Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp
Jim Kitchen 81d0d2b2a0 [mlir][sparse] Sparse reduction in lex order no longer produces dense output
Previously, when performing a reduction on a sparse tensor, the result
would be different depending on iteration order. For expanded access pattern,
an empty row would contribute no entry in the output. For lex ordering, the
identity would end up in the output.

This code changes that behavior and keeps track of whether any entries were
actually reduced in lex ordering, making the output consistent between the
two iteration styles.

Differential Revision: https://reviews.llvm.org/D142050
2023-02-10 13:09:28 -06:00

1589 lines
63 KiB
C++

//===- Sparsification.cpp - Implementation of sparsification --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements converting sparse tensor types to actual sparse code.
//
//===----------------------------------------------------------------------===//
#include "CodegenEnv.h"
#include "CodegenUtils.h"
#include "LoopEmitter.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TensorEncoding.h"
#include "llvm/ADT/SmallBitVector.h"
#include <optional>
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Declarations
//===----------------------------------------------------------------------===//
namespace {
/// Iteration graph sorting.
enum SortMask {
kSparseOnly = 0x0,
kIncludeDense = 0x1,
kIncludeUndef = 0x2,
kIncludeAll = 0x3
};
/// A helper class that visits an affine expression and tries to find an
/// AffineDimExpr to which the corresponding iterator from a GenericOp matches
/// the desired iterator type.
class AffineDimFinder : public AffineExprVisitor<AffineDimFinder> {
public:
explicit AffineDimFinder(linalg::GenericOp op)
: iterTypes(op.getIteratorTypesArray()) {}
void visitDimExpr(AffineDimExpr expr) {
if (pickedDim == nullptr || pickIterType == iterTypes[expr.getPosition()]) {
pickedDim = expr;
}
}
/// Set the desired iterator type that we want to pick.
void setPickedIterType(utils::IteratorType iterType) {
pickIterType = iterType;
}
/// Get the desired AffineDimExpr.
AffineDimExpr getDimExpr() const { return pickedDim.cast<AffineDimExpr>(); }
private:
/// The picked AffineDimExpr after visit.
AffineExpr pickedDim;
/// The iterator type that we want.
utils::IteratorType pickIterType;
/// The mapping between dim=>iterator type.
SmallVector<utils::IteratorType> iterTypes;
};
} // namespace
//===----------------------------------------------------------------------===//
// Sparse compiler analysis methods.
//===----------------------------------------------------------------------===//
/// Determines if affine expression is invariant.
static bool isInvariantAffine(AffineExpr a, ArrayRef<unsigned> loopStack,
unsigned ldx, bool &atLevel) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
unsigned idx = a.cast<AffineDimExpr>().getPosition();
if (idx == ldx) {
atLevel = true;
// Must be invariant if we are at the level.
return true;
}
bool isInvariant = false;
for (unsigned loop : loopStack) {
isInvariant = (loop == idx);
if (isInvariant)
break;
}
return isInvariant;
}
case AffineExprKind::Add:
case AffineExprKind::Mul: {
auto binOp = a.cast<AffineBinaryOpExpr>();
return isInvariantAffine(binOp.getLHS(), loopStack, ldx, atLevel) &&
isInvariantAffine(binOp.getRHS(), loopStack, ldx, atLevel);
}
default: {
assert(a.isa<AffineConstantExpr>());
return true;
}
}
}
/// Determines if affine expression is invariant.
static bool isInvariantAffine(CodegenEnv &env, AffineExpr a, unsigned ldx,
bool &atLevel) {
return isInvariantAffine(a, env.getLoopCurStack(), ldx, atLevel);
}
/// Helper method to construct a permuted dimension ordering
/// that adheres to the given topological sort.
static AffineMap permute(CodegenEnv &env, AffineMap m) {
assert(m.getNumDims() + env.merger().getNumFilterLoops() ==
env.topSortSize() &&
"size mismatch");
// Construct the inverse of `m`; to avoid the asymptotic complexity
// of calling `m.getPermutedPosition` repeatedly.
SmallVector<unsigned> perm;
unsigned numResults = m.getNumResults();
BitVector worklist(numResults, true);
unsigned loopDepth = 1;
// Construct the permutation.
while (worklist.any() && loopDepth <= env.topSortSize()) {
unsigned preSize = perm.size();
for (auto dim : worklist.set_bits()) {
bool atLevel = false;
if (m.getResult(dim).isa<AffineConstantExpr>() ||
(isInvariantAffine(m.getResult(dim),
env.getTopSortSlice(0, loopDepth),
env.topSortAt(loopDepth - 1), atLevel) &&
atLevel)) {
// If the matching affine is constant expression or just become
// invariant. We can visit the dimension now without breaking the
// topSort constraint.
perm.push_back(dim);
}
}
// Removes resolved dimension.
for (unsigned i = preSize, e = perm.size(); i < e; i++)
worklist.reset(perm[i]);
// Tries to entering the next loop level.
loopDepth += 1;
}
assert(perm.size() == numResults);
return AffineMap::getPermutationMap(perm, env.op().getContext());
}
/// Helper method to inspect affine expressions. Rejects cases where the
/// same index is used more than once. Also rejects compound affine
/// expressions in sparse dimensions.
/// filterIdx stores the current filter loop idx should be used for the next
/// compound affine sparse level, and it will be incremented by one when
/// used.
static bool findAffine(Merger &merger, unsigned tensor, unsigned dim,
AffineExpr a, DimLevelType dlt, unsigned &filterLdx,
bool setLvlFormat = true) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
unsigned idx = a.cast<AffineDimExpr>().getPosition();
if (!isUndefDLT(merger.getDimLevelType(tensor, idx)))
return false; // used more than once
if (setLvlFormat)
merger.setDimAndDimLevelType(tensor, idx, dim, dlt);
return true;
}
case AffineExprKind::Add:
case AffineExprKind::Mul:
case AffineExprKind::Constant: {
if (!isDenseDLT(dlt) && setLvlFormat) {
assert(isUndefDLT(merger.getDimLevelType(tensor, filterLdx)));
// Use a filter loop for sparse affine expression.
merger.setDimAndDimLevelType(tensor, filterLdx++, dim, dlt);
}
if (auto binOp = a.dyn_cast<AffineBinaryOpExpr>()) {
// We do not set dim level format for affine expresssion like d0 + d1 on
// either loop index at d0 or d1.
// We continue the recursion merely to check whether current affine is
// admissible or not.
return findAffine(merger, tensor, dim, binOp.getLHS(), dlt, filterLdx,
false) &&
findAffine(merger, tensor, dim, binOp.getRHS(), dlt, filterLdx,
false);
}
// Falls through when it is a constant Affine
return true;
}
default:
return false;
}
}
/// Get the total number of compound affine expressions in affineMap that are
/// attached to the given tensor. For the following inputs:
///
/// affineMap = (d0, d1, d2) => (d0 + d1, d2)
/// tensor = ["compressed", "compressed"]
///
/// Returns 1 (because the first level is compressed and its corresponding
/// affineMap is d0 + d1)
static unsigned getNumCompoundAffineOnSparseDims(AffineMap affineMap,
Value tensor) {
unsigned num = 0;
auto enc = getSparseTensorEncoding(tensor.getType());
if (enc) {
ArrayRef<AffineExpr> exps = affineMap.getResults();
for (unsigned rank = 0; rank < exps.size(); rank++) {
auto aidx = toOrigDim(enc, rank);
auto affine = exps[aidx];
if (!affine.isa<AffineDimExpr>())
if (!isDenseDLT(getDimLevelType(enc, rank)))
num++;
}
}
return num;
}
/// Get the total number of compound affine expressions attached on a sparse
/// level in the given GenericOp.
static unsigned getNumCompoundAffineOnSparseDims(linalg::GenericOp op) {
unsigned num = 0;
for (OpOperand &t : op->getOpOperands())
num += getNumCompoundAffineOnSparseDims(op.getMatchingIndexingMap(&t),
t.get());
return num;
}
static bool hasCompoundAffineOnSparseOut(linalg::GenericOp op) {
OpOperand *out = op.getDpsInitOperand(0);
auto enc = getSparseTensorEncoding(out->get().getType());
if (!enc || enc.isAllDense())
return false;
return getNumCompoundAffineOnSparseDims(op.getMatchingIndexingMap(out),
out->get());
}
/// Helper method to inspect sparse encodings in the tensor types.
