst case, 2 copies are inserted at
|
|
// the moment (one for each tensor). When copying the op result, only one
|
|
// copy would be needed.
|
|
Value trueBuffer =
|
|
*state.getBuffer(rewriter, selectOp->getOpOperand(1) /*true_value*/);
|
|
Value falseBuffer =
|
|
*state.getBuffer(rewriter, selectOp->getOpOperand(2) /*false_value*/);
|
|
|
|
// The "true" and the "false" operands must have the same type. If the
|
|
// buffers have different types, they differ only in their layout map. Cast
|
|
// both of them to the most dynamic MemRef type.
|
|
if (trueBuffer.getType() != falseBuffer.getType()) {
|
|
auto trueType = trueBuffer.getType().cast<MemRefType>();
|
|
auto tensorType = selectOp.getTrueValue().getType().cast<TensorType>();
|
|
int64_t dynamicOffset = ShapedType::kDynamicStrideOrOffset;
|
|
SmallVector<int64_t> dynamicStrides(tensorType.getRank(),
|
|
ShapedType::kDynamicStrideOrOffset);
|
|
AffineMap stridedLayout = makeStridedLinearLayoutMap(
|
|
dynamicStrides, dynamicOffset, op->getContext());
|
|
BaseMemRefType castedType = bufferization::getMemRefType(
|
|
tensorType, state.getOptions(), AffineMapAttr::get(stridedLayout),
|
|
trueType.getMemorySpace());
|
|
trueBuffer = rewriter.create<memref::CastOp>(loc, castedType, trueBuffer);
|
|
falseBuffer =
|
|
rewriter.create<memref::CastOp>(loc, castedType, falseBuffer);
|
|
}
|
|
|
|
replaceOpWithNewBufferizedOp<arith::SelectOp>(
|
|
rewriter, op, selectOp.getCondition(), trueBuffer, falseBuffer);
|
|
return success();
|
|
}
|
|
|
|
BufferRelation bufferRelation(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
return BufferRelation::None;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::arith::registerBufferizableOpInterfaceExternalModels(
|
|
DialectRegistry ®istry) {
|
|
registry.addExtension(+[](MLIRContext *ctx, ArithmeticDialect *dialect) {
|
|
ConstantOp::attachInterface<ConstantOpInterface>(*ctx);
|
|
IndexCastOp::attachInterface<IndexCastOpInterface>(*ctx);
|
|
SelectOp::attachInterface<SelectOpInterface>(*ctx);
|
|
});
|
|
}
|