/// Fills the per-dimension sparsity information for all tensors.
/// Returns true if the sparse annotations and affine subscript
/// expressions of all tensors are admissible. Returns false if
/// no annotations are found or inadmissible constructs occur.
static bool findSparseAnnotations(CodegenEnv &env) {
bool annotated = false;
unsigned filterLdx = env.merger().getFilterLoopStartingIdx();
for (OpOperand &t : env.op()->getOpOperands()) {
auto map = env.op().getMatchingIndexingMap(&t);
auto enc = getSparseTensorEncoding(t.get().getType());
if (enc)
annotated = true;
assert(map.getNumResults() == env.op().getRank(&t));
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
unsigned tensor = t.getOperandNumber();
AffineExpr a = map.getResult(toOrigDim(enc, d));
if (!findAffine(env.merger(), tensor, d, a, getDimLevelType(enc, d),
filterLdx))
return false; // inadmissible affine expression
}
}
assert(filterLdx == env.merger().getNumLoops());
return annotated;
}
/// A helper to compute a topological sort. O(n^2) time complexity
/// as we use adj matrix for the graph.
/// The sorted result will put the first Reduction iterator to the
/// latest possible index.
static bool topSortOptimal(CodegenEnv &env, unsigned n,
ArrayRef<utils::IteratorType> iteratorTypes,
std::vector<unsigned> &inDegree,
std::vector<std::vector<bool>> &adjM) {
std::vector<unsigned> redIt; // reduce iterator with 0 degree
std::vector<unsigned> parIt; // parallel iterator with 0 degree
std::vector<unsigned> filterIt; // filter loop with 0 degree
for (unsigned i = 0; i < n; i++) {
if (inDegree[i] == 0) {
if (env.merger().isFilterLoop(i))
filterIt.push_back(i);
else if (linalg::isReductionIterator(iteratorTypes[i]))
redIt.push_back(i);
else
parIt.push_back(i);
}
}
while (!redIt.empty() || !parIt.empty() || !filterIt.empty()) {
// We always choose in order of filter loop -> parallel loop -> reduction
// loop because
// 1. Putting reduction loop early might make the loop sequence
// inadmissible.
// 2. Filter loops should be put as early as possible for better
// performance, since only one (if any) iteration will carry the
// computation. E.g., for (1 to N)
// for (1 to M)
// for (1 to K)
// if (xxx)
// O(X) computation => O(NMK+NMX) time complexity
//
// By putting the filter loop one level up, we got
//
// for (1 to N)
// for (1 to K)
// if (xxx)
// for (1 to M)
// O(X) computation => O(NK+NMX) time complexity
auto &it = !filterIt.empty() ? filterIt : (!parIt.empty() ? parIt : redIt);
auto src = it.back();
env.topSortPushBack(src);
it.pop_back();
// Update in-degree, and push 0-degree node into worklist.
for (unsigned dst = 0; dst < n; dst++) {
if (adjM[src][dst] && --inDegree[dst] == 0) {
if (env.merger().isFilterLoop(dst))
filterIt.push_back(dst);
else if (linalg::isReductionIterator(iteratorTypes[dst]))
redIt.push_back(dst);
else
parIt.push_back(dst);
}
}
}
return env.topSortSize() == n;
}
/// Helper method to add all constraints from the indices in one affine
/// expression before all indices in the other affine expression. For
/// example i0+i1 < i2+i3+1 yields i0<i2, i0<i3, i1<i2, and i1<i3.
/// The affine expression `a` is empty iff `fidx` have a value, leading to
/// b = (i0 + i1) < fidx => i0 < fidx, i1 < fidx.
/// The affine expression `b` is empty iff `tidx` have a value, leading to
/// tidx < a = (i0 + i1) => tidx < i0, tidx < i1.
static void addAffineOrderings(std::vector<std::vector<bool>> &adjM,
std::vector<unsigned> &inDegree, AffineExpr a,
AffineExpr b, std::optional<unsigned> fidx,
std::optional<unsigned> tidx) {
if (!a && !b) {
// Recursion leaf.
assert(fidx && tidx);
unsigned f = *fidx, t = *tidx;
if (!adjM[f][t]) {
adjM[f][t] = true;
inDegree[t]++;
}
return;
}
// Picks an affine expression and expand (recurse into) it.
auto toExpand = a ? a : b;
switch (toExpand.getKind()) {
case AffineExprKind::DimId: {
auto idx = toExpand.cast<AffineDimExpr>().getPosition();
if (toExpand == a)
addAffineOrderings(adjM, inDegree, AffineExpr(), b, idx, tidx);
else // toExpand == b
addAffineOrderings(adjM, inDegree, a, AffineExpr(), fidx, idx);
break;
}
case AffineExprKind::Add:
case AffineExprKind::Mul: {
auto binOp = toExpand.cast<AffineBinaryOpExpr>();
if (toExpand == a) {
addAffineOrderings(adjM, inDegree, binOp.getLHS(), b, fidx, tidx);
addAffineOrderings(adjM, inDegree, binOp.getRHS(), b, fidx, tidx);
} else {
addAffineOrderings(adjM, inDegree, a, binOp.getLHS(), fidx, tidx);
addAffineOrderings(adjM, inDegree, a, binOp.getRHS(), fidx, tidx);
}
break;
}
default:
break;
}
}
static void tryLoosenAffineDenseConstraints(linalg::GenericOp op,
std::optional<unsigned> &fldx,
AffineExpr &fa,
std::optional<unsigned> &tldx,
AffineExpr &ta) {
// We use a heuristic here to only pick one dim expression from each
// compound affine expression to establish the order between two dense
// dimensions.
if (!tldx) {
AffineDimFinder finder(op);
// NOTE: The ordering can only be loosen when the destination level is
// dense (when !tldx), for [dense, sparse] -> (d0 + d1, d2), we still
// require both d0 < d2 and d1 < d2 to ensure correct ordering (i.e.,
// no ordering like d0->d2->d1).
// TODO: this is obviously a sub optimal solution.
if (!fldx && !fa.isa<AffineConstantExpr>()) {
// Heuristic: we prefer parallel loop for lhs to reduce the chance
// we add reduce < parallel ordering.
finder.setPickedIterType(utils::IteratorType::parallel);
finder.walkPostOrder(fa);
fa = finder.getDimExpr();
fldx = finder.getDimExpr().getPosition();
}
if (!ta.isa<AffineConstantExpr>()) {
// Heuristic: we prefer reduction loop for rhs to reduce the chance
// addint reduce < parallel ordering.
finder.setPickedIterType(utils::IteratorType::reduction);
finder.walkPostOrder(ta);
ta = finder.getDimExpr();
tldx = finder.getDimExpr().getPosition();
}
}
}
/// Computes a topologically sorted iteration graph for the linalg
/// operation. Ensures all tensors are visited in natural index order. This
/// is essential for sparse storage formats since these only support access
/// along fixed dimensions. Even for dense storage formats, however, the
/// natural index order yields innermost unit-stride access with better
/// spatial locality.
static bool computeIterationGraph(CodegenEnv &env, unsigned mask,
OpOperand *skip = nullptr) {
// Set up an n x n from/to adjacency matrix of the iteration graph
// for the implicit loop indices i_0 .. i_n-1.
unsigned n = env.merger().getNumLoops();
std::vector<std::vector<bool>> adjM(n, std::vector<bool>(n, false));
std::vector<unsigned> inDegree(n, 0); // in-degree of each node.
auto iteratorTypes = env.op().getIteratorTypesArray();
// Iterate over the indexing maps of every tensor in the tensor expression.
for (OpOperand &t : env.op()->getOpOperands()) {
// Get map and encoding.
auto map = env.op().getMatchingIndexingMap(&t);
auto enc = getSparseTensorEncoding(t.get().getType());
assert(map.getNumDims() + getNumCompoundAffineOnSparseDims(env.op()) == n);
// Skip dense tensor constraints when not requested.
if (!(mask & SortMask::kIncludeDense) && !enc)
continue;
// Each tensor expression and optional dimension ordering (row-major
// by default) puts an ordering constraint on the loop indices. For
// example, the tensor expresion A_ijk forces the ordering i < j < k
// on the loop indices if no explicit dimension ordering is given.
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
AffineExpr ta = map.getResult(toOrigDim(enc, d));
std::optional<unsigned> tldx =
env.merger().getLoopIdx(t.getOperandNumber(), d);
// Filter loops should be constructed after all the dependent loops,
// i.e., d0 + d1 < filter_loop(d0 + d1)
if (tldx && env.merger().isFilterLoop(*tldx)) {
assert(!ta.isa<AffineDimExpr>() &&
!isDenseDLT(getDimLevelType(enc, d)));
addAffineOrderings(adjM, inDegree, ta, AffineExpr(), std::nullopt,
tldx);
// Now that the ordering of affine expression is captured by filter
// loop idx, we only need to ensure the affine ordering against filter
// loop. Thus, we reset the affine express to nil here to mark it as
// resolved.
ta = AffineExpr();
}
// Skip tensor during cycle resolution, though order between filter loop
// and dependent loops need to be guaranteed unconditionally.
if (&t == skip)
continue;
if (d > 0) {
AffineExpr fa = map.getResult(toOrigDim(enc, d - 1));
std::optional<unsigned> fldx =
env.merger().getLoopIdx(t.getOperandNumber(), d - 1);
// Applying order constraints on every pair of dimExpr between two
// compound affine expressions can sometime too strict:
// E.g, for [dense, dense] -> (d0 + d1, d2 + d3).
// It is totally fine to have loop sequence d0->d2->d1->d3 instead of
// requiring d0 < d2, d1 < d2, d0 < d3, d1 < d3.
if (!(mask & SortMask::kIncludeDense))
tryLoosenAffineDenseConstraints(env.op(), fldx, fa, tldx, ta);
// (d0 + d1) < (d2 + d3), or
// filter_loop_d-1 < (d2 + d3), or
// (d0 + d1) < filter_loop_d, or
// filter_loop_d-1 < filter_loop_d depending on whether fa/ta is reset
// above.
addAffineOrderings(adjM, inDegree, fa, ta, fldx, tldx);
}
}
// Push unrelated loops into sparse iteration space, so these
// will be skipped more often.
if (mask & SortMask::kIncludeUndef) {
unsigned tensor = t.getOperandNumber();
for (unsigned i = 0; i < n; i++) {
if (isCompressedDLT(env.dlt(tensor, i)) ||
isSingletonDLT(env.dlt(tensor, i))) {
for (unsigned j = 0; j < n; j++)
if (isUndefDLT(env.dlt(tensor, j))) {
adjM[i][j] = true;
inDegree[j]++;
}
} else {
assert(isDenseDLT(env.dlt(tensor, i)) ||
isUndefDLT(env.dlt(tensor, i)));
}
}
}
}
// Topologically sort the iteration graph to determine loop order.
// Report failure for a cyclic iteration graph.
env.topSortClear(n);
return topSortOptimal(env, n, iteratorTypes, inDegree, adjM);
}
//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (statements and expressions).
//===----------------------------------------------------------------------===//
/// Local bufferization of all dense and sparse data structures.
static void genBuffers(CodegenEnv &env, OpBuilder &builder) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
assert(op.getNumOperands() == op.getNumDpsInputs() + 1);
env.emitter().initializeLoopEmit(
builder, loc,
/// Generates buffer for the output tensor.
/// Note that all sparse kernels assume that when all elements are written
/// to (viz. x(i) = y(i) * z(i)), the output buffer is already initialized
/// to all zeroes and only nonzeroes values are computed and written out.
/// For updates (viz. x(i) += y(i) * z(i)), only nonzeroes values are used
/// for the updates and no assumption on the original contents of the
/// output buffer is necessary.
[&op](OpBuilder &builder, Location loc, Value memref,
Value tensor) -> Value {
// Must not be a sparse tensor.
assert(!getSparseTensorEncoding(tensor.getType()));
// Two output tensor references should point to the same object.
OpOperand *lhs = op.getDpsInitOperand(0);
assert(lhs->get() == tensor);
// An output tensor can simply materialize from the buffer of the tensor
// that appears in the outs() clause. For updates, this has the
// advantage that only the nonzero value are involved in the
// computation, keeping the operation O(nnz). In all other cases, we are
// forced to zero out the buffer to enforce the assumption above, which
// may negatively impact running complexity (viz. O(n^2 + nnz) vs.
// O(nnz) for matrices).
// TODO: use better analysis to avoid zeroing out the buffer?
bool isInit = op.isInitTensor(lhs);
Value init = memref;
if (!isInit) {
Value zero = constantZero(builder, loc,
getElementTypeOrSelf(tensor.getType()));
builder.create<linalg::FillOp>(loc, ValueRange{zero},
ValueRange{init});
}
return init;
});
}
/// Generates index for load/store on sparse tensor.
static Value genIndex(CodegenEnv &env, OpOperand *t) {
auto map = env.op().getMatchingIndexingMap(t);
auto enc = getSparseTensorEncoding(t->get().getType());
AffineExpr a = map.getResult(toOrigDim(enc, map.getNumResults() - 1));
assert(a.getKind() == AffineExprKind::DimId);
unsigned idx = a.cast<AffineDimExpr>().getPosition();
return env.getLoopIdxValue(idx);
}
/// Generates subscript for load/store on a dense or sparse tensor.
static Value genSubscript(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
SmallVectorImpl<Value> &args) {
linalg::GenericOp op = env.op();
unsigned tensor = t->getOperandNumber();
auto map = op.getMatchingIndexingMap(t);
auto enc = getSparseTensorEncoding(t->get().getType());
unsigned rank = map.getNumResults();
if (enc) {
Value pidx = env.emitter().getPidxs()[tensor].back();
assert(pidx);
args.push_back(pidx); // position index
} else {
for (unsigned d = 0; d < rank; d++) {
AffineExpr a = map.getResult(d);
args.push_back(env.emitter().genAffine(builder, a, op.getLoc()));
}
}
return env.emitter().getValBuffer()[tensor];
}
/// Generates insertion code to implement dynamic tensor load.
static Value genInsertionLoad(CodegenEnv &env, OpBuilder &builder,
OpOperand *t) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
// Direct lexicographic index order, tensor loads as zero.
if (!env.isExpand()) {
Type tp = getElementTypeOrSelf(t->get().getType());
return constantZero(builder, loc, tp);
}
// Load from expanded access pattern.
Value index = genIndex(env, t);
return builder.create<memref::LoadOp>(loc, env.getExpandValues(), index);
}
/// Generates insertion code to implement dynamic tensor load for reduction.
static Value genInsertionLoadReduce(CodegenEnv &env, OpBuilder &builder,
OpOperand *t) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
Value identity = env.getCustomRedId();
// Direct lexicographic index order, tensor loads as identity.
if (!env.isExpand())
return identity;
// Load from expanded access pattern if filled, identity otherwise.
Value values = env.getExpandValues();
Value filled = env.getExpandFilled();
Value index = genIndex(env, t);
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
Value valAtIndex = builder.create<memref::LoadOp>(loc, values, index);
return builder.create<arith::SelectOp>(loc, isFilled, valAtIndex, identity);
}
/// Generates insertion code to implement dynamic tensor store.
static void genInsertionStore(CodegenEnv &env, OpBuilder &builder, OpOperand *t,
Value rhs) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
// Direct insertion in lexicographic index order.
if (!env.isExpand()) {
unsigned rank = op.getRank(t);
SmallVector<Value> indices;
for (unsigned i = 0; i < rank; i++) {
assert(env.emitter().getLoopIV(i));
indices.push_back(env.emitter().getLoopIV(i));
}
Value chain = env.getInsertionChain();
if (!env.getValidLexInsert()) {
env.updateInsertionChain(
builder.create<InsertOp>(loc, rhs, chain, indices));
} else {
// Generates runtime check for a valid lex during reduction,
// to avoid inserting the identity value for empty reductions.
// if (validLexInsert) then
// insert(rhs) into chain
// return updated chain
// else
// return unmodified chain
scf::IfOp ifValidLexInsert = builder.create<scf::IfOp>(
loc, chain.getType(), env.getValidLexInsert(),
/*else=*/true);
// True branch.
builder.setInsertionPointToStart(ifValidLexInsert.thenBlock());
Value res = builder.create<InsertOp>(loc, rhs, chain, indices);
builder.create<scf::YieldOp>(loc, res);
// False branch.
builder.setInsertionPointToStart(ifValidLexInsert.elseBlock());
builder.create<scf::YieldOp>(loc, chain);
// Value assignment.
builder.setInsertionPointAfter(ifValidLexInsert);
env.updateInsertionChain(ifValidLexInsert.getResult(0));
}
return;
}
// Generates insertion code along expanded access pattern.
// if (!expFilled[i]) then
// expFilled[i] = true
// expAdded[inserts++] = i
// endif
// values[i] = rhs
Value values = env.getExpandValues();
Value filled = env.getExpandFilled();
Value added = env.getExpandAdded();
Value count = env.getExpandCount();
Value index = genIndex(env, t);
Value fval = constantI1(builder, loc, false);
Value tval = constantI1(builder, loc, true);
// If statement.
Value isFilled = builder.create<memref::LoadOp>(loc, filled, index);
Value cond = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
isFilled, fval);
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, builder.getIndexType(), cond,
/*else=*/true);
// True branch.
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
builder.create<memref::StoreOp>(loc, tval, filled, index);
builder.create<memref::StoreOp>(loc, index, added, count);
Value one = constantIndex(builder, loc, 1);
Value add = builder.create<arith::AddIOp>(loc, count, one);
builder.create<scf::YieldOp>(loc, add);
// False branch.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, count);
builder.setInsertionPointAfter(ifOp);
// Value assignment.
env.updateExpandCount(ifOp.getResult(0));
builder.create<memref::StoreOp>(loc, rhs, values, index);
}
/// Generates a load on a dense or sparse tensor.
static Value genTensorLoad(CodegenEnv &env, OpBuilder &builder, unsigned exp) {
// Test if the load was hoisted to a higher loop nest.
Value val = env.exp(exp).val;
if (val)
return val;
// Load during insertion.
linalg::GenericOp op = env.op();
OpOperand *t = &op->getOpOperand(env.exp(exp).tensor);
if (env.isSparseOutput(t)) {
if (env.isCustomReduc())
return genInsertionLoadReduce(env, builder, t);
return genInsertionLoad(env, builder, t);
}
// Actual load.
SmallVector<Value> args;
Value ptr = genSubscript(env, builder, t, args);
return builder.create<memref::LoadOp>(op.getLoc(), ptr, args);
}
/// Generates a store on a dense or sparse tensor.
static void genTensorStore(CodegenEnv &env, OpBuilder &builder, unsigned exp,
Value rhs) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
// Test if this is a scalarized reduction.
if (env.isReduc()) {
env.updateReduc(rhs);
return;
}
// Store during insertion.
OpOperand *t = op.getDpsInitOperand(0);
if (env.isSparseOutput(t)) {
if (!rhs) {
// Only unary and binary are allowed to return uninitialized rhs
// to indicate missing output.
assert(env.exp(exp).kind == kUnary || env.exp(exp).kind == kBinary);
} else if (env.exp(exp).kind == kSelect) {
// Select operation insertion.
Value chain = env.getInsertionChain();
scf::IfOp ifOp =
builder.create<scf::IfOp>(loc, chain.getType(), rhs, /*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
// Existing value was preserved to be used here.
assert(env.exp(exp).val);
Value v0 = env.exp(exp).val;
genInsertionStore(env, builder, t, v0);
env.exp(exp).val = Value();
// Yield modified insertion chain along true branch.
Value mchain = env.getInsertionChain();
builder.create<scf::YieldOp>(op.getLoc(), mchain);
// Yield original insertion chain along false branch.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
builder.create<scf::YieldOp>(loc, chain);
// Done with if statement.
env.updateInsertionChain(ifOp->getResult(0));
builder.setInsertionPointAfter(ifOp);
} else {
genInsertionStore(env, builder, t, rhs);
}
return;
}
// Actual store.
SmallVector<Value> args;
Value ptr = genSubscript(env, builder, t, args);
builder.create<memref::StoreOp>(loc, rhs, ptr, args);
}
/// Generates an invariant value.
inline static Value genInvariantValue(CodegenEnv &env, unsigned exp) {
return env.exp(exp).val;
}
/// Generates an index value.
inline static Value genIndexValue(CodegenEnv &env, unsigned idx) {
return env.getLoopIdxValue(idx);
}
/// Semi-ring branches are simply inlined by the sparse compiler. Prior
/// analysis has verified that all computations are "local" to the inlined
/// branch or otherwise invariantly defined outside the loop nest, with the
/// exception of index computations, which need to be relinked to actual
/// inlined cloned code.
static Value relinkBranch(CodegenEnv &env, RewriterBase &rewriter, Block *block,
Value e, unsigned ldx) {
if (Operation *def = e.getDefiningOp()) {
if (auto indexOp = dyn_cast<linalg::IndexOp>(def))
return genIndexValue(env, indexOp.getDim());
if (def->getBlock() == block) {
for (unsigned i = 0, n = def->getNumOperands(); i < n; i++)
def->setOperand(
i, relinkBranch(env, rewriter, block, def->getOperand(i), ldx));
}
}
return e;
}
/// Recursively generates tensor expression.
static Value genExp(CodegenEnv &env, RewriterBase &rewriter, unsigned exp,
unsigned ldx) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
if (exp == -1u)
return Value();
if (env.exp(exp).kind == Kind::kTensor)
return genTensorLoad(env, rewriter, exp);
if (env.exp(exp).kind == Kind::kInvariant)
return genInvariantValue(env, exp);
if (env.exp(exp).kind == Kind::kIndex)
return genIndexValue(env, env.exp(exp).index);
if (env.exp(exp).kind == Kind::kReduce)
env.startCustomReduc(exp); // enter custom
Value v0 = genExp(env, rewriter, env.exp(exp).children.e0, ldx);
Value v1 = genExp(env, rewriter, env.exp(exp).children.e1, ldx);
Value ee = env.merger().buildExp(rewriter, loc, exp, v0, v1);
if (ee && (env.exp(exp).kind == Kind::kUnary ||
env.exp(exp).kind == Kind::kBinary ||
env.exp(exp).kind == Kind::kBinaryBranch ||
env.exp(exp).kind == Kind::kReduce ||
env.exp(exp).kind == Kind::kSelect))
ee = relinkBranch(env, rewriter, ee.getParentBlock(), ee, ldx);
if (env.exp(exp).kind == Kind::kReduce)
env.endCustomReduc(); // exit custom
if (env.exp(exp).kind == kSelect) {
assert(!env.exp(exp).val);
env.exp(exp).val = v0; // Preserve value for later use.
}
return ee;
}
/// Hoists loop invariant tensor loads for which indices have been exhausted.
static void genInvariants(CodegenEnv &env, OpBuilder &builder, unsigned exp,
unsigned ldx, bool atStart) {
if (exp == -1u)
return;
if (env.exp(exp).kind == Kind::kTensor) {
// Inspect tensor indices.
bool atLevel = ldx == -1u;
linalg::GenericOp op = env.op();
OpOperand &t = op->getOpOperand(env.exp(exp).tensor);
auto map = op.getMatchingIndexingMap(&t);
auto enc = getSparseTensorEncoding(t.get().getType());
for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) {
AffineExpr a = map.getResult(toOrigDim(enc, d));
std::optional<unsigned> sldx =
env.merger().getLoopIdx(t.getOperandNumber(), d);
if (sldx && env.merger().isFilterLoop(*sldx)) {
if (!env.getLoopIdxValue(*sldx))
// The filter loops has not been constructed.
return;
if (*sldx == ldx)
atLevel = true;
} else if (!isInvariantAffine(env, a, ldx, atLevel))
return; // still in play
}
// All exhausted at this level (atLevel denotes exactly at this level).
if (!atLevel)
return;
OpOperand *lhs = op.getDpsInitOperand(0);
if (lhs == &t) {
// Start or end a scalarized reduction.
if (atStart) {
Value load = env.isCustomReduc() ? env.getCustomRedId()
: genTensorLoad(env, builder, exp);
env.startReduc(exp, load);
if (env.hasSparseOutput())
env.setValidLexInsert(constantI1(builder, env.op().getLoc(), false));
} else {
genTensorStore(env, builder, exp, env.endReduc());
env.clearValidLexInsert();
}
} else {
// Start or end loop invariant hoisting of a tensor load.
env.exp(exp).val = atStart ? genTensorLoad(env, builder, exp) : Value();
}
} else if (env.exp(exp).kind != Kind::kInvariant &&
env.exp(exp).kind != Kind::kIndex) {
// Traverse into the binary operations. Note that we only hoist
// tensor loads, since subsequent MLIR/LLVM passes know how to
// deal with all other kinds of derived loop invariants.
if (env.exp(exp).kind == Kind::kReduce)
env.startCustomReduc(exp); // enter custom
unsigned e0 = env.exp(exp).children.e0;
unsigned e1 = env.exp(exp).children.e1;
genInvariants(env, builder, e0, ldx, atStart);
genInvariants(env, builder, e1, ldx, atStart);
if (env.exp(exp).kind == Kind::kReduce)
env.endCustomReduc(); // exit custom
}
}
/// Generates an expanded access pattern in innermost dimension.
static void genExpand(CodegenEnv &env, OpBuilder &builder, unsigned at,
bool atStart) {
linalg::GenericOp op = env.op();
OpOperand *lhs = op.getDpsInitOperand(0);
if (!env.atExpandLevel(lhs, op.getRank(lhs), at))
return; // not needed at this level
assert(!env.isReduc());
// Generate start or end of an expanded access pattern. Note that because
// an expension does not rely on the ongoing contents of the sparse storage
// scheme, we can use the original tensor as incoming SSA value (which
// simplifies codegen a bit). If expansion on the actual contents is ever
// needed, we will need to use the SSA value in the insertion chain instead.
Value tensor = lhs->get();
Location loc = op.getLoc();
if (atStart) {
auto dynShape = {ShapedType::kDynamic};
Type etp = tensor.getType().cast<ShapedType>().getElementType();
Type t1 = MemRefType::get(dynShape, etp);
Type t2 = MemRefType::get(dynShape, builder.getI1Type());
Type t3 = MemRefType::get(dynShape, builder.getIndexType());
Type t4 = builder.getIndexType();
auto r = builder.create<ExpandOp>(loc, TypeRange({t1, t2, t3, t4}), tensor);
assert(r.getNumResults() == 4);
env.startExpand(r.getResult(0), r.getResult(1), r.getResult(2),
r.getResult(3));
} else {
SmallVector<Value> indices;
for (unsigned i = 0; i < at; i++)
indices.push_back(env.emitter().getLoopIV(i));
Value values = env.getExpandValues();
Value filled = env.getExpandFilled();
Value added = env.getExpandAdded();
Value count = env.getExpandCount();
Value chain = env.getInsertionChain();
Value compress = builder.create<CompressOp>(loc, values, filled, added,
count, chain, indices);
env.updateInsertionChain(compress);
env.endExpand();
}
}
/// Returns parallelization strategy. Any implicit loop in the Linalg
/// operation that is marked "parallel" is a candidate. Whether it is actually
/// converted to a parallel operation depends on the requested strategy.
static bool isParallelFor(CodegenEnv &env, bool isOuter, bool isSparse) {
// Reject parallelization of sparse output.
if (env.hasSparseOutput())
return false;
// Parallel loops on tensor expansion can cause data races.
if (env.isExpand())
return false;
// Inspect strategy.
switch (env.options().parallelizationStrategy) {
case SparseParallelizationStrategy::kNone:
return false;
case SparseParallelizationStrategy::kDenseOuterLoop:
return isOuter && !isSparse;
case SparseParallelizationStrategy::kAnyStorageOuterLoop:
return isOuter;
case SparseParallelizationStrategy::kDenseAnyLoop:
return !isSparse;
case SparseParallelizationStrategy::kAnyStorageAnyLoop:
return true;
}
llvm_unreachable("unexpected parallelization strategy");
}
/// Generates a for-loop on a single index.
static Operation *genFor(CodegenEnv &env, OpBuilder &builder, bool isOuter,
bool isInner, unsigned idx, ArrayRef<size_t> tids,
ArrayRef<size_t> dims) {
linalg::GenericOp op = env.op();
Location loc = op.getLoc();
auto iteratorTypes = op.getIteratorTypesArray();
bool isSparse = llvm::any_of(tids, [idx, &env](size_t tid) {
return isCompressedDLT(env.dlt(tid, idx)) ||
isSingletonDLT(env.dlt(tid, idx));
});
bool isParallel = isParallelFor(env, isOuter, isSparse);
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
if (env.merger().isFilterLoop(idx)) {
size_t tid = tids.front(), dim = dims.front();
// tids/dims must only have one value because filter loops only
// corresponding to the one and only sparse tensor level.
assert(isSparse && tids.size() == 1 && dims.size() == 1);
OpOperand *t = &op->getOpOperand(tid);
auto enc = getSparseTensorEncoding(t->get().getType());
// Retrieves the affine expression for the filter loop.
AffineExpr a =
op.getMatchingIndexingMap(t).getResult(toOrigDim(enc, dim));
return env.emitter().enterFilterLoopOverTensorAtDim(builder, loc, tid,
dim, a, reduc);
}
return env.emitter().enterLoopOverTensorAtDim(builder, loc, tids, dims,
reduc, isParallel);
});
assert(loop);
return loop;
}
/// Emit a while-loop for co-iteration over multiple indices.
static Operation *genWhile(CodegenEnv &env, OpBuilder &builder, unsigned idx,
bool needsUniv, ArrayRef<size_t> tids,
ArrayRef<size_t> dims) {
Operation *loop = *env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
// Construct the while-loop with a parameter for each
// index.
return env.emitter().enterCoIterationOverTensorsAtDims(
builder, env.op().getLoc(), tids, dims, needsUniv, reduc);
});
assert(loop);
return loop;
}
/// Generates a for-loop or a while-loop, depending on whether it implements
/// singleton iteration or co-iteration over the given conjunction.
static Operation *genLoop(CodegenEnv &env, OpBuilder &builder, unsigned at,
bool needsUniv, ArrayRef<size_t> tids,
ArrayRef<size_t> dims, bool isFor) {
assert(tids.size() == dims.size());
unsigned idx = env.topSortAt(at);
if (isFor) {
bool isOuter = at == 0;
bool isInner = at == env.topSortSize() - 1;
return genFor(env, builder, isOuter, isInner, idx, tids, dims);
}
return genWhile(env, builder, idx, needsUniv, tids, dims);
}
/// Generates the induction structure for a while-loop.
static void finalizeWhileOp(CodegenEnv &env, OpBuilder &builder, unsigned idx,
bool needsUniv, BitVector &induction,
scf::WhileOp whileOp) {
Location loc = env.op().getLoc();
// Finalize each else branch of all if statements.
if (env.isReduc() || env.isExpand() || env.getInsertionChain()) {
while (auto ifOp = dyn_cast_or_null<scf::IfOp>(
builder.getInsertionBlock()->getParentOp())) {
unsigned y = 0;
SmallVector<Value> yields;
if (env.isReduc()) {
yields.push_back(env.getReduc());
env.updateReduc(ifOp.getResult(y++));
if (env.getValidLexInsert()) {
yields.push_back(env.getValidLexInsert());
env.setValidLexInsert(ifOp.getResult(y++));
}
}
if (env.isExpand()) {
yields.push_back(env.getExpandCount());
env.updateExpandCount(ifOp->getResult(y++));
}
if (env.getInsertionChain()) {
yields.push_back(env.getInsertionChain());
env.updateInsertionChain(ifOp->getResult(y++));
}
assert(y == yields.size());
builder.create<scf::YieldOp>(loc, yields);
builder.setInsertionPointAfter(ifOp);
}
}
builder.setInsertionPointToEnd(&whileOp.getAfter().front());
}
/// Generates a single if-statement within a while-loop.
static scf::IfOp genIf(CodegenEnv &env, OpBuilder &builder, unsigned idx,
BitVector &conditions) {
Location loc = env.op().getLoc();
SmallVector<Type> types;
Value cond;
for (unsigned b = 0, be = conditions.size(); b < be; b++) {
if (!conditions[b])
continue;
unsigned tensor = env.merger().tensor(b);
assert(idx == env.merger().index(b));
Value clause;
if (isCompressedDLT(env.dlt(b)) || isSingletonDLT(env.dlt(b))) {
auto dim = *env.merger().getDimNum(tensor, idx);
Value op1 = env.emitter().getCoord()[tensor][dim];
Value op2 = env.getLoopIdxValue(idx);
clause = builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, op1,
op2);
} else {
assert(isDenseDLT(env.merger().getDimLevelType(b)) ||
isUndefDLT(env.merger().getDimLevelType(b)));
clause = constantI1(builder, loc, true);
}
cond = cond ? builder.create<arith::AndIOp>(loc, cond, clause) : clause;
}
if (env.isReduc()) {
types.push_back(env.getReduc().getType());
if (env.getValidLexInsert())
types.push_back(env.getValidLexInsert().getType());
}
if (env.isExpand())
types.push_back(builder.getIndexType());
if (env.getInsertionChain())
types.push_back(env.getInsertionChain().getType());
scf::IfOp ifOp = builder.create<scf::IfOp>(loc, types, cond, /*else=*/true);
builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
return ifOp;
}
/// Generates end of true branch of if-statement within a while-loop.
static void endIf(CodegenEnv &env, OpBuilder &builder, scf::IfOp ifOp,
Operation *loop, Value redInput, Value cntInput,
Value insInput) {
SmallVector<Value> operands;
if (env.isReduc()) {
operands.push_back(env.getReduc());
env.updateReduc(redInput);
if (env.getValidLexInsert())
// Any overlapping indices during a reduction creates a valid lex insert.
operands.push_back(constantI1(builder, env.op().getLoc(), true));
}
if (env.isExpand()) {
operands.push_back(env.getExpandCount());
env.updateExpandCount(cntInput);
}
if (env.getInsertionChain()) {
operands.push_back(env.getInsertionChain());
env.updateInsertionChain(insInput);
}
if (!operands.empty())
builder.create<scf::YieldOp>(env.op().getLoc(), operands);
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
}
//===----------------------------------------------------------------------===//
// Sparse compiler synthesis methods (loop sequence).
//===----------------------------------------------------------------------===//
/// Starts a loop sequence at given level. Returns true if
/// the universal loop index must be maintained at this level.
static bool startLoopSeq(CodegenEnv &env, OpBuilder &builder, unsigned exp,
unsigned at, unsigned idx, unsigned ldx,
unsigned lts) {
assert(!env.getLoopIdxValue(idx));
// Emit invariants at this loop sequence level.
genInvariants(env, builder, exp, ldx, /*atStart=*/true);
// Emit access pattern expansion for sparse tensor output.
genExpand(env, builder, at, /*atStart=*/true);
// Emit further intitialization at this loop sequence level.
unsigned l0 = env.set(lts)[0];
bool needsUniv = false;
SmallVector<size_t> tids;
SmallVector<size_t> dims;
env.merger().foreachTidDimPairInBits(
env.lat(l0).bits, [&](unsigned b, unsigned tid,
std::optional<unsigned> dim, DimLevelType dlt) {
assert(env.merger().index(b) == idx);
if (isDenseDLT(dlt) || isUndefDLT(dlt)) {
needsUniv = true;
} else {
// sparse/singleton dim levels.
tids.push_back(tid);
dims.push_back(*dim);
}
});
env.emitter().enterNewLoopSeq(builder, env.op().getLoc(), tids, dims);
// Maintain the universal index only if it is actually
// consumed by a subsequent lattice point.
if (needsUniv) {
unsigned lsize = env.set(lts).size();
for (unsigned i = 1; i < lsize; i++) {
unsigned li = env.set(lts)[i];
if (!env.merger().hasAnySparse(env.lat(li).simple))
return true;
}
}
return false;
}
static void genConstantDenseAddressFromLevel(CodegenEnv &env,
OpBuilder &builder, unsigned tid,
unsigned lvl) {
// TODO: Handle affine expression on output tensor.
linalg::GenericOp op = env.op();
assert(tid < op.getNumDpsInputs());
OpOperand *input = op.getDpsInputOperands()[tid];
ArrayRef<AffineExpr> affines = op.getMatchingIndexingMap(input).getResults();
auto enc = getSparseTensorEncoding(input->get().getType());
if (enc) {
for (unsigned i = lvl, e = affines.size(); i < e; i++) {
AffineExpr affine = affines[toOrigDim(enc, i)];
if (isDenseDLT(getDimLevelType(enc, i)) &&
affine.isa<AffineConstantExpr>())
env.emitter().genDenseAffineAddressAtCurLevel(
builder, op.getLoc(), input->getOperandNumber(), i, affine);
else
return; // break on first non-dense non-constant level
}
}
}
static void genInitConstantDenseAddress(CodegenEnv &env,
RewriterBase &rewriter) {
// We can generate address for constant affine expression before any loops
// starting from the first level as they do not depend on any thing.
// E.g., [Dense, Dense, Sparse] -> (1, 2, d0), the addresses for the first two
// levels can be determined before loops.
for (unsigned tid = 0, e = env.op().getNumDpsInputs(); tid < e; tid++)
genConstantDenseAddressFromLevel(env, rewriter, tid, 0);
}
/// Return true if the lattices bit can be iterated by a for loop.
static bool translateBitsToTidDimPairs(
CodegenEnv &env, unsigned li, unsigned idx, SmallVectorImpl<size_t> &tids,
SmallVectorImpl<size_t> &dims, SmallVectorImpl<size_t> &affineTids,
SmallVectorImpl<size_t> &affineDims, SmallVectorImpl<AffineExpr> &exps) {
const BitVector &all = env.lat(li).bits;
const BitVector &simple = env.lat(li).simple;
unsigned numloopCond = 0;
// Converts bits to array + dim pair
env.merger().foreachTidDimPairInBits(
all, [&, idx](unsigned b, unsigned tid, std::optional<unsigned> dim,
DimLevelType dlt) {
if (simple.test(b)) {
if (isUndefDLT(dlt)) {
// An undefined dlt in the lattices, we probably mean to iterate
// based on the dim of output tensor.
// E.g., this could be a synthetic tensor (for invariants and sparse
// output tensor).
// out[i][j] = invariant; or a broadcast
// out[i][j] = in[i] (j is undef for input)
tid = env.merger().getOutTensorID();
dim = env.merger().getDimNum(tid, idx);
// Skips invalid dim (e.g., when this is a zero ranked tensor).
if (!dim)
return;
}
tids.push_back(tid);
dims.push_back(*dim);
numloopCond++;
} else if (isDenseDLT(dlt)) {
tids.push_back(tid);
dims.push_back(*dim);
} else {
assert(isUndefDLT(dlt));
linalg::GenericOp op = env.op();
if (tid >= op.getNumDpsInputs())
// We only handle affine expression on input tensors (for now).
return;
OpOperand *operand = &op->getOpOperand(tid);
auto enc = getSparseTensorEncoding(operand->get().getType());
// Non-annotated dense tensors requires no special handling.
if (!enc)
return;
ArrayRef<AffineExpr> affines =
op.getMatchingIndexingMap(operand).getResults();
assert(affines.size() == enc.getDimLevelType().size());
for (unsigned i = 0, e = affines.size(); i < e; i++) {
AffineExpr exp = affines[toOrigDim(enc, i)];
// Skip simple affine expression and non dense dimensions (which has
// it own filter loop).
if (exp.isa<AffineDimExpr>() ||
!isDenseDLT(getDimLevelType(enc, i)))
continue;
// Constant affine expression are handled in genLoop
if (!exp.isa<AffineConstantExpr>()) {
bool atLevel = false;
if (isInvariantAffine(env, exp, idx, atLevel) && atLevel) {
// If the compound affine is invariant and we are right at the
// level. We need to generate the address according to the
// affine expression. This is also the best place we can do it
// to avoid putting it inside inner loops.
// NOTE: It assumes that the levels of the input tensor are
// initialized in order (and it is also currently guaranteed by
// computeIterationGraph), another more admissible approach
// might be accepting out-of-order access between consecutive
// dense levels.
affineTids.push_back(tid);
affineDims.push_back(i);
exps.push_back(exp);
}
}
}
}
});
if (isDenseDLT(env.dlt(env.merger().getOutTensorID(), idx))) {
// Note that we generate dense indices of the output tensor
// unconditionally, since they may not appear in the lattice, but may be
// needed for linearized env.
auto dim = *env.merger().getDimNum(env.merger().getOutTensorID(), idx);
tids.push_back(env.merger().getOutTensorID());
dims.push_back(dim);
}
assert(numloopCond > 0);
// If we just need to one loop conditions, the loop can be generated by a for
// loop.
return numloopCond == 1;
}
/// Starts a single loop in current sequence.
static Operation *startLoop(CodegenEnv &env, OpBuilder &builder, unsigned at,
unsigned li, bool needsUniv) {
// The set of tensors + dims to generate loops on
SmallVector<size_t> tids, dims;
// The set of dense tensors with non-trivial affine expression that just
// becomes invariant and the address shall now be generated at the current
// level.
SmallVector<size_t> affineTids, affineDims;
SmallVector<AffineExpr> affines;
bool isFor = translateBitsToTidDimPairs(
env, li, env.topSortAt(at), tids, dims, affineTids, affineDims, affines);
// Emit the for/while-loop control.
Operation *loop = genLoop(env, builder, at, needsUniv, tids, dims, isFor);
for (auto [tid, dim, exp] : llvm::zip(affineTids, affineDims, affines)) {
env.emitter().genDenseAffineAddressAtCurLevel(builder, env.op().getLoc(),
tid, dim, exp);
}
// Until now, we have entered every <tid, dim> pair in {cond, extra,
// affine}Tids/Dims. The addresses of the upcoming levels which are dependent
// on constant affines expression may now be determined.
auto allTids = llvm::concat<size_t>(tids, affineTids);
auto allDims = llvm::concat<size_t>(dims, affineDims);
for (auto [tid, dim] : llvm::zip(allTids, allDims)) {
if (tid != env.merger().getOutTensorID())
genConstantDenseAddressFromLevel(env, builder, tid, dim + 1);
}
return loop;
}
/// Ends a single loop in current sequence. Returns new values for needsUniv.
static bool endLoop(CodegenEnv &env, RewriterBase &rewriter, Operation *loop,
unsigned idx, unsigned li, bool needsUniv) {
// End a while-loop.
if (auto whileOp = dyn_cast<scf::WhileOp>(loop)) {
finalizeWhileOp(env, rewriter, idx, needsUniv, env.lat(li).bits, whileOp);
} else if (auto forOp = dyn_cast<scf::ForOp>(loop)) {
// Any iteration of a reduction for-loop creates a valid lex insert.
if (env.isReduc() && env.getValidLexInsert())
env.setValidLexInsert(constantI1(rewriter, env.op().getLoc(), true));
} else {
needsUniv = false;
}
env.genLoopBoundary([&](MutableArrayRef<Value> reduc) {
env.emitter().exitCurrentLoop(rewriter, env.op().getLoc(), reduc);
return std::nullopt;
});
return needsUniv;
}
/// Ends a loop sequence at given level.
static void endLoopSeq(CodegenEnv &env, OpBuilder &builder, unsigned exp,
unsigned at, unsigned idx, unsigned ldx) {
assert(env.getLoopIdxValue(idx) == nullptr);
env.emitter().exitCurrentLoopSeq();
// Unmark bookkeeping of invariants and loop index.
genInvariants(env, builder, exp, ldx, /*atStart=*/false);
// Finalize access pattern expansion for sparse tensor output.
genExpand(env, builder, at, /*atStart=*/false);
}
/// Recursively generates code while computing iteration lattices in order
/// to manage the complexity of implementing co-iteration over unions
/// and intersections of sparse iterations spaces.
static void genStmt(CodegenEnv &env, RewriterBase &rewriter, unsigned exp,
unsigned at) {
// At each leaf, assign remaining tensor (sub)expression to output tensor.
if (at == env.topSortSize()) {
unsigned ldx = env.topSortAt(at - 1);
Value rhs = genExp(env, rewriter, exp, ldx);
genTensorStore(env, rewriter, exp, rhs);
return;
}
// Construct iteration lattices for current loop index, with L0 at top.
unsigned idx = env.topSortAt(at);
unsigned ldx = at == 0 ? -1u : env.topSortAt(at - 1);
unsigned lts = env.merger().optimizeSet(env.merger().buildLattices(exp, idx));
// TODO: sort
// TODO: dedup
// Start a loop sequence.
bool needsUniv = startLoopSeq(env, rewriter, exp, at, idx, ldx, lts);
// Emit a loop for every lattice point L0 >= Li in this loop sequence.
unsigned lsize = env.set(lts).size();
for (unsigned i = 0; i < lsize; i++) {
// Start a loop.
unsigned li = env.set(lts)[i];
Operation *loop = startLoop(env, rewriter, at, li, needsUniv);
// Visit all lattices points with Li >= Lj to generate the
// loop-body, possibly with if statements for coiteration.
Value redInput = env.getReduc();
Value cntInput = env.getExpandCount();
Value insInput = env.getInsertionChain();
bool isWhile = dyn_cast<scf::WhileOp>(loop) != nullptr;
for (unsigned j = 0; j < lsize; j++) {
unsigned lj = env.set(lts)[j];
unsigned ej = env.lat(lj).exp;
if (li == lj || env.merger().latGT(li, lj)) {
// Recurse into body of each branch.
if (isWhile) {
scf::IfOp ifOp = genIf(env, rewriter, idx, env.lat(lj).simple);
genStmt(env, rewriter, ej, at + 1);
endIf(env, rewriter, ifOp, loop, redInput, cntInput, insInput);
} else {
genStmt(env, rewriter, ej, at + 1);
}
}
}
// End a loop.
needsUniv = endLoop(env, rewriter, loop, idx, li, needsUniv);
}
// End a loop sequence.
endLoopSeq(env, rewriter, exp, at, idx, ldx);
}
/// Converts the result computed by the sparse kernel into the required form.
static void genResult(CodegenEnv &env, RewriterBase &rewriter) {
linalg::GenericOp op = env.op();
OpOperand *lhs = op.getDpsInitOperand(0);
Value tensor = lhs->get();
Type resType = tensor.getType();
if (getSparseTensorEncoding(resType)) {
// The sparse tensor rematerializes from the original sparse tensor's
// underlying sparse storage format. For an insertion chain, the
// tensor materializes from the chain with 'hasInserts' enabled.
bool hasInserts = false;
if (Value chain = env.getInsertionChain()) {
hasInserts = true;
tensor = chain;
}
rewriter.replaceOpWithNewOp<LoadOp>(op, resType, tensor, hasInserts);
} else {
// To rematerialize an non-annotated tensor, simply load it
// from the bufferized value.
Value val = env.emitter().getValBuffer().back(); // value array
rewriter.replaceOpWithNewOp<bufferization::ToTensorOp>(op, resType, val);
}
}
//===----------------------------------------------------------------------===//
// Sparse compiler rewriting methods.
//===----------------------------------------------------------------------===//
namespace {
/// Sparse rewriting rule for generic Lingalg operation.
struct GenericOpSparsifier : public OpRewritePattern<linalg::GenericOp> {
public:
GenericOpSparsifier(MLIRContext *context, SparsificationOptions o)
: OpRewritePattern<linalg::GenericOp>(context), options(o) {}
LogicalResult matchAndRewrite(linalg::GenericOp op,
PatternRewriter &rewriter) const override {
// Only accept single output operations without affine index on sparse
// output.
if (op.getNumDpsInits() != 1 || hasCompoundAffineOnSparseOut(op))
return failure();
// Sets up a code generation environment.
unsigned numTensors = op->getNumOperands();
unsigned numLoops = op.getNumLoops();
unsigned numFilterLoops = getNumCompoundAffineOnSparseDims(op);
CodegenEnv env(op, options, numTensors, numLoops, numFilterLoops);
// Detects sparse annotations and translates the per-dimension sparsity
// information for all tensors to loop indices in the kernel.
if (!findSparseAnnotations(env))
return failure();
// Constructs the tensor expressions tree from `op`, returns failure if the
// tree can not be built or the tensor expression is inadmissible.
if (failed(env.initTensorExp()))
return failure();
// Computes a topologically sorted iteration graph to ensure tensors
// are visited in natural index order. Gradually relaxes the considered
// constraints until an acyclic iteration graph results, such that sparse
// code generation can proceed. As a last resort, an attempt is made
// to resolve cycles by inserting a conversion.
bool isAdmissible = false;
bool hasCycle = true;
// An const list of all masks that we used for interation graph
// computation. Must be ordered from more strict to less strict.
const auto allMask = {SortMask::kIncludeAll, SortMask::kIncludeUndef,
SortMask::kIncludeDense, SortMask::kSparseOnly};
for (auto mask : allMask) {
if (computeIterationGraph(env, mask)) {
hasCycle = false;
if (env.isAdmissibleTopoOrder()) {
isAdmissible = true;
break;
}
// else try a set of less strict constraints.
}
}
if (hasCycle)
return resolveCycle(env, rewriter); // one last shot
if (!isAdmissible)
return failure(); // inadmissible expression, reject
// Recursively generates code if admissible.
env.startEmit();
genBuffers(env, rewriter);
genInitConstantDenseAddress(env, rewriter);
genStmt(env, rewriter, env.getTensorExp(), 0);
genResult(env, rewriter);
return success();
}
private:
// Last resort cycle resolution.
LogicalResult resolveCycle(CodegenEnv &env, PatternRewriter &rewriter) const {
// Compute topological sort while leaving out every
// sparse input tensor in succession until an acylic
// iteration graph results.
for (OpOperand *t : env.op().getDpsInputOperands()) {
unsigned tensor = t->getOperandNumber();
Value tval = t->get();
auto srcEnc = getSparseTensorEncoding(tval.getType());
if (!srcEnc || !computeIterationGraph(env, SortMask::kSparseOnly, t))
continue;
// Found an input tensor that resolves the cycle by inserting a
// conversion into a sparse tensor that adheres to the iteration
// graph order. Also releases the temporary sparse tensor.
//
// TODO: investigate fusing the conversion with computation,
// especially if it is a direct yield!
//
auto srcTp = getRankedTensorType(tval);
auto dstEnc = SparseTensorEncodingAttr::get(
getContext(), srcEnc.getDimLevelType(),
permute(env, env.op().getMatchingIndexingMap(t)), // new order
srcEnc.getHigherOrdering(), srcEnc.getPointerBitWidth(),
srcEnc.getIndexBitWidth());
auto dstTp = RankedTensorType::get(srcTp.getShape(),
srcTp.getElementType(), dstEnc);
auto convert = rewriter.create<ConvertOp>(tval.getLoc(), dstTp, tval);
env.op()->setOperand(tensor, convert);
rewriter.setInsertionPointAfter(env.op());
rewriter.create<bufferization::DeallocTensorOp>(tval.getLoc(), convert);
return success();
}
// Cannot be resolved with a single conversion.
// TODO: convert more than one?
return failure();
}
/// Options to control sparse code generation.
SparsificationOptions options;
};
} // namespace
/// Populates the given patterns list with rewriting rules required for
/// the sparsification of linear algebra operations.
void mlir::populateSparsificationPatterns(
RewritePatternSet &patterns, const SparsificationOptions &options) {
patterns.add<GenericOpSparsifier>(patterns.getContext(), options);
